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1 ternal Technologv Flow 
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DARPA Strategic Vision 
DEfENSE SCIENCES OFFICE 

• Strategic Thrusts 
• Detection, precision ID, tracking, and 

destruction of elusive surface targets 

• Location and characterization of 
underground structures 

• Force multipliers for urban area operations 

• Networked manned & unmanned attack 
operations 

• Assured use of space 

• Cognitive systems 

• Bio-Revolution 
• Robust, secure self-forming networks 

• Enduring Foundations 
• Materials 

• Microsystems 

• Inform a ti 0 n Tech n 0 I og iesd fi>r Public Distribution A, Ca,:d44239 

Maintain the technological 
superiority of the U.S. 
military and prevent 
technological surprise ... 

ttigh:-payoff research that 
bridges the gap between 
fundamental discoveries 
and their military use~ 
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Human Assisted Neural Devices 

Use brain activity to command, 
control, actuate and communicate 
with the world directly through brain 
integration with prosthetics and 
peripheral devices 
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• Closed loop demonstration of 
arm reach and grasp of food ~f • 

\ Visual - LAN • 

• Open loop demonstration of 
human control of gripping 
force 

\ Feedback \ ·. -:-.:.::::::--._ ..._ 
Loop ·<> \.. 

• 

• Long-term compatibility Robot Arm + Gripper 

• Non-invasive correlates 

Approved for Public Distribution A. Ca>~ #44239 



Human Assisted Neural Devices 
DEfENSE SCIENCES OFfiCE ~' 

Learning to Control a Brain-Machine Interface 
for Reaching and Grasping by Primates 
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• Surface EMGs of arm muscles 
recorded in task 1 for pole 
control (left) and brain control 
without arm movements (right). 
Top plots show the X-coordinate 
of the cursor. 

• Plots below display EMGs of 
wrist flexors, wrist extensors, 
and biceps. 

• EMG modulations were 
absent in brain control. 
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~ Example of extending the frontiers in multielement 
~-~~m ~~;electrical recording of spatially extended neuronal activity 

I,J\-,:-~. . :.:."' 
'~11iJ_~·~~(,'i.i ,..'; . .\' 

Today: silicon microelectrode arrays 
for in-vivo probing of brain cortex 
(J. Donoghue; Brown) 

Tomorrow: Carbon nanotube arrays with 
superior spatial resolution endowed by 
superior electrical/mechanical properties 
(J. Xu, Brown) 



CAL TECH Record the intended movement activity from 
a reach area in the parietal cortex, decode this 
signal, and use it to move an animated limb on a 
computer screen, and later a robot limb. 

Virtual Reach Experiment 

(X,Y) ••• 1111111 ... 



CAL TECH 
:/''·~·~"'"" Using the parietal cortex rather than motor 
,~ ... ~ ~' 
:?~1~'~,£/ cortex is novel. Useful features of parietal 

cortex activity are: 

Prosthetic Arm System 

~Neural signal 

Detennlne 
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Generate 
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• High level (cognitive) and 
may require fewer 
recordings to read out 
intentions. 

• Visual and may show less 
degeneration or 
reorganization after spinal 
cord lesion. 

• Plasticity, making it easier 
to adapt to the implant 

• Spatially tuned local field 
potentials (LFP), which are 
easier to record than 
single cells. 
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Biobots: Roborat 

• Electrodes in reward area (medial forebrain and 
somatosensory cortex) 

• Trained to move forward or turn when medial 
forebrain is stimulated 



450 Future activities 

• Non-invasive technologies 

• Sensory feedback 

• Proprioception 

• Integrated and multidisciplinary 
approach to improved prosthetic 
devices for amputees 


