AD-A259 710
AN

Aquarius Project
Final Technical Report

Research in the System Architecture of Accelerators
for the High Performance Execution of Logic
Programs

Alvin M. Despain
Principal Investigator

DARPA Contract Number N00014-88-K-0579 .
University of California Subcontract Award Number 25879

-

D T l C Period of Performance: 07/01/88 - 05/31/91

ELECTE B%
DEC 211992 §

John Toole, Lt.Col., USAF
Contract Monitor

Contractor: The Regents of the University of California
c/o Sponsored Projects Office
University of California
Berkeley, California 94720

Subcontractor: Electrical Engineering Systems Department
University of Southern California
Los Angeles, California 90089-2561

L .
st bt S e s

nis hoainent h" kozo aprioved
3240\? !i. ii‘ gt |
T o .

(% vy

@

Accelerators for High-Performance Execution of Logic Programs Aquarius Project Final Technical Report

1. Introduction

This is the final report on research in the system architecture of accelerators for the high perfor-
mance execution of logic programs. It was conducted by the Electrical Engineering - Systems
Department of the University of Southern California, under award number 25879 as subcontractor
to the University of California, Berkeley. The research was sponsored by the Defense Advanced
Research Projects Agency under contract number N00014-88-K-0579.

The scope of this work included:

* Design of an abstract machine for the execution of Prolog, the Berkeley Abstract Machine
(BAM).

* Design, simulation, and implementation of a high-performance VLSI Prolog accelerator
chip, the VLSI-BAM.

* A simulator for the Aquarius-II multiprocessor.
* Release of version 1.0 of the Berkeley Extended Prolog (BXP) compiler.

* Design, implementation, evaluation, and release of the Advanced Silicon-Compiler in
Prolog (ASP) System.

All of the above work was completed, as reported in the following section of this report.

It was originally proposed that this work would include the design and performance evaluation of
the Aquarius-II and Aquarius-III multiprocessors, under options A-II and A-III. As these options
were not funded, the research was not performed.

Accesion For

NTIS CRaal K
DTIC TAB O
U.announced 4

Jastification

—m——

BY e

Oit ibiction

oot
Av Matniity Codes

e ¢ e . r——————

Ovst

A-

‘
)
e e e gerie i e ——— o < oo -ano]

|
i
|

Accelerators for High-Performance Execution of Logic Programs Aquarius Project Final Technical Report

2. Accomplishments

2.1 Agquarius Prolog Compiler

Our work on compilation of Prolog revealed that the language can be implemented an order of
magnitude more efficiently that the best existing systems, with the result that its speed approaches
that of imperative languages such as C for a significant class of programs. The approach used was
to encode each occurrence of a general feature of Prolog as simply as possible. The design of this
system, Aquarius Prolog, is based upon four principles:

* Reduce instruction granularity. Use an execution model, the Berkeley Abstract Machine
(sec below), that retains the good features of the Warren Abstract Machine (WAM).

* Exploit determinism. Compile deterministic programs with efficient conditional branches.
Most predicates written by human programmers are deterministic, yet previous systems
often compile them in an inefficient manner by simulating conditional branching with
backtracking.

« Specialize unification. Compile unification to the simplest possible code. Unification is a
general pattern-matching operation that can do many things in the implementation: pass
parameters, assign values to variables, allocate memory, and do conditional branching.

+ Dataflow analysis. Derive type information by global dataflow analysis to support the
above ideas.

The resulting Aquarius Prolog system (Appendix 1) is about five times faster that the high-per-
formance commercial Quintus Prolog compiler. Because of limitation of the dataflow analysis
system, Aquarius is not yet competitive with the C language for all programs. This can be
addressed in future work.

2.2 Berkeley Abstract Machine (BAM)

The design of the Berkeley Abstract Machine (BAM) was based upon the Programmed Logic
Machine (PLM), which was a straightforward microcoded implementation of the Warren Abstract
Machine, the most widely-used model for the execution of Prolog. Studies of the PLM found that
performiance was limited by bus bandwidth. It also proved difficult to perform compiler optimiza-
tions on PLM code because of the complexity of the operations. These problems were addressed
in the BAM design.

