The Likely Future Course of the Revolution in Military Affairs

2010
(Revised December 2010)

Contract HQ0034-09-D-3007-0005

Center for Strategic and Budgetary Assessments
CONTENTS

1. OVERVIEW .. 1
2. METRICS FOR ASSESSING PROGRESS .. 4
3. FOCUSING ON PRECISION STRIKE ... 6
4. POSSIBLE CHANGES BY 2050 ... 10
5. U.S. DEPENDENCE ON THE SPACE AND CYBERSPACE 11
6. THE DAWNING VULNERABILITY OF NAVAL SURFACE COMBATANTS 16
7. THE FUTURE OF STEALTH ... 20
8. GROUND FORCES AND MATURE PRECISION STRIKE 24
9. POWER PROJECTION ... 27
10. CONCLUSIONS ... 31

FIGURES

Figure 1: Chinese Depictions of the DF-21/CSS-5 ASBM 8
Figure 2: MQ-9 Reaper Target Imagery ... 12
Figure 3: Global Hawk Operational Concept .. 13
Figure 4: Earth Orbital Altitudes ... 14
Figure 5: The Sinking of the Roma and USS St. Lo 17
Figure 6: The PRC’s ASBM Concept .. 19
Figure 7: S-400 Battery Components .. 21
Figure 8: U.S. Landings at Normandy and Leyte Island, 1944 28
Figure 9: 3M-14E Club-K in Shipping Containers 29
1. **OVERVIEW**

Soviet military theorists had been discussing the possibility of a third twentieth-century revolution in military affairs (RMA) since the mid-1970s. As Marshal Nikolai Ogarkov, then chief of the Soviet General Staff, observed in 1984, these developments in non-nuclear means of destruction promise to “make it possible to sharply increase (by at least an order of magnitude) the destructive potential of conventional weapons, bringing them closer, so to speak, to weapons of mass destruction in terms of effectiveness.” The Soviets introduced the term “reconnaissance-strike complex” (or “RUK” from the Russian Рекогносцировочно-ударный комплекс) to describe the integration of missiles with precision-guided sub-munitions, area sensors such as the airborne Pave Mover SAR/MTI (synthetic-aperture radar/moving-target-indicator) radar, and automated C2.

In late January 1991, with Operation Desert Storm underway and

1 According to Soviet theorists, the first twentieth-century MTR was precipitated by the advent of motorization, the airplane, and chemical weapons during the First World War (William E. Odom, “Soviet Military Doctrine,” *Foreign Affairs*, Winter 1988/89, pp. 120-121). The maturation of this MTR was manifested in the Second World War with *Blitzkrieg* (mobile armored operations) based on the tank and the Panzer division, strategic bombardment as epitomized by the Anglo-American Combined Bomber Offensive against Germany, and the displacement of battleships by aircraft carriers in naval warfare. The second twentieth-century MTR was triggered by the development of ballistic missiles and atomic weapons at the end of World War II. It reached maturity in the early 1970s when the Soviets achieved rough nuclear parity with the United States.

4 The Russians used the term reconnaissance-fire complex (рекогносцировочно-огневой комплекс) when they were thinking about precision strike using short-range weapons such as artillery.
mounting evidence of the efficacy of “stealthy” F-117s and F-111Fs delivering laser-guided bombs (LGBs) against key Iraqi targets, precipitated the debate within the U.S. national-security establishment during the 1990s over the RMA and, later, over defense transformation. In time, discussion of the RMA and transformation spread overseas. In the case of NATO, the institutional manifestation of this ongoing debate is the Allied Command Transformation organization, which is a functional command created in 2003 to lead the military transformation of alliance forces and capabilities using new operational concepts and doctrines.7

What exactly is a revolution in military affairs? Building on his 1992 MTR assessment, Krepinevich argued in 1994 that an RMA is:

7 As of April 2010, General Stéphane Abrial, French Air Force, is NATO’s Supreme Allied Commander, Transformation. His headquarters is collocated with the U.S. Joint Forces Command in Norfolk, Virginia.
what occurs when the application of new technologies into a significant number of military systems combines with innovative operational concepts and organizational adaptation in a way that fundamentally alters the character and conduct of conflict... by producing a dramatic increase—often an order of magnitude or greater—in the combat potential and military effectiveness of armed forces.11

A decade later, Michael Vickers and Robert Martinage wrote that military revolutions “are periods of discontinuous change that render obsolete or subordinate existing means for conducting war.”12 Their characterization is very close to Richard Hundley’s 1999 definition of an RMA as a paradigm shift in military operations that obsolesces one or more core competencies of a dominant player or creates one or more new core competencies.13 In all these definitions, it is not the speed with which changes in war’s conduct occur but their magnitude as reflected in the emergence of new operational concepts and organizations, thereby generating new military competencies or obsolescing earlier ones.14

14 Krepinevich, Jr., “The Military-Technical Revolution: A Preliminary Assessment,” p. 3. Not everyone agrees that these definitions suffice to characterize an RMA. Stephen Biddle, for instance, insists that all the definitions offered by RMA proponents fail to identify a single period of revolutionary change in war’s conduct since 1918 (Stephen Biddle, “Military Power: A Reply,” The Journal of Strategic Studies, June 2005, p. 457). To make this view more plausible, Biddle restricts his claim to conventional warfare, thereby avoiding the need to explain the atomic and thermonuclear revolutions that grew out of the Manhattan project.
2. **METRICS FOR ASSESSING PROGRESS**

For a firsthand account of the British experiment with tanks at Cambrai, see Brevet-Colonel J. F. C. Fuller, *Tanks in the Great War 1914-1918* (New York: E. P. Dutton, 1920), pp. 140-153. British Mark IV tanks did initially break through German lines at Cambrai, but they were unable to hold the ground gained, much less exploit their breakthroughs as German Panzer units were able to do in France in May 1940.
The most substantive argument advanced at the March workshop for thinking that the U.S. military services have progressed much further than the late 1920s was based on their burgeoning use of precision munitions. The U.S. military, some workshop participants insisted, was already well down the road in making the transition from the unguided weapons regime that had dominated warfare since ancient times to the precision-strike era of guided weapons and battle networks that began emerging late in the Vietnam War. To give a sense of how far the U.S. military has progressed, in 1991 some 92 percent of the more than 230,000 munitions expended in the Operation Desert Storm air campaign were unguided; in 2003, total expenditures in the Operation Iraqi Freedom air campaign were less than 28,000 munitions, of which some 65 percent were guided and included both LGBs as well as all-weather Joint Direct Attack Munitions (JDAMs).

Moreover, harking back to the definition of an RMA as an order-of-magnitude increase in effectiveness, after Desert Storm a Defense Science Board task force estimated that precision-guided munitions were twelve to twenty times more effective than unguided ordnance on a per-target-killed basis. Today the U.S. military is the world leader by far in non-nuclear precision strike. No other military has a comparable capability to bring non-nuclear precision weapons to bear at global distances within hours to a few days.

