

BioChronicity (BioC): Chronotherapeutics

Targets of 56/100 WHO essential medicines & best-selling drugs are clock-regulated (half-life often < 6 hours)

Example: anti-hypertensive drugs

Coupled?

Zhang and Lahens, PNAS, 2014

Plasmodium clocks

Cell cycle Developmental Metabolic

Clock-based therapy: Asynchronizing the clocks between host and parasite will reduce parasite fitness

Host clocks Innate response (e.g., TNF-a, IL-6) Circadian systems

DARPA Identifying Clock-Controlled Genes in Parasites

In vitro erythrocyte infection system

- Thriving malaria parasites
- High-density time series RNA-Seq
- Data collected every 3 hr for 48+ hr

Unpublished data Steve Haase (U Penn; BioC performer) in collaboration with LTC Norman Waters, PhD (Director, Malaria Vaccine Branch, MMRP)

BioChronicity Quantitative ToolsNetwork inference from time-series data

BioC Grand Challenge

Chronotherapy

Enhanced diagnostics

Raise awareness of timing and molecular cycling in biological systems and impact on health & disease

Spark collaboration among multiple disciplines to develop and test integrated models

Validate using big data analysis of circadian and/or temporal signatures

Generate new directions in prediction, treatment, & prognosis

Approach:

Longitudinal clinical datasets:

- Chronic disease
- Acute infection

Challenge participants:

Predict illness and recovery

Model evaluation:

Objective metrics, expert panel of judges, modest cash prizes