Project SEESAW (U)

INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIA VA

FEB 1968

Redistribution Of DTIC-Supplied Information Notice

All information received from DTIC, not clearly marked "for public release" may be used only to bid on or to perform work under a U.S. Government contract or grant for purposes specifically authorized by the U.S. Government agency that is sponsoring access OR by U.S. Government employees in the performance of their duties.

Information not clearly marked "for public release" may not be distributed on the public/open Internet in any form, published for profit or offered for sale in any manner.

Non-compliance could result in termination of access.

Reproduction Quality Notice

DTIC’s Technical Reports collection spans documents from 1900 to the present. We employ 100 percent quality control at each stage of the scanning and reproduction process to ensure that our document reproduction is as true to the original as current scanning and reproduction technology allows. However, occasionally the original quality does not allow a better copy.

If you are dissatisfied with the reproduction quality of any document that we provide, please free to contact our Directorate of User Services at (703) 767-9066/9068 or DSN 427-9066/9068 for refund or replacement.

Do Not Return This Document To DTIC
AD NUMBER

ADC951377

NEW LIMITATION CHANGE

TO

FROM

AUTHORITY

DARPA ltr dtd 7 Apr 1982

THIS PAGE IS UNCLASSIFIED
STUDY S-307

PROJECT SEESAW (U)

Harold W. Lewis, Chairman
Robert E. LeLevier
Arnold Nordlieck
Andrew M. Sessler
Kenneth M. Watson
Steven Weinberg

February 1968

Distribution Limited to U.S. Government

CLASSIFIED

BY CHIEF RECORDS DIV, JASON

DATE 3 AUGUST 2010

DECLASSIFIED

SECT

82 04 07 01
STUDY S-307

PROJECT SEESAW (U)

Harold W. Lewis, Chairman
Robert J. LeLevier
Arnold Nordsieck
Andrew M. Sessler
Kenneth M. Watson
Steven Weinberg

February 1968

IDA

INSTITUTE FOR DEFENSE ANALYSES
JASON
400 Army-Navy Drive, Arlington, Virginia 22202
Contract DAHC15 67 C 0011

DECLASSIFIED
BY CHIEF, RECORDS & DECLASS DIV, WHS
DATE 3 AUGUST 2010

SECRET

RECEIVED
CLASSIFIED DOCUMENT CONTROL
TELE COLUMBUS LABORATORIES

RECEIVED
CLASSIFIED DOCUMENT CONTROL
TELE COLUMBUS LABORATORIES

RECEIVED
CLASSIFIED DOCUMENT CONTROL
TELE COLUMBUS LABORATORIES

SECRET

SECRET

SECRET

SECRET
CONTENTS

I. Purview 1
II. Outlook 1
III. Theoretical and Experimental Situation 2
IV. Relevant Experimental Facilities 3
V. Observations and Recommendations 3
I. PURVIEW

The panel* took as its domain the present state of theory and experiment on physical problems relevant to the program and paid no attention to matters of engineering or systems design. These latter problems have been dealt with by other panels and may indeed be the most difficult questions in an analysis of the potential of the program. The panel considered only the question of whether one can, on scientific grounds, exclude the possibility of developing weapons system based on the SEESAW concept, and then analyzing the scientific program in these terms. It will be seen that the answers are incomplete.

II. OUTLOOK

In this program the theoretical achievements have long been ahead of the experimental achievements. The main uncertainties are in the areas of single-pulse survivability, hole-boring, and instabilities. In the latter the streaming and hose instabilities have received the most attention, though the sausage instability may also be relevant. Only in the case of the hose instability for a continuous beam has there been any quantitative experimental verification of the theory and there are still unexplained discrepancies in this simplest situation. Some semiquantitative information on the onset of the streaming instability has also been obtained. Since the proposed system configuration is so much more complicated than even the theory has been able

* In the fall of 1967, the Acting Director of ARPA asked JASON to convene a panel to make comments and recommendations about the progress of Project SEESAW.
to treat well, and a fortiori beyond existing experimental verification, we cannot with confidence say anything about the possible ultimate utility of the system as a weapon. We are sorry that the experimental program is now at a standstill, due to the extensive modifications of the Astron accelerator now in progress at Livermore, and our recommendation will be in the direction of reactivating it.