Unquestionably the U.S. military has come a long way in embracing non-nuclear guided munitions since 1991. But like the German campaign in Poland in September 1939, the conflicts the U.S. military has fought in Afghanistan and Iraq have not been against major adversaries with comparable military capabilities. Against the Taliban, the Iraqi army, al Qaeda terrorists, Sunni and Shia insurgents, and various jihadist fighters from Iran and elsewhere in the Arab world, the increasing use of guided munitions by American forces has been less about new ways of fighting than about improving the efficiency and effectiveness of longstanding ways of fighting by traditional U.S. military organizations. U.S. progress in embracing the revolution in military affairs centered on precision-

strike has to be assessed relative to capable adversaries with their own precision-strike capabilities, not relative to opponents with third-rate military capabilities. Until the American military has undertaken the changes in weaponry, operational concepts and organizations that would be needed to cope with an opponent possessing large numbers of guided munitions and effective targeting networks, one does not really know what a mature precision-strike regime would look like.

3. FOCUSING ON PRECISION STRIKE

To unpack this issue a bit further: What significant changes in how wars are fought seem likely between now and 2050? How consequential might those changes be for the American military services? And to what extent might other powers field weaponry, develop new operational concepts, or create new military organizations to exploit the unfolding RMA?

A common assumption in those events—particularly the war games—was that both sides would possess long-range strike systems. Nonetheless, as already mentioned, U.S. conventional forces have not yet been confronted with the challenges of fighting within reach of enemy reconnaissance-strike complexes. Given the accelerating proliferation of guided munitions and targeting networks, however, the day when American forces will face enemy precision-strike systems is surely approaching. The Chinese have developed over-the-horizon (OTH) radars to locate U.S. carrier battle groups well out to sea along with a variant of the Deng Feng-21 (DF-21) ballistic missile to attack the carrier itself.22 Fixed installations such as Kadena Air Force Base on Okinawa are already within range of the DF-21.23 Moreover, OTH radars and an anti-ship version of the DF-21 appear to be elements of a much broader effort by the People’s Liberation Army (PLA) to prevent U.S. forces from basing or operating close to the Chinese mainland. As defense secretary Robert Gates observed in 2008, Chinese “investments in cyber and anti-satellite warfare, anti-air and anti-ship weaponry, submarines, and ballistic missiles could threaten America’s primary means to project power and help allies in the Pacific,” including U.S. bases, air and sea assets, and the networks that support them.24 More recently, Admiral Robert Willard, commander of the U.S. Pacific Command, disclosed that the Chinese were no longer merely trying to

develop a conventional anti-ship ballistic missile (ASBM) based on the DF-21/CSS-5; they were actually testing the new weapon.25

Figure 1: Chinese Depictions of the DF-21/CSS-5 ASBM26

Nor is the People’s Republic of China (PRC) the only nation developing anti-access/area-denial (A2/AD) capabilities to constrain U.S. conventional military power. Aided by the more confined geography of the Persian Gulf, the Iranians are also fielding offensive and defensive missile systems that, in conjunction with advanced mines and the various naval combatants, could one day enable them to affect the flow of oil through the Strait of Hormuz. While Iranian A2/AD capabilities are unlikely to have the long reach and sophistication of China’s, they could eventually be effective enough to make it very difficult and costly for U.S. naval forces to operate inside the Persian Gulf. Indeed, this is precisely the outcome that surfaced in Joint Forces Command’s Millennium Challenge war game in 2002. The Red Team under retired Marine Lieutenant General Paul Van Riper mounted an initial surprise attack using the forces Iran was projected to have in 2007 and sent sixteen U.S. ships to the bottom of the Persian Gulf at the outset of the exercise.27 Suffice it to say, as Iran’s anti-access/area-denial capabilities mature over time, they will be able to make it more difficult and potentially more costly for U.S. forces to operate in and around the Persian Gulf.

\begin{itemize}
\item 25 Andrew Erickson from the U.S. Naval War College’s China Maritime Studies Institute, “China Testing Ballistic Missile ‘Carrier-Killer’,” Wired Magazine’s Danger Room, March 29, 2010, online at \texttt{http://www.wired.com/images_blogs/dangerroom/2010/03/asbm_graphic_admiral-willard-testimony_chinese-article.png}.
\item 26 Source: Dongfang Ribao [Oriental Daily], the website of a Shanghai newspaper at \texttt{http://military.china.com/zh_cn/news/568/20100328/15873418.html}. The left hand image is of a DF-21 on its mobile transporter erector launcher.
\end{itemize}
While U.S. thinking about an emerging precision-strike regime in the 1990s emphasized long-range RUKs, it is becoming increasingly apparent that the proliferation of short-range precision munitions will also pose challenges for the U.S. military. These systems include: guided rockets such as the U.S. Army’s Guided Multiple Launch Rocket System (GMLRS) and Excalibur 155-millimeter guided artillery round; the Precision Guidance Kit (PGK), which adds Global Positioning System (GPS) guidance to ordinary 105-mm and 155-mm artillery shells with a package that screws into the projectile’s fuze well; and various guided mortar rounds being developed in the United States and overseas. The fact that countries such as France, Sweden, Israel, Russia, and Germany are making and selling guided rocket, artillery, and mortar rounds argues that, in time, these sorts of precision munitions will even end up in the hands of terrorist organizations such as Hezbollah. Recall that in the summer of 2006, Hezbollah fired some 4,000 rockets into Israel, the overwhelming majority of which were unguided 122-mm and 107-mm Katyushas.28 It does not take much imagination to realize how much more devastating Hezbollah’s attacks would have been with precision munitions as opposed to unguided ones. Most of Hezbollah’s rockets in 2006 were aimed at entire Israeli cities due to their lack of accuracy, much as the Germans had been forced to do with the V-2 during 1944-1945.29 But with modern guidance technologies, Hezbollah’s attacks could have been orders of magnitude more destructive than they proved in 2006. Even with a circular error probable (CEP) of 30 or 50 meters, Hezbollah fighters would have been able to aim at specific facilities rather than whole cities.30

The threat that precision weapons in the hands of third-world militaries, insurgents or terrorists will pose for the U.S. military in coming years, then, is an emerging one. In Afghanistan and Iraq, mortars and rockets fired at U.S. bases have rarely been aimed with great precision, much less precision guided. But as Marine Lieutenant General George Flynn has noted, the prospect of even non-state actors being able to hit more or less everything they aim at with precision-guided mortars, artillery and short-range rockets is not only worrisome, but unavoidable as relatively inexpensive guided-weaponry proliferates worldwide.31

In hindsight, the story of conventional precision strike from the early 1990s to the present has been largely one of U.S. monopoly and dominance. That happy situation, however, is coming to an end. In the years ahead, U.S. forces will

29 Mark Wade estimates that the real-world accuracy of the V-2s Germany launched toward the end of World War II was 6-12 kilometers (Mark Wade, “V-2,” online at <http://www.astronautix.com/lvs/v2.htm>.