The BAM began with a general-purpose RISC architecture and added a minimal set of extensions
to support high-performance Prolog execution. Exploiting these features required simultaneous
development of the architecture and an optimizing compiler. While most Prolog-specific opera-
tions can be done in software, a crucial set of features that must be supported by the hardware in
order to achieve the highest performance:

* Tagging of data, with tags kept in the upper four bits of a 32-bit word.

¢ Segmented virtual addressing.

» Separate instruction and data buses, with the data bus being double-width.

« Special instructions which can also be used in implementing other languages.
* Instructions to test and manipulate tags.

Accelerators for High-Performance Execution of Logic Programs Aquarius Project Final Technical Report

* Unification support.

The results of this study showed that the special architectural features added 10.6% to the active
area of the BAM chip, while increasing performance by 70%. This study is presented in detail in
Appendix 2, “Fast Prolog With an Extended General Purpose Architecture.”

2.3 Advanced Silicon-Compiler in Prolog (ASP)

The Advanced Silicon-Compiler in Prolog (ASP) is a full-range hardware synthesis system. The
goal of ASP is to synthesize a single-chip VLSI processor from a high-level specification of the
ISA. The approach is to study a specialized vertical slice of the design space. The design of the
system proceeds hierarchically. Ateach level, many choices are considered for each component,
making it convenient to consider the process as a conversion of a conceptual AND-OR tree into
an AND tree, with design decisions being the choice of a particular OR branch.

Conceptually, each level of abstraction is composed of a simulator module, a compiler module, a
design program (engine) module, and a knowledge base. Each level accepts a specification in a
formal specialized language and produces a more detailed and concrete specification in a different
specialized language. To determine which design choices should be made, a benchmark program
is provided to each level to that the developing architecture can be simulated and measured rela-
tive to the design choice.

ASP is a design automation (DA), as opposed to a computer-aided design (CAD) system. In it, the
silicon compilation problem is divided into three major problem domains, behavioral, logic, and
circuit. The geometric domain is concerned with the lowest level of design, the efficient layout on
silicon of a particular logic design. The logic domain produces that logic design, given a behav-
ioral (or register transfer level -- RTL) design. At the highest level, the behavioral domain gener-
ates a behavioral description of a particular ISA.

A summary of ASP is presented in Appendix 3, “A CAD Design Environment Based Upon Pro-
log.”

2.4 Aquarius-II Simulator

As a first step toward a Prolog multiprocessor, we developed the NuSim simulator to serve as a
testbed for new ideas. Based upon the VLSI-PLM, NuSim provides a framework that permits
simulation at many levels, from the instruction set to the memory architecture (including caches
and coherency protocols). The simulator’s flexibility allows extensive instrumentation and con-
tinual updates and changes.

NuSim is an event-driven simulator, with the events being memory accesses ordered by time.
This technique simulates a multiprocessor using a uniprocessor. The simulator consists of 16,000
lines of C code and two small machine-dependent routines to save and restore the coroutine
stacks. It is fairly portable, currently running under 4.3 BSD Unix on the VAX 785 and the Sun 3,
and under System V Unix on an Intel 396-based personal computer.

In Appendix 4, “The Validation of a Multiprocessor Simulator,” we report on validating NuSim
with respect to the VPSim uniprocessor simulator.

Accelerators for High-Performance Execution of Logic Programs Aquarius Project Final Technical Report

3. Summary

Under this subcontract, the University of Southern California has performed research in accelera-
tors for the high-performance execution of Prolog programs, including compilation techniques,
accelerator architecture, multiprocessor design, and application to design automation.

In particular, this project included the design and implementation for a microprocessor for the
high-performance execution of Prolog, implementation of a simulator for the Aquarius-II multi-
processor, release of the Aquarius Prolog Compiler, and design, evaluation, and release of the
ASP System.

Accelerators for High-Performance Execution of Logic Programs Aquarius Project Final Technical Report

4, References

The following references report the work accomplished under this contract and are attached as
appendices:

Gino Cheng, William R. Bush, and Alvin M. Despain, “A CAD Design Environment Based Upon
Prolog,” Proceedings of ICCAS 1989, July 1989.

Bruce Holmer, Barton Sano, Michael Carlton, Peter Van Roy, Ralph Haygood, William R. Bush,
and Alvin M. Despain, “Fast Prolog With an Extended General Purpose Architecture,”
Proceedings of the 17th Annual International Symposium on Computer Architecture, 28 -
31 May 1990, pp. 282 - 291.

