DARPA Biotechnologies: Diagnostics on Demand

Daniel J. Wattendorf, MD, FACMG
Col USAF MC

Program Manager, Biological Technologies Office Defense Advanced Research Projects Agency

September 2014

Challenge: Transmissibility of infectious disease

Distribution Statement A "Approved for Public Release; Distribution Unlimited"

Challenge: Outpace the Spread of Infectious Disease

DARPA Interventions

- **Distributed diagnostics:** Molecular and analytical methods suitable for use outside hospital settings
- Transfer of immune responses: Nucleic acid constructs and delivery for *in vivo* production of protective antibodies that impart immediate prophylaxis or treatment
- New vaccine platforms: RNA-based vaccines with controlled immunogenicity able to be designed and manufactured up rapidly

Solution: Biochemical monitoring & testing outside of traditional healthcare settings

Why not now?

- Limited testing in physician offices or homes and no continuous monitoring for key biochemical markers
- Limited information integration
- Minimal participation

Technology capability for distributed testing

DARPA technology for increased diagnostic sensitivity

Information integration: Mobile health today

Situational Awareness > 50,000 mobile health apps

- e.g.: behavior, fitness information
- Efforts underway to link to EMRs

Copyright: www.medgadget.com

Biochemical Ground Truth < 10 tests

- e.g.: warfarin INR, glucose
- DARPA diagnostics efforts

Copyright: www.ptinr.com

Clinical trial participation

An overwhelming majority of people (77%), say that they would consider getting involved in an appropriate clinical research study if asked.

(www.ciscrp.org)

About 2% of the United States population gets involved with clinical research trials each year. Among people who suffer from severe, chronic illnesses, only 6% participate. As a result, an increasing number of clinical trials are delayed because too few people...even knew they had the opportunity to get involved.

(Getz, The Gift of Participation, 42)

Biochemical Testing Outside of Traditional Settings: DARPA Diagnostics on Demand

New formats for self-collected biospecimens Eliminate refrigeration & reduce pain

Vision: Painless self-collection and room temperature preservation

Strategy:

- Preserve self-collected biospecimens without refrigeration
- Reduced pain with minimally invasive self-collection
- Biospecimen source: blood, urine, nasal swab, etc.
- Analyte class: DNA, RNA, proteins, whole cells, live viruses
- Stable storage for future functional assays

Courtesy of GenTegra

Biospecimen collection for immediate testing and preservation for future additional analysis

HemoLink™

Self-administered, ultra-simple, large-volume blood collection

- ✓ No training required
- ✓ Safe and convenient
- ✓ Large blood volumes
- ✓ Integrated sample stabilization

Advanced methods for limited resource settings Move the diagnostic device

Vision: Clinical diagnostics for home use

Strategy:

- Materials and devices that are disposable with no/low power
- Self-collected sample integration
- New molecular signal amplification methods
- Nucleic acid and protein-based assays
- Simple to use (CLIA-waived), sample to answer diagnostics with positive predictive value

Courtesy of Paul Yager, University of Washington

Courtesy of Rustem Ismagilov, Caltech

Vision: Automated, highly multiplexed diagnostics at point of care

Strategy:

- Automated sample preparation and processing
- Broad dynamic range and high sensitivity, multiplex analysis methods
- Disease specific (nucleic acid) and host response (proteins) detection
- Integrated instruments for simple operation (CLIA-waived for physician office use)
- Advanced data handling and strategies for emerging disease detection

Courtesy of J. Michael Ramsey, UNC-Chapel Hill

Current protein blood tests are based on only 250 currently measurable proteins

Total number of currently detectable serum proteins 250¹

How many proteins are below currently detectable levels?

Potential is Large:

Human Proteome = 25,000 genes

Secreted Proteins >2,500

Proteomics: current methods

More biochemical inputs from one person

Distribution Statement A "Approved for Public Release; Distribution Unlimited"

Continuous Monitoring: DARPA *In-Vivo* Diagnostics

Current *in-vivo* biochemical measurements

Commercial blood oxygen monitor

Commercial tissue oxygen sensor: non-wearable

Commercial glucose sensors: last 2-7 days

The future of *in-vivo* nanosensors

DATA

- Real-time streaming
- Controlled data distribution: Patient, Care provider, Physician

ELECTRONIC HEALTH RECORDS

- Doctors/caregivers real-time access
- Complete historical perspective

SENSOR

- Ultra small, hydrogel scaffold
- Tissue integration overcome foreign body response and no embedded electronics
- Fluorescent sensing nanospheres

READER

- Thin patch or handheld wand
- Self-calibrating optics
- Multi-channel/color capable

Tissue-integrating Biomaterials

- Flexible yet strong formulation
- pHEMA-based hydrogel
- Sphere-templated to produce interconnected pores

Fluorescent Chemistry

Oxygen, glucose and lactate sensitive dyes developed

 Other near-term analytes: pH, urea, creatinine, histamine, Na+, ethanol, and billirubin

Future health paradigm:

- Individual health monitoring based on rapid, distributed, sensitive biochemical tests
- DARPA technology for new devices with seamless integration of biospecimen collection/continuous monitoring, analysis, and electronic reporting

Opportunity space:

- New business models that leverage information to incentivize the cost of clinical validation
- Health IT tools for increased patient access and autonomy, e.g.:
 - fine control of data privacy/sharing with specific recipients
 - electronic enrollment in clinical trials and remote participation
 - user authentication and data provenance

Outpace the Spread of Infectious Disease

DARPA Interventions

- **Distributed diagnostics:** Molecular and analytical methods suitable for use outside hospital settings
- New vaccine platforms: RNA-based vaccines with controlled immunogenicity able to be designed and manufactured up rapidly

Case Study: H1N1 2009-2010 Vaccine Program

Total US population: 300M

infected

CDC Projected Improvements from Accelerated Shipping

CDC Projected Improvements from Accelerated Shipping

CDC Projected Improvement from Accelerated Shipping and Increased Vaccine Efficacy

CDC Projected Improvement from Accelerated Shipping and Increased Vaccine Efficacy

Selection: Speed and Effectiveness

Immunize mice/animals against a known pathogen or protein antigen

Phage Display

Single B-cell technology (antigen sorting, supernatant screening)

NGS of the Immune Repertoire

Hybridoma Technologies

DARPA Modification to Enhance Effect, Duration, Location

Selection, Modification, and Design

Immunize mice/animals against a known pathogen or protein antigen

Phage Display

Single B-cell technology (antigen sorting, supernatant screening)

Hybridoma Technologies

NGS of the Immune Repertoire

Antibodies and Bacterial Pathogenesis

Many Virulence Factor & Mechanistic Targets

Distribution Statement A "Approved for Public Release; Distribution Unlimited"

Approaches to Combating Antibiotic Resistant Bacteria