30 CEP is the radius of a circle around the aim point within which 50 percent of the munitions can be expected to fall statistically.

be confronted with long-range RUKs such as those the Chinese are developing as part of a broader A2/AD strategy in the western Pacific. At the same time, it appears to be simply a matter of time before American forces will also be confronted with short-range precision weapons. The maturing precision-strike regime, therefore, will be one in which countries large and small, as well as terrorist organizations, will possess a variety of long- and short-range guided weapons.

4. POSSIBLE CHANGES BY 2050

What are some of the more consequential implications for how war’s conduct may change fundamentally in the decades ahead stemming from the accelerating proliferation of precision-strike capabilities? The nuclear missile age matured during the 1960s as both the United States and the Soviet Union began fielding growing numbers of intercontinental-range ballistic missiles with the thermonuclear warheads. Although conventional guided weapons with “near-zero miss” had been foreseen by American strategists as early as 1975, the era in which non-nuclear missiles—from guided mortar and artillery rounds to intercontinental ballistic missiles—would increasingly dominate warfare is only now dawning. Looking to the future, major changes in war’s conduct stemming from the maturation of conventional precision strike are likely to include the following:

- Growing U.S. dependence on space and cyberspace may prove a major vulnerability to the operational concepts and organizations American forces have increasingly utilized since the early 1990s.

- Naval surface combatants such as aircraft carriers may no longer be sufficiently survivable when operating within reach of enemy anti-access/area-denial systems.

- The advantages of stealth—understood as mission planning and tactics plus low-observable platform signatures—may be eroded by advances in sensors and surface-to-air missile systems, especially for manned strike platforms operating inside defended airspace.

32 See Dominic A. Paolucci, “Summary Report of the Long Range Research and Development Planning Program,” Lulejian and Associates, Falls Church, VA, February 7, 1975, p. 45. Albert Wohlstetter was the primary drafter of this report. The great promise he saw in “near zero miss” conventional munitions was the possibility of providing the president with strategic-response options that would be alternatives to “massive nuclear destruction” (ibid., pp. 11, 45). This idea was later incorporated in the “New Triad” adopted in the 2001 Nuclear Posture Review.
Large or massed ground forces, major ports, and bases are likely to become highly vulnerable to enemy guided artillery, mortars, and missiles.

Finally, traditional approaches to overseas power projection of conventional forces may grow too difficult and costly to sustain.

This list should not be construed as exhaustive. It omits, for example, the possibility that the growing effectiveness of U.S. conventional precision weapons has already provided strong incentives for states such as Iran to develop nuclear weapons as insurance against the kind of regime change that the United States imposed on Saddam Hussein’s Iraq in 2003. Nevertheless, these five prospective ways in which significant changes in war’s conduct could occur provide considerable insight into the future evolution of the RMA based on the maturation of precision strike. Each will be discussed in greater detail in sections 5 through 9.

Perhaps the most significant implication of these five possibilities is that the conduct of war is likely to change more fundamentally between now and 2050 than it has since the early 1990s.

5. U.S. DEPENDENCE ON SPACE AND CYBERSPACE

Since the 1980s, the U.S. military’s approach to conventional operations has become ever more dependent on access to space-based systems—particularly to long-haul satellite communications and the precision navigation and timing information provided by Global Positioning System constellation. During Operation Desert Storm in 1991, laser-guided bombs, Tomahawk Land Attack Missiles (TLAMs) and the GPS-aided Conventional Air-Launched Cruise Missile (CALCM) demonstrated that U.S. strike forces had the capability to hit almost any target whose location could be pinpointed. For this reason, the U.S. military has invested heavily in developing battle networks to detect, identify, and track targets with sufficient precision and timeliness to enable them to be struck. Intelligence, surveillance and reconnaissance (ISR) systems such as the RQ-4 Global Hawk, the GPS constellation, and photo-reconnaissance satellites are examples of systems that embody how dependent U.S. forces have become on access to the orbital and cyber dimensions of the global commons.
Figure 2: MQ-9 Reaper Operations

Figure 2 includes target imagery produced during an MQ-9 Reaper training mission at Creech Air Force Base in Nevada. The imagery is high quality and requires high bandwidth (understood as the rate at which data can be sent over a given communications link). Figure 3 illustrates the dependence of the RQ-4 Global Hawk, MQ-1 Predator, and Reaper on Ku-band communications satellites (COMSATs) when these unmanned aerial vehicles (UAVs) are operated over Iraq or Afghanistan from mission control centers located in California or Nevada. Currently, a single Predator orbit requires data-rates up to 6.4 million bits/second (Mbps); and the electro-optical, infrared and synthetic aperture radar feeds from a single Global Hawk can potentially consume as much as 274 Mbps. These bandwidth requirements have been met by military and commercial COMSATs in geostationary orbits. In addition, the UAVs themselves depend on GPS for precise geo-location of whatever their sensors are “seeing.” Thus, the targeting and battle-management networks integral to current U.S. strike operations contain vulnerabilities ranging from jamming C2 links to the covert insertion of false data into U.S. networks. During the major combat phase of Operation Iraqi Freedom (OIF) in March-April 2003, the Combined Air Operations Center (CAOC) in Saudi Arabia used 31 military and 27 commercial COMSAT terminals with a capacity

33 The Reaper at the left is shown landing at an undisclosed location in Afghanistan on November 27, 2007. The MQ-9 has six hard points and can carry up to 1,500 pounds of ordnance.

34 Strictly defined, bandwidth is the width of the frequency spectrum of a signal in Hertz—John F. Pane and Leland Joe, \textit{Making Better Use of Bandwidth: Data Compression and Network Management Technologies} (Santa Monica, CA: RAND, 2005), p. xi. However, the term is widely used to refer to the rate at which data can be sent over a given channel in bits per second.

35 Major Timothy Jacobs, “Unmanned Aircraft Systems (UAS) of Commercial SATCOM,” Headquarters Air Combat Command/A8UC, December 7, 2006, slides 10 and 11. Jacobs’ projection for 2009 was that the Air Force would be operating 23 Predator and Reaper combat orbits requiring 147 Mbps, plus three Global Hawk orbits requiring another 822 Mbps.
of nearly 210 Mbps. Overall, the total information flow in and out of theater during OIF’s major combat phase is estimated to have peaked around three billion bits per second. As for the dependence of OIF strike operations on space, nearly 44 percent of the guided munitions expended in the air campaign used inertial/GPS-aided guidance to home on their aim points.