Peter L. Van Roy, “Can Logic Programming Execute as Fast as Imperative Programming?,” Ph.D.
Dissertation, University of California, Berkeley, November 1990.

Tam Nguyen and Vason Srini, “The Validation of a Multiprocessor Simulator,” technical report,
July 25, 1989.

Appendix 1

“Can Logic Programming Execute as Fast as Imperative
Programming?”

Peter L. Van Roy

Ph.D. Dissertation, University of California, Berkeley,
November 1990

Can Logic Programming Execute
as Fast as Imperative Programming?

By -

Peter Lodewijk Van Koy
Graduate (Vrije Universiteit Brussel, Belgium) 1983
M.S. (University of Califoruia) 1984
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA at BERKELEY .

ke el Hv, 1%, 1970

ooooooooooooooooooo

6824648450 ESELEEEEEEEECEE RS eSS

-

Can Logic Programming Execute as Fast as Imperative Programming?
Peter Lodewijk Vag Roy

ABSTRACT

The purpose of this dissentation is o provide constructjve proof that the logic programming language
Prolog can be implemented an order of magnitude more efficicnty than the best previous systems, so that
its speed approaches imperative languages such as C for a significant class of problems. The driving force
in the design is to encode each occurrence of a general feature of Prolog as simply as possible. The result-
ing system, At;.;xarius'.P‘rolog. is about five times faster than Quintus Prolog, a high performance commer-
cial system, on a set q!: representative programs. The design is based on the following ideas:

(1) Reduce instruction granularity. Use an execution model, the Berkeley Abstract Machine (BAM),
that'retains the good features of the Warren Abstract Machine (WAM), a standard execution model
for Prolog, but is more easily optimized and closer to a real machine.

(2) Exploit determinism. Compile deterministic programs with efficient conditional branches. Most
predicates written by human programmers are deterministic, yet previous sysiems often compile
them in an inefficient manner by simulating conditional branching with backtracking.

(3) Specialize unification. Compile unification to the simplest possible code. Unification is a general
pattem-matching operation that can do many things in the implementation: pass parameters, assign
values to variables, allocate memory, and do conditional branching.

(4) Dataflow analysis. Derive type information by global dataflow analysis to support these ideas.

Because of limitations of the dataflow analysis, the system is not yet competitive with the C language for

all programs. 1 outline the work that is needed to close the remaining gap.

L~

Alvin M. Despain (Commitiee Chairman)

\’

Acknowledgments

This project has been an enriching experience infmany ways. It was a privilege 10 be part of a tcam
consisting of so many talented people, and I learned 'much from them. [t was by trial and emor that 1
lcarmncd how 10 manage the design of a large program that does not all fit into my head at once. Interaction
with my collcagucs encouraged the development of the formal specifications of BAM syntax and seman-
tics, which greatly eased interfacing the compiler with the rest of the sysiem. The use of the compiler by

scveral colleagucs, in particular the dcvck;pniem of the run-time system in Prolog by Ralph Haygood,
impmved_-its robustness.

I wish to thank all those who have contributed in some way to this work. Al Despain is 2 wonderful
advisor and a"sourcc of inspiration to all his students. Pau! Hilfinger's fine-tooth comb was invaluable. |
Bruce Holmer's unfailing sharpness of thought was a strong support. I also would like o thank many -
frie;ids, especially Aricl, Bemnt, Francis, Hervé, Josh, Mireille, Sue, and Dr. D. von Tischiiegel. Veel dank
ook aan mijn familic, et gros bisous pour Brigiue.

This research was partially sponsored by the Defense Advanced Research Projects Agency (DoD)

and monitored by Spacc & Naval Warfare Sysiems Command under Contract No. N00014-88-K-0579.

Table of Contents

Chapter 1: Introduction
1. Thesis staicment

2. The Aquarius compiler

3. Suructure of the dissenation .

4. Contribuuons

4.1, Demonstration of high performance Prolog execution

4.2, Test of the thesis statement

4.3. Development of a new abstract machine

4.4, Development of the Aquarius compiler
4.5. Development of a global dataflow analyzer

4.6. Development of a tool for applicative programming

.