III. THEORETICAL AND EXPERIMENTAL SITUATION

(a) The theories of single-pulse survivability and of the hole-boring process have been carried rather far for an unmodulated beam, though problems associated with the structure of the plasma channel still remain unsolved. The experimental equipment currently available to this program does not have sufficient power to permit an exploration of any of these questions.

(b) The theories of the hose, streaming, and sausage instabilities have been carried to a high degree of sophistication, both for the modulated and unmodulated beam, though the structure of the plasma channel assumed in these calculations is somewhat idealized. Experiments at Livermore have demonstrated the existence of the hose instability for an unmodulated beam, and have produced semiquantitative agreement between theory and experiment for this case. The experiments have probably also demonstrated the existence of the streaming instability, though nothing quantitative is known here. Such other matters as mode mixing, nonlinearity, and the interplay among the various instabilities (as, for example, when the streaming instability induces the ionized plasma channel within which the hose instability is developed, as in the Livermore experiments) have received only minor theoretical attention and no experimental attention. Computer modeling efforts to bring these matters together, primarily by Brueckner, are still in an early stage of development.
IV. RELEVANT EXPERIMENTAL FACILITIES

The major experimental facility associated with this program has been from the beginning the electron injector for the Astron machine at Livermore, developed for the AEC for other reasons. The SEESAW experiments have been riding on this facility, which has saved money for both parties. The facility is not now active, though preparations for its reactivation are in progress.

We have also recently become aware of a class of higher current machines (of which we have had the most detailed contact with those made by Physics International) which produce electron beams of approximately the same energy as the Astron beam, at currents up to 100 times as large. These machines are relatively inexpensive, but probably do not have the same beam quality, although the latter is not entirely clear. These machines were also developed for other reasons, and there is not associated with any of them experimental diagnostic equipment of the quality and diversity of that associated with the Livermore facility. As sources of high current relativistic electron beams, however, we believe this class of machines to have considerable potential for expansion of the SEESAW experimental program.

V. OBSERVATIONS AND RECOMMENDATIONS

1. We believe that the program should be continued. This recommendation is based on the current state of scientific uncertainty which does not permit us to confidently rule out the ultimate feasibility of the weapon system.

2. We recommend that Livermore be pressured to enlarge the theoretical and analytical support to the SEESAW experimental program, which has functioned in the past almost entirely independently of the very considerable theoretical competence available at the Laboratory. We are aware of some of the reasons for this condition, but find it ironic that in this most over-theorized project the experimental
program exists almost entirely disjoint from the relevant theoretical community.

3. As has been urged by other panels convened in the mists of antiquity, we also urge that the continued development of a relevant experimental program be given the highest priority. We recommend particularly the development of an experimental program based on the type of machine currently available from Physics International, whether the program is based at Physics International or elsewhere. These machines produce electron beams in the right domain, and it remains only to bring diagnostics to them, or them to diagnostics. We recognize that if ARPA decides to fund a program at Physics International itself, such a program will suffer from lack of previous involvement. In this event, one might consider asking the Stanford Research Institute to monitor such a program, since it has been the seat of much of the theoretical work in the past.

4. We have not considered, and cannot comment upon, the detailed experimental program proposed by the Livermore Laboratory. Because of the time factor, we have not judged this to be the most pressing question before us, but will be happy to undertake such an evaluation separately, if desired.
In radars designed for precise tracking and position measurement, range accuracy is generally better than angular accuracy. An angular accuracy of 10^{-4} radians is roughly the best that can be expected at large signal-to-noise ratios (due to gear train or other mechanical errors in dish-type antennas or component tolerances in phased arrays) and at a range of 150 km this corresponds to a 15 meter position error. When accuracy is limited by signal-to-noise ratios, the r.m.s. error in angular position is approximately:

$$\delta x \sim \frac{eR}{\sqrt{SN}}$$

where θ is beamwidth and R slant range. For a beamwidth of 1° and R of 150 km, $\delta x \approx 2000/\sqrt{SN}$ meters. Range accuracy is proportional to pulse length and is given roughly by

$$\delta R \sim \frac{c\tau}{2\sqrt{SN}}$$

where c is the speed of light and τ the pulse length. For a τ of 1/10 microsecond $\delta R \approx 15/\sqrt{SN}$ meters. Using pulse compression, pulse lengths of 1/10 microsecond or shorter can be obtained without unreasonable peak power requirements. A slant range accuracy of 1 meter or better can be obtained, neglecting errors due to propagation effects.