Figure 3: Global Hawk Operational Concept

Against the adversaries the United States and its allies have faced in Afghanistan and Iraq since September 11, 2001, dependence on geostationary-earth-orbit (GEO) communications satellites for battle management and operating UAVs from distant locations, on the medium-earth-orbit (MEO) GPS constellation for precision location and timing information, and on low-earth-orbit (LEO) reconnaissance satellites for target identification and battlespace awareness has not been problematic. The Taliban, al Qaeda, Sunni insurgents, and their supporters have had little capability to interfere with any of these systems. Of course, as

36 J. R. Wilson, “Satellite Communications Key to Victory in Iraq,” Military & Aerospace Electronics, August 2003, online at <http://mae.pennnet.com/articles/article_display.cfm?Section=ARCHI&C=News&ARTICLE_ID=183379&KEYWORDS=SATCOM&p=32>. Since the commercial COMSATS had an average capacity of 6 Mbps compared to only 1.5 Mbps for the military ones, the 27 commercial COMSATS provided over 75 percent of the capacity used by the CAOC.

a sign of things to come, in 2009 Iranian-backed militants in Iraq succeeded in using the inexpensive SkyGrabber software (priced as low as $25.95 on the Internet) to regularly capture unprotected video feeds from U.S. Predator drones.39

Figure 4: Earth Orbital Altitudes

A major power such as China, however, is another matter entirely. People’s Liberation Army thinkers concluded during the 1990s that war in space would eventually be a necessary and logical extension of other forms of military conflict, and that “space supremacy” would become an integral part of overall supremacy over future battlefields.40 As Larry Wortzel wrote in 2007:

Space operation and warfare in space are components of what the PLA calls “informationalized,” or information age, warfare. In general, PLA strategists are convinced that . . . “future enemy military forces will depend heavily on information systems in military operations.” Therefore, they believe, China needs to break through the technological barriers and develop information system countermeasures in space.41

Toward this end, the Chinese are investing in everything from jamming to counter-network attack (the offensive form of cyber warfare), anti-satellite (ASAT)

40 Larry M. Wortzel, “The Chinese People’s Liberation Army and Space Warfare,” American Enterprise Institute, 2007, p. 2.

41 Wortzel, ”The Chinese People’s Liberation Army and Space Warfare,” p. 2.
systems, and directed-energy weapons. Retired Vice Admiral Mike McConnell, who has both headed the National Security Agency and been the Director of National Intelligence, argued in February 2010 that the United States is fighting a cyber-war today, and losing it, particularly against China.42 As for more “kinetic” approaches to taking advantage of U.S. dependence on unimpeded access to space and cyberspace, in January 2007 China went so far as to demonstrate a direct-ascent ASAT capability by destroying one of its own aging weather satellites in low earth orbit.43 The \textit{Feng Yun} 1-C weather satellite was orbiting at an altitude of about 535 miles above the earth’s surface. The Chinese destroyed the satellite with a kinetic-kill vehicle launched by a two-stage solid-fuel missile fired from a mobile transporter-erector-launcher at the Xichang space facility in Sichuan province, creating a debris field of more than 35,000 shards larger than one centimeter.44

U.S. military dependence on relatively unimpeded access to the global commons in both space and cyberspace has expanded enormously since 1991. At the heart of this dependency is the requirement of current U.S. guided munitions—notably the LGBs and JDAMs that have been three-quarters of combat expenditures—to have precisely located aim points. Recognizing this fact, U.S. adversaries have taken numerous steps to deny this information to U.S. forces by making their forces and strategic assets more and more difficult to locate in time and space. In addition to camouflaging, concealing, relocating, hardening, or deeply burying prospective targets—which even terrorists can do—the PRC, among others, has invested in capabilities to attack the space- and cyberspace-based information flows on which U.S. target acquisition, battlespace management, and C2 depend.

44 Ashley J. Tellis, “China’s Military Space Strategy,” \textit{Survival}, September 2007, pp. 41. China’s three previous ASAT tests failed (ibid., p. 43).
The most fundamental line of solution to the potential vulnerability stemming from the need for the pinpoint location of targets in time and space would be to develop guided munitions able to find imprecisely located targets on their own. The Low Cost Autonomous Attack System (LOCAAS) program, sponsored by the Defense Advanced Research Projects Agency and the U.S. Air Force, set out to do precisely this. By 2005 it appears that the program succeeded in developing a robotic system that could loiter in a small area and use a laser-detection-and-ranging (ladar) sensor together with automatic-target-recognition algorithms to find and attack a range of targets, including mobile missile launchers. However, due to unease among senior airmen with autonomous battlefield robots, the Air Force walked away from LOCAAS. The technology was preserved for a time as the Loitering Attack Munition (LAM) in the U.S. Army’s Non-Line-of-Sight Launch System (NLOS-LS). But in April 2010 the Army terminated NLOS-LS. The reticence regarding LOCAAS and LAM appears to stem from a cultural inclination to maintain tight control over kinetic attacks combined with an intellectual failure to grasp the importance of being able to address imprecisely located targets. So, while technology to deal with them has been demonstrated, the U.S. military services have not chosen to field autonomous robotic weapons.46

6. The Dawning Vulnerability of Naval Surface Combatants

The U.S. Navy has been concerned about the vulnerability of its surface combatants to air attack since late 1943. In September 1943, the sinking of the Italian battleship Roma as a result of two hits by Fritz-X radio-controlled glide bombs delivered by German Donier-217s generated early anxiety about the future survivability of U.S. surface combatants, particularly aircraft carriers. This concern was reinforced in October 1944 by the success of the first large-scale suicide attacks by Japanese Kamikaze pilots against American naval forces in the Leyte Gulf, which included the sinking of the escort carrier USS St. Lo on October 25. The Navy’s institutional response was the establishment of Project Bumblebee in November 1944. Project Bumblebee began development of radar-guided surface-to-air missiles (SAMs) to defend the Navy’s carrier battle groups. It eventually produced the first generation of U.S. naval SAMs, which included the short-range Tartar, the medium-range Terrier, and the long-range Talos.47

47 Watts, Six Decades of Guided Munitions and Battle Networks, p. 4-5. In 1968, the guided missile cruiser USS Long Beach downed two North Vietnamese MiGs with Talos, and in 1972 a Talos from the USS Chicago got another MiG.
The Navy's second generation of naval SAMs consisted of the Standard Missile (SM) family deployed on Aegis guided-missile destroyers and cruisers. The mature Aegis combat system that emerged in mid-1980s was built around a four-megawatt, phased-array SPY-1 radar able to track up to 100 targets; the RIM-66C/D SM-2 version of the Standard Missile; high-speed computers; and, starting with CG-52 (USS Bunker Hill), twin Mark 41 Vertical Launch System (VLS) installations containing up to 122 Standard Missiles. In conjunction with the E-2 Airborne Early Warning aircraft and the F-14 Tomcat, equipped with the AWG-9 track-while-scan pulse-doppler radar and long-range AIM-54 Phoenix air-to-air missiles, Aegis provided a fairly robust defensive capability for U.S. aircraft carriers.