Chapter 2: Prolog and Its High Performance Execution

1. The Prolog language
1.1. Data

1.1.1. The logical variable

1.1.2. Dynamic typing
1.1.3. Unification .

1.2. Control

1.2.1. The cut operation
1.2.2. The disjunction

1.2.3. If-then-else

1.2.4. Negation-as-failurc

1.3. Syntax

2. The principles of high performance Prolog execution

2.1. Operational semantics of Prolog

2.2. Principles of the WAM

2.2.1. Implementation of dynamic typing with tags

2.2.2. Exploit determinism

2.2.3. Specialize unification

2.2.4. Map execution 10 a real machine
2.3. Description of thce WAM '

2.3.1. Memory arcas

2.3.2. Execution statc

2.3.3. The instruction set

2.3.4. An cxamplc of WAM codc

O B 00~ N O N AW~

10
11
11
1§
12
12
13
13
14
14
14
16
16
18
19
20
21
22
22
22
24
25
25

v -

2.3.5. Compiling 1IN0 WAM .ot cetes s tenssacsenam st s anesessasnesssnssstesn s enncmsmasese 26

3. Going beyond Lhe WAM et e sesesteacs s ses e s st st e saams s o et srsea s seruacen 27
3.1. Reduce inSUruction ZTANUIAMLYc.o.coceeuuieecueseusssecassessmsssmmasstess s assssnoms e snses s nessssress 28
3.2. Exploit dCterminismoooveee.... e eeematse b et se e et ss st 29
3.2.1. Measurement of determinism : eetreersutatet et es et en s et aeas sarae st e s e ereanaceeas 29

3.2.2. Ramificauions of exploiting determMINISMccccovmverrverearrramemancnssseresesnsenerseconcsenesens 30

3.3, Specialize UNHICAUON Lo.o.viiiiiiiintecereceesriees eeerarecasesasraensanesseesass semenesseessroasensanescnssenscassesein 3i
3.3.1. Simplifying variable bindingcccc..ce... rereeeametane s erens e et eae st ansenen st msaaseeas 32

3.4, DALaflOW QNAIYSISooirieceeeeereireiarearasaeressseeseessnmasessases sesess eesersessasasesntansesen esssntaset ensaaesenen 33
4. RCIACA WOTK ..ottt sn e e e sen s e es s s memsanenns - - 33
4.1. Reducc instruction granularity>.....: SR 34
4.2. Exploit determinism eeeeannsesrarseusneaens 34
4.3. Specialize unification 35
4.4. Dataflow analysis 36
4.5. Otherrimplementations ' . 37
45.1. Implementing Prolog on general-purpose machines 37
4.5.1.1. Taylor’s system ... 38

4.5.1.2. IBM Prolog . 38

4.5.1.3. SICStus Prolog ... 38

4.5.1.4. SB-Prolog ... e 39

4.5.2. Implementing Prolog on special-purpose machines 39
4521.PLM .. 39
45.2.2.SPUR 40

4.5.2.3. PSL-il and PIM/p esvssenrasbe e st e s R sanm s e ae st R e e 40
4.524.KCM . 40

4.5.2.5. VLSI-BAM 40

Chapter 3: The Two Representation Languages

1. Introduction . 42
2. Kemcl Prolog 42
2.1. Iniemal predicates of kemnel Prolog 4

2.2. Converting standard Prolog to kemnel Prolog 46
2.2.1. Standard form transformation 46

2.2.2. Head unraveling 46

2.2.3. Arithmetic transformation 48

2.2.4. Cut transformation . 48

2.2.5. Flaucning .. . 49

3. The Berkeley Abstract Machine (BAM) aersesmessa s e Rt e mens e s Rerae SRa e s e tm s e e enm e e 51
3.1. Dawa types in the BAM 852

3.2. An Overview Of the BAM ... erecrccccnrnnscnsssssasasnsonssessnsssanensosss sasassssssanssmsrassasssmassess SS

3.3. Justification of the COMPIEK INSUUCUONScoccveessensemseosserosacsossansesesmaosasessessassssrssssssonsresaniss 57

3.4. Jusufication of the instructions needed {Or UNIACAUONe...eoimnccencrneiccrearseeaaseaeseeceteeeranreneen. 59

3.4.1. The cxistence of rcad mode and write mode . .. 61

3.4.2. The need for dereferencing .. 62
3.4.3. The need for @ threc-way Branchccececiincnvescnniicnine s crs s s sssasssssssssasseae 62