A system consisting of three (or more) widely spaced radars could be used for trilateration, each radar measuring slant range to \sim 1 meter. The resulting position accuracy can then be computed from the geometry of the problem, and would be roughly 1 meter for spacings such that the three radar lines of sight are orthogonal. If more than one object is present in the radar measurement volume, there is an association or ghosting problem.
DISTRIBUTION LIST FOR STUDY S-307

ODDR&E
Director
Defense Research and Engineering
Attn: Dr. John S. Foster, Jr.
Washington, D. C. 20301

ARPA
Director (4)
Advanced Research Projects Agency
The Pentagon
Washington, D. C. 20301

Air Force
Office of Assistant Secretary
of the Air Force, R & D
Attn: Mr. Harry Davis
The Pentagon
Washington, D. C. 20301
Wright-Patterson AFB (2)
Attn: Capt. Norman E. Featherston
Col. John T. A. Ely
Foreign Technology Division (TDETN)
Dayton, Ohio 45433
Mr. H.S. Hoffman
Wright-Patterson Air Force Base
P.O. Box 9321
Dayton, Ohio 45433

Navy
Chief (2)
Office of Naval Research
Attn: Code 402 (Dr. D.W. Padgett)
Code 422 (Cdr. C.W. Causey, Jr.)
Washington, D. C. 20360

Army
NIKE-X Systems Office
U.S. Army, Office Chief Research
and Development
Attn: Dr. Charles Johnson
206 N. Washington Street
Alexandria, Virginia 22314

North American Aviation, Inc.
Attn: Dr. Charles Cook,
Dept. 846
1700 E. Imperial Highway
El Segundo, California 90246

Atomic Energy Commission
Director
Atomic Energy Commission
Attn: Mr. Amasa Bishop,
Asst. Dir.
Controlled Thermo-Nuclear Res.
Washington, D. C. 20545

U.S. Atomic Energy Commission
Division of Research J-309
Attn: Mr. Stephen Dean
Washington, D. C. 20545

Battelle-Memorial Institute
Attn: Battelle-DEFENDER
505 King Avenue
Columbus, Ohio 43201

Lawrence Radiation Laboratory
University of California
Attn: Dr. Andrew M. Sessler
Dr. Lloyd Smith
Dr. Kenneth Watson
Berkeley, California 94720

Lawrence Radiation Laboratory (2)
Attn: Mr. Nicholas Christofilos
Dr. Edward Teller
P. O. Box 808
Livermore, Calif. 94550

Stanford Research Institute (7)
Attn: Dr. Allen M. Peterson
Dr. S. V. Yadavalli
Dr. Ram Yadavalli
Mr. Howard Singhaus
Dr. Carson Flammer
SEESAW Library (3)
Menlo Park, California 94025
Abstract

(U) This study reports on a review of the status of theory and experiment relevant to Project SEESAW and makes observations and recommendations about continued work in these two areas.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
</tbody>
</table>

Security Classification
[This page is intentionally left blank.]
[This page is intentionally left blank.]
<table>
<thead>
<tr>
<th>AD Number</th>
<th>Pages</th>
<th>Quantity</th>
<th>Type Copy</th>
<th>Source</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC951377</td>
<td>13</td>
<td>1 of 1</td>
<td>H</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Received Date: 02-FEB-10

To: 105392

Requested By: PR#78198 CDR.

Attn: bradley, Scott

DEF Advanced Rsch Proj Agey

3701 N Fairfax Dr Ste 255
Arlington, VA 22203-1714