Nevertheless, as the 1980s progressed and the “blue-water” capabilities of the Soviet Navy matured, the threat to U.S. carrier battle groups became substantial. The Soviets' first problem was locating American carriers in the vastness of the oceans. After all, if the exact location of a U.S. nuclear carrier is known at one moment in time, within 30 minutes the vessel could be anywhere within a circle of 700 square nautical miles (nm).

Starting in the 1970s, the Soviet solution to the location and over-the-horizon targeting problems was to develop both radar and electronic intelligence ocean reconnaissance satellites (RORSATs and EORSATs). The EORSATs located opposing naval forces by triangulating on their radio and radar emissions. The RORSATs, which had nuclear power plants, used active radar to pinpoint U.S. naval forces. However, the RORSATs were generally launched in conjunction

48 In the left photo the Roma is listing after a second Fritz-X hit abreast "B" turret and detonated in the forward engine room; in the right photo, the fireball from a Kamikaze hit on the St. Lo is visible above the carrier. The Fritz-X, shown upper left, was a 3,450-pound armor-piercing bomb fitted with a radio receiver and control surfaces in the tail.

49 VLS cells can hold Standard Missile SAMs, Tomahawk Land Attach Missiles (TLAMs), and Anti-Submarine Rockets (ASROCs). ASROCs could carry with a nuclear warhead or an acoustic homing torpedo.
with major Soviet naval exercises and their duration at LEO altitudes was limited, the longest duration being 135 days. Arguably, locating and tracking U.S. aircraft carriers with sufficient precision and duration for targeting with long-range missiles remained a challenge for the Soviets through the end of the Cold War. But assuming that the Soviets could locate and track a carrier battle group, T-22 Backfire bombers with Raduga Kh-22 missiles, which could be launched up to 400 kilometers from the carrier and attain speeds approaching Mach 4, presented the carrier’s F-14s with the formidable challenge of intercepting the Backfires before they could launch their missiles.

Nor were Backfire regiments the only challenge the Soviet Navy posed for U.S. carrier battle groups. In the 1980s the Soviets began fielding Oscar-class nuclear-powered guided-missile submarines (SSGNs), each armed with 24 P-700 Granit supersonic cruise missiles, which were specifically designed to attack U.S. carriers from distances of up to 500 kilometers. Through the end of the Cold War, the Soviets commissioned two Oscar-I and six Oscar-II SSGNs. The Granit missile, which the Oscars could launch while submerged, was developed as part of an integrated naval RUK that assimilated intelligence and targeting data from multiple sources. The employment concept of the Oscar SSGNs was to overwhelm a carrier battle group’s defenses, including its Aegis combatants, with salvos of Granits. Like Soviet Backfire regiments, Oscar-I/II SSGNs posed a growing challenge to the survivability of U.S. carrier battle groups in the late 1980s, especially if they attacked in conjunction with Backfires.

From the U.S. Navy’s perspective, the Soviet Navy’s mounting challenge to the survivability of U.S. aircraft carriers rapidly evaporated following the collapse of communist state in December 1991. But subsequent events led the Chinese to take up where the Soviets had left off. Tension between China and the United States over Taiwan president Lee Teng-hui’s leanings toward independence during 1995-1996 culminated in the United States deploying carrier battle groups into the region to coerce Chinese leaders to back down from their efforts to intimidate Taiwan through missile firings and amphibious exercises. U.S. military dep-

51 The Soviets fielded Kh-22 in the early 1960s, and it became the standard armament used by Soviet naval aviation Tu-22M Backfires to attack U.S. carrier battle groups. The early Kh-22 could carry either a 1,000-kilogram high explosive shaped charge or a 250-1,000 kiloton nuclear warhead. Guidance was inertial with an active terminal seeker. In the 1970s, the missile was updated with new attack profiles, increased range, and a data-link for mid-course corrections.

52 The Russians eventually completed eleven Oscar-II SSGNs at Severodvinsk. Three more Oscar IIs were planned but never completed.

ployments during this period included the transit of the Taiwan Strait by the USS Nimitz in December 1995, and the movement of two carrier battle groups into the area the following March. In the aftermath of this crisis, Chinese leaders embarked on a program to develop the military capabilities to “deter or counter third-party intervention in any future cross-Strait crisis” by being able “to attack, at long ranges, military forces that might deploy (anti-access) or operate (area-denial) within the western Pacific.”54 One element of this effort involves “combining conventionally-armed DF-21 ASBM’s, C4ISR for geo-location and tracking of targets, and onboard guidance systems for terminal homing to strike surface ships.”55

Figure 6: The PRC’s ASBM Concept

![Diagram of DF-21 ASBM trajectory]

The Defense Department estimates the range of the DF-21 ASBM to be 1,500 kilometers (810 nm), and that of the DF-21 intermediate range ballistic missile (IRBM) for attacking fixed targets to be at least 1,750 kilometers (945 nm).57 The IRBM variant’s range is sufficient to reach Guam in the Marianas Islands from the PRC’s coast, and the ASBM’s range is enough to force U.S. carriers to operate at distances from the Taiwan Strait that are beyond the unfueled combat radius of their air wings. The unfueled radius of the F/A-18E Super Hornet is in the vicinity of 390-450 nm depending on the mission profile and ordnance. And while the goal for the carrier variant of the F-35 Joint Strike Fighter is an unfueled combat radius of 730 nm, the performance threshold is only

56 Figure 6 is a graphic of a CSS-5/DF-21 ASBM’s use of mid-course and terminal guidance to strike an aircraft carrier taken from a 2006 article from the Second Artillery Engineering College.
Aegis combatants armed with the SM-3 offer a capability to defend against limited numbers of IRBMs, and countermeasures such as radio frequency (RF) aerosols could provide carriers and other surface combatants with additional protection from ASBM warheads with terminal radar terminal guidance. Note, too, that the ASBM variant of the DF-21 has only undergone component testing and, as of 2009, DoD estimated the total of DF-21 IRBMs (all variants) actually deployed to be no more than 80–90. Nevertheless, in the long run growing PRC inventories of ASBMs and anti-ship cruise missiles, which can be launched from a variety of air, surface and sub-surface platforms, are likely to make it increasingly risky to operate carrier battle groups within reach of the A2/AD capabilities the Chinese are developing. Aircraft carriers have ruled the oceans since the early 1940s, and the United States has been able to use them to project power ashore. It is conceivable, however, that maturation and proliferation of the precision strike will eventually bring the era of the aircraft carrier to an end.