3.4.4. Construcung the read mode inSUCUONS ..eeee.veeevemecereeeneaeenen 63
3.4.5. Construcuag the writc mode insuuc:tions 64
3.4.6. Representation of vanableso..vveecvcecnmerieeaieesecenseeeecssenesecraenne 66
3.4.7. Summary of the unificaton iRSUTUCUONSc.ceeeeevereerereeerecnenrenans 67
Chapter 4: Kernel transformations
L IRIPOGUCUON ...ttt et et eee et s e st s as st e ses e ree ot anssm st as s sram essanesssatesasesasesnsneantenseasnten 68
2. Types as logical formulas ...o.cooceicnnene. ettt ettt aeeranaeuen st e 69
3. Formula manipulatione.vcvccninimrensnsersensessassones 71
4. FACIONING ...ttt censsna e s senene 73
5. Global daaflow analysis 77
5.} The theory of abstract interpretation ... 77
52.A praFlical application of abstract interpretation to Prolog 80
5.2.1. The program lattice 81
5.2.2. An example of generating an uninitialized vaniable type 82
5.2.3. Properties of the lauice elements 83
. 5.3. Implcmentation of the analysis algorithm 84
5.3.1. Data representation . 84
5.3.2. Evolution of the analyzer . 85
5.3.3. The analysis algorithm 86
5.3.4. Execution time of analysis 88
5.3.5. Symbolic exccution of a predicate 91
5.3.6. Symbolic execution of a goal 9]
5.3.6.1. Unification goals 91
5.3.6.2. Goals defined in the program 93
5.3.6.3. Goals not defined in the program 93
5.3.7. An example of analysis 93
5.4. Intcgrating analysis into the compiler 94
5.4.1. Entry specialization 96
5.4.2. Uninitialized register conversion 96
5.4.3. Head unraveling 97
6. Determinism transformation 98
6.1. Head-body segmentation 99
6.2. Type enrichment 100
6.3. Goal reordering 102
6.4, Determinism extraction with 1€st SELS ... 103
6.4.1. Definitions 104
6.4.2. Somc cxamplcs .. 105

6.4.3. The algonithm 106

-Vt -

Chapter S: Compiling Kernel Prolog to BAM Code
L InUroduction ... reececccannnns

2. The predicate compiler

‘e

2.1. The determinism compiler

2.2. The disjunction compiler

3. The clause compilereoveeeenienennne

3.1. Overvicw of clause compilation and register allocation
3.1.1. Construcuon of the varlist

3.1.2. The register allocator

3.1.3. The final result

3.2. The goal compiler :
~ 3.2.1. An example of goal compilation

3.3. The unificauon compiler

" 3.3.1. The unification algorithm
3.3.2. Optimizations

*. 3.3.2.1. Optimal write mode unification

3.3.2.2. Last argument optimization
3.3.2.3. Type propagation

. 3.3.2.4. Depth limiting

3.3.3. Examples of unification

3.4. Enury specialization
3.5. The write-once transformation

3.6. The dereference chain transformation

Chapter 6: BAM Transformations
1. Introduction

2. Definiuons

3. The trans{ormations

3.1. Duplicatc code climination
3.2. Dead codc elimination

3.3. Jump elimination

3.4. Label elimination
3.5. Synonym optimization

3.6. Peephole optimization

3.7. Determinism optimizaton

Chapter 7: Evaluation of the Aquarius system
1. Introduction :

2. Absolute performance

3. The effectiveness of the dataflow analysis

4, The effectiveness of the determinism transformation

5. Prolog and C

6. Bug analysis

110
110
m
111
114
115
116
116
118
118
122
123
123
124
124
125
126
127
127
130
132
134

137
137
137
138
139
139
140
140
141
141

144
145
148
152
154
157

—

—

- vii -

Chapter 8: Concluding Remarks and Future Work

1. Inwroducuon eeteeeesrusraseseessssseeessrmuesstesaasannetseas e aen st ase natonbanatese e ases anessemaensranee
2. MAIN TCSUIL Lo ee e s e sr e e sreensr cessasa e sesasansenstasaeans sreemssest sasenes oas smenmssassns sonsane
3. Practical lessons eeeeeoeeassreannueans

Y3

4. Language dCSIBRc.ocoeeeeeenrrrerenseessrsneans : S

S. Future work
5.1. Dawaflow analysis .

5.2. Determinism