7. THE FUTURE OF STEALTH

In 1996 Vickers introduced the notion of a “hider-finder” competition between information acquisition and information denial. He suggested that the balance between acquiring and denying information could well be the central determinant of how theater war would be conducted through 2025. One aspect of this competition involves the requirements of most current precision weapons to have their targets pinpointed in space and time. Another aspect of this competition is the information competition between penetrating strike platforms like the B-2 and advanced SAMs such as the Chinese HongQi-9 or HQ-9 (probably derived from the Russian S-300PMUs that China purchased from Russia), and the Russian S-300P and S-400, which are designated the SA-10, SA-20 and SA-21 by NATO.
Figure 7: S-400 Battery Components

[Battalion] Means of Control 30K6E

Command Post
Big Bird Acquisition Radar

Grave Stone
Engagement Radar

Transporter Erector Launchers with 48N6E3 or 40N6 Missiles

Battery

In recent years there has been speculation that ongoing advances in radar detection and tracking will, in the near future, obviate the ability of all-aspect, low-observable (LO) aircraft such as the B-2, F-22, and F-35 Joint Strike Fighter (JSF) to survive inside denied airspace. Those taking this view emphasize at least two promising approaches to counter-LO, both of which are being pursued by the Russians, Czechs, and others. One involves very high frequency (VHF) and ultra high frequency (UHF) radars, which use relatively long wavelengths of about 30 centimeters to six meters. The radar cross section (RCS) of an aircraft not only varies with the wavelength of the radar trying to detect the plane, but the aircraft’s RCS is larger for long-wavelength search radars compared to its RCS as seen by the shorter, X-band radars typically used by SAMs for fire-control.\(^{62}\) Rearms Site Configuration, Part 2: S-300P/S-400/SA-10/20/21, S-300V/SA-12, 2K11/SA-4, 2K12/SA-6, 3K37/317/SA-11/17,” January 2010, at <http://www.ausairpower.net/APA-Rus-SAM-Site-Configs-B.html#mozTocId647809>.

\(^{62}\) Source: Almaz-Antey. A single S-400 battalion could have as many as six batteries. The 40N6 missile is the longer-range of the two, and Almaz-Antey credits it with a range of 400 kilometers (216 nm). The range of the 48N6E3 is advertised as 250 kilometers (153 nm). Almaz-Antey is also developing an S-500 SAM system.

radar physics, therefore, argues that VHF and UHF search radars offer greater potential to detect and track stealthy aircraft. Granted, the historically poor resolution in angle and range has prevented traditional long-wavelength radars from providing fire-control-quality data. However, as fully digital versions of these radars incorporating active electronically scanned arrays (AESAs) proliferate, they will present a growing challenge to current and even future stealth aircraft.64

The other promising approach to counter-LO has been passive systems such as the Czech VERA-E, which uses radar, television, cellular phone and other available signals of opportunity reflected off stealthy aircraft to find and track them.65 The main limitation of such systems has been the enormous signal-processing power and memory required to analyze all these emissions, differentiate real targets from ghost signals, noise and clutter, and keep the false alarm rate to manageable levels.66 One potential outcome, however, is that as long-wave radars transition to AESAs (and assuming computational power continues to double every two years or so in accordance with Gordon Moore’s “law”), information acquisition will overwhelm the capacity of aerospace engineers to reduce platform signatures.67 The balance between information acquisition and information denial will swing dramatically in favor of the former. Or, to put the point more bluntly, there will come a time in the not-too-distant future when the SAMs will almost always win against air-breathing penetrating platforms, rendering operations inside denied airspace too costly to bear.

Is this forecast right? A definitive answer to this question would obviously require access to data on current and projected capabilities for reducing radar

65 In February 2006, defense secretary Donald Rumsfeld told the defense minister of the Czech Republic that the Department of Defense had completed a site acceptance test on VERA-E and concluded that the system met its performance specifications (Libor Slezak, “Passive Detection of Low Observable Targets,” ERA, 2006, slide 10).

67 Bill Sweetman, “Worth the Cost?”, Jane’s Defence Weekly, July 19 2006, pp. 63. In 1965, Gordon E. Moore projected that the number of transistors and resistors that could be packed into a single integrated circuit would continue to double each year through 1975 (Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, April 19, 1965, pp. 115-116). By 1975 he modified his original observation to a doubling of processing power every two years, and that rate of increase has held from Intel’s 4004 processor in 1971 to its most recent, the Itanium processor in 2010.
signatures and countering advanced SAMs that are highly classified (and rightly so).

Finally, there is the issue of the extent to which the U.S. military has actually embraced all-aspect, LO combat aircraft since the Air Force declared a limited initial operational capability (IOC) with the F-117 in October 1983. When the last of the Air Force’s 187 F-22s are delivered, all-aspect, LO fighters and bombers will still constitute less than 8 percent of the service’s inventory of combat aircraft. If Navy and Marine combat aircraft are included, the percentage drops to 5.5 percent. It would appear, therefore, that more than a quarter-century after the F-117’s IOC the Air Force, Navy, and Marine Corps have yet to embrace stealth as a major portion of their combat air forces. If the 2,443 JSFs now

68 William Balderson, Deputy Assistant Secretary of the Navy (Air Programs), statement before the Airland Subcommittee, Senate Armed Services Committee, April 26, 2007, p. 4, online at <http://www.globalsecurity.org/military/library/congress/2007_hr/070426-balderson.pdf>.

planned are eventually procured, this situation will be reversed and all-aspect, LO
craft will make up around 70 percent of the U.S. inventory by 2035, when the
last of F-35As are produced for the Air Force. The senior DoD decision makers
who remain firmly committed to the JSF program are, of course, in positions to
evaluate the viability of all-aspect, low observability into the 2040s. Implicitly at
least, their continuing commitment to the F-35 suggests that they do not believe
that the era of stealth aircraft is about to come to an end.

8. GROUND FORCES AND MATURE PRECISION STRIKE

In the 1950s, after the ceasefire in Korea, budget constraints and the chal-
lege of dealing with nuclear battlefields prompted the U.S. Army to develop di-
isional structures with fewer troops than those employed during the Korean
War.\footnote{John B. Wilson, \textit{Maneuver and Firepower: The Evolution of Divisions and Separate Brigades}
(Washington, DC: Center of Military History, 1998), pp. 266-267. For example, an infantry di-
ision structure suggested by the Command and General Staff College at Fort Leavenworth in Sep-
tember 1954 cut nearly 4,000 troops from the 1953 division (ibid., p. 267).}
By 1960 the Army had shifted all its division tables of organization and
equipment (TO&Es) to pentomic structures to enable them to “fight and survive
on nuclear as well as conventional battlefields.”\footnote{Wilson, \textit{Fire and Maneuver}, p. 263.}
The pentomic TO&Es offered two ways of coping with battlefield nuclear weapons. Adding atomic artillery and
the nuclear-capable MGR-1 Honest John rocket increased the organic firepower
of Army divisions. At the same time, pentomic organizations were more dis-
persed than traditional triangular division structures, which offered greater sur-
vivability against these sorts of tactical nuclear weapons.\footnote{Wilson, \textit{Fire and Maneuver}, p. 271.}

Insofar as reconnaissance-strike complexes approach the effectiveness of
tactical nuclear weapons against most battlefield targets, they confront tradition-
al ground forces with the same susceptibility to being destroyed from a distance
as atomic weapons presented in the 1950s. Not surprisingly, the responses to this
vulnerability suggested by early RMA war games were similar to those associated
with the Army’s pentomic divisions. These lighter, more dispersed units

\textit{These lighter, more dispersed units...}
As originally envisioned in the Army’s Future Combat Systems (FCS) program, the next generation of ground combat vehicles would employ signature-management and active protection to improve survivability while giving up considerable weight (armor) to achieve rapid deployability by air.80

The assumption implicit in all these possibilities remains, as John Schmitt emphasized in his critique of Hunter Warrior, the notion “that anything that moves or masses on the battlefield can be targeted and anything that can be targeted can be destroyed by precise, long-range fires.”81 Even before Hunter Warrior, the vice chairman of the Joint Chiefs of Staff, Admiral William Owens, had advanced a version of this premise, which he labeled Dominant Battlefield Awareness (DBA). DBA was the hypothesis that it would be possible by 2015 or so to provide U.S. war-fighters with near-perfect information on all observable phenomena throughout a volume of battlespace covering an area on the ground some 200-by-200 nm, which was large enough to encompass North Korea.82

Over time, Owens’ DBA concept morphed into Dominant Battlespace Knowledge (DBK), the even more visionary conjecture that the emerging U.S. “system-of-systems” would not only enable war-fighters to be aware of all observable phenomena in a volume of battlespace large enough to encompass North Korea, but know what all the phenomena meant.83

These assumptions obviously fly in the face of the view that the fundamental nature of war is essentially an interactive clash—a \textit{Zweikampf} or two-sided “duel,” as Carl von Clausewitz characterized it—between independent, hostile, sentient wills dominated by friction, uncertainty, disorder, and highly nonlinear

interactions. Can sensory and network technologies eliminate the frictions, uncertainties, disorder, and nonlinearities of interactive clashes between opposing polities? As of this writing, the answer appears to be “No.” American combat experiences in Iraq in 1991, in Bosnia in 1999, in Afghanistan from 2001 to the present, and in Iraq since 2003 provide ample grounds for concluding that the frictions, uncertainties, disorder, and nonlinearities of war will persist even in a maturing precision-strike regime.

What does this history suggest for the composition and structure of future ground forces as precision-strike systems proliferate and become increasingly capable of hitting anything they can find and track? On the one hand, if advanced sensors and associated targeting networks one day succeed in rendering ground combat environments more or less transparent—thereby achieving Dominant Battlefield Awareness—then heavy armored and mechanized forces could be destroyed from afar. In that case, one would expect future ground forces to evolve in the direction of the Light Battle Force the Army envisioned in the late 1990s, or possibly even toward Hunter Warrior’s LRCP teams. On the other hand, the persistence of friction, uncertainty, disorder and nonlinearity argues that war on the ground—particularly in complex terrain such as urban or mountainous areas—will continue to occur in relatively “cluttered” environments. In cluttered terrain there will be powerful incentives to retain heavy armor if at all possible. As defense secretary Robert Gates stated when he recommended cancelling the vehicle component of the FCS program in April 2009, one of his reasons was concern over whether “lower weight, higher fuel efficiency, and greater information awareness” could compensate adequately for heavy armor in light of “the lessons of counterinsurgency and close quarters combat in Iraq and Afghanistan.” Combat experience from those ongoing conflicts has proven, time and again, that today’s battlefields are far from transparent despite enormous U.S. technical and material advantages in state-of-the-art ISR sensors and platforms. So while the proliferation of both long- and short-range PGMs may necessitate smaller, more dispersed ground forces, they do not necessarily support abandoning heavy armor.

9. Power Projection

Starting in World War II and continuing to the present, one of the core competencies of the U.S. military has been the capability to project conventional military power overseas on a large scale. On August 7, 1942, some 14,000 U.S. marines went ashore on Guadalcanal, Tulagi and Florida in the Solomon Islands.

Once the Japanese had finally withdrawn from the Solomons the following February, they were forced onto the strategic defensive in the Pacific and remained on the defensive for the rest of the war. In November 1942, Guadalcanal was followed by Operation Torch, which began with Anglo-American landings in French Morocco and Algeria. These landings involved the coordination of two armadas, one sailing from Britain and the other from the east coast of the United States; altogether they carried more than 100,000 troops to North Africa.\(^{86}\) By May 1943, Allied forces had occupied Tunisia and, in conjunction with the British 8th Army advancing west from Egypt, had driven the German and Italian forces from Africa. In June 1944, the cross-Channel Allied landings in Normandy were the largest of World War II. On D-Day, June 6, the Allies put almost 133,000 troops ashore at five landing beaches and inserted another 23,000 airborne troops.\(^{87}\) The naval armada assembled for the initial assault included over 1,200 warships along with 4,100 landing ships and landing craft.\(^{88}\) On D-Day some 5,400 British and American fighter aircraft and 6,000 other planes supported the landings.\(^{89}\) By mid-August 1944, the Allies had broken out of the beachhead, forced the German garrison at Cherbourg to capitulate (June 27), taken St. Lo (July 25), and then driven to the western end of the Cotentin Peninsula. By August 21, the Allies had landed just over 2 million men in Normandy in addition to vast quantities of vehicles, equipment, ammunition and supplies.

Figure 8: U.S. Landings at Normandy and Leyte Island, 1944

![Image](https://example.com/image.png)

The power-projection capabilities the United States manifested during World War II were later utilized in Korea in 1950, in Vietnam in 1965, in Iraq in

\(^{89}\) Chandler and Collins, *The D-Day Encyclopedia*, p. 11.
1990-1991 and, most recently, again in Iraq for OIF in 2003. Prior to the official beginning of OIF’s major combat phase on March 19, 2003, the United States amassed around 175,000 troops in theater.90 By mid-April Saddam Hussein’s regime had been overthrown and some 92,000 U.S. troops were occupying Iraq.

A common element in all these examples of traditional U.S. power projection has been the buildup in overseas theaters of large, massed air-ground forces, including mechanized and armored units as well as combat and combat-support aircraft concentrated on regional airbases. Another hallmark of the longstanding U.S. approach to power projection has been the ability to gain control of the air, to attack the full range of targets inside enemy airspace, and to utilize combat aircraft to support ground operations while protecting in-theater bases and ports. Emerging anti-access/area-denial capabilities appear to be explicitly designed to mitigate or negate key elements of the U.S. military’s traditional, “industrial” approach to overseas power projection.

Figure 9: 3M-14E Club-K in Shipping Containers91

The PRC is developing the most comprehensive A2/AD capabilities. In the long run, though, the proliferation of significant precision-strike capabilities to smaller countries and even terrorist organizations seems inevitable.92 As a likely harbinger of things to come, the Russian firm Kontsern-Morinformatsistsystem-Agat has begun marketing its Club-K cruise missile concealed inside a 40-foot ship-

92 On July 14, 2006, Hezbollah fighters damaged the Israeli corvette Hanit with a cruise missile, most likely a Chinese-designed C-802. At the time, the Hanit was patrolling ten nautical miles off the coast of Beirut.
ping container that can be deployed on trucks, rail cars, or merchant vessels.\footnote{Thomas Harding, “A Cruise Missile in a Shipping Box on Sale to Rogue Bidders,” \textit{Telegraph}, April 25, 2010; Reuters, “Deadly New Russian Weapons Hides in Shipping Container,” \textit{The New York Times}, April 26, 2010.} The land-attack variant of Club-K is similar to the U.S. Tomahawk Land Attack Missile (TLAM), but has a smaller warhead (400 kilograms) and shorter range (250 kilometers) than TLAM. Kontsern-Morinformsistema-Agat’s promotional video appears to be aimed at countries such as Iran and Venezuela. The vulnerability to such systems of surface ships, ports, airfields and fixed installations of all sorts is that U.S. forces attempting to project ground forces and air power into overseas theaters within range of enemy short-range systems could face substantial attrition or even be denied entry—at least until the adversary’s ISR and targeting networks had been negated. The question therefore becomes: Will the emergence of long- and short-range precision strike in the hands of various opponents eventually render the costs of traditional power projection too high for the United States to bear in blood and treasure?

At present, the implicit American assumption seems to be that the answer is “No.” Early in any conflict against an opponent with precision-strike systems, U.S. forces expect to be able to take down the other side’s long-range strike capabilities, much as American air forces have done in previous conflicts by rolling back or negating enemy air defenses. With adversary RUKs suppressed or destroyed, U.S. forces could then revert to traditional power-projection practices based on large ground forces supported logistically through major ports and air forces operating from a small number of regional air bases.
10. CONCLUSIONS

Today, the U.S. military appears to be in a comparable position to that in which RAND’s civilian strategists found themselves during the early 1950s when they began trying to come to grips with the emergence of thermonuclear plenty and ballistic missiles on both sides of the Iron Curtain. A maturing precision-strike regime in which prospective adversaries—states large and small as well as non-state actors—possess advanced sensors and precision weaponry will present challenges fundamentally different from those the U.S. military has had to face since the end of the Cold War. Dealing with these challenges will eventually require innovative thinking, new operational concepts and organizations, and new long-term strategies if the United States is to retain a dominant military position while avoiding imperial overstretch and economic exhaustion in the years ahead.

The American military has enjoyed a near monopoly on conventional precision strike. While Soviet military theorists did a better job of thinking through the long-term implications of reconnaissance strike and fire complexes for future warfare than their

American counterparts, the “operational execution of MTR ideas and massive fielding of MTR weapon was beyond the political, economic, and cultural capacity of the Soviet state.”95 As a result, the need of the U.S. military since the early 1990s to change their traditional approaches to conventional operations has been minimal. However, as precision-strike capabilities proliferate, it will become less and less feasible for the U.S. military services to continue simply using precision strike to increase the efficiency and effectiveness of traditional ways of projecting conventional military power and fighting. How fundamental are the changes in weaponry, concepts, and organizations likely to be?

How soon the U.S. military services may have to begin adapting to these new realities is by no means set in stone. The best guess is that responding to them will become unavoidable within fifteen to twenty years. But there is an important caveat that must be appended to this forecast. The new ways of fighting have yet to be tested in a major conflict between capable adversaries.95

What might a relatively mature precision-strike regime look like? John Stillion has suggested that the maturation of precision strike could propel the U.S. into a period comparable to that between the 1870 Franco-Prussian War and the beginning of World War I in 1914. Starting in the 1860s, the development of steam power for oceanic transport and railway networks fundamentally changed the time and distance factors of war; the telegraph permitted a previously unheard of degree of centralization in directing operations; and the development of machine guns and breech-loading, rifled artillery provided new levels of tactical

95 Adamsky, The Culture of Military Innovation, p. 37.
These were the sinews of industrial warfare based on iron, steam, and mass. Coupled with the German general staff system, they produced a new way of fighting during the wars of German unification, which culminated in May 1871 when Wilhelm I was crowned emperor of the German Empire—the Second Reich. Arguably, this new way of fighting created the German state, but against opponents who had yet to master industrial war. That more stringent test came in 1914, and on the Western Front it led to the costly stalemate of trench warfare. In September 1914, with the Germans bringing up reinforcements to drive through to Paris, General Joseph Gallieni mobilized an armada of Paris taxicabs to move thousands of troops to the front at the critical point, just in time to stymie the German advance in the Battle of the Marne. Thereafter, massive firepower severely constrained movement and maneuver, and the fighting on the Western Front “took on a wholly attritional nature.”

Of course, this vision of future warfare presumes that neither side can eliminate the other’s RUKs, particularly their associated sensors and targeting networks.

100 Smith, *The Utility of Force*, p. 115.
How much and how fundamentally may the conduct of war change by 2040 or 2050? The short but honest answer is: it depends. This paper has explored five of the more obvious and consequential possibilities. Some of them are undoubtedly better understood and more imminent than they were in 1996 when Vickers produced his broad vision of war in a non-nuclear missile age in which guided conventional munitions approach the effectiveness of nuclear warheads. It is also important to keep in mind that others may, for cultural reasons (among others), exploit the maturing precision-strike regime in ways quite different from those embraced by the U.S. military services.102 So far at least, the United States has not tried to develop the kind of “keep-out” zones based on A2/AD capabilities that the Chinese are pursuing. Nevertheless, the honest answer to the question about how fundamentally war’s conduct will change—and how soon—remains: it depends.

102 For insight into just how different U.S., Russian, and Israeli approaches to the RMA have been, see Adamsky’s 2010 The Culture of Military Innovation. To a considerable extent these differences in approach are reflected in the specific organizations that led thinking about the RMA in these three countries. In the Soviet Union the lead institution was the General Staff; in the United States it was the Office of Net Assessment, and in Israel it was the Operational Theory Research Institute. To put it mildly, these were vastly different organizations with dramatically different cognitive styles, charters, and positions within their respective defense establishments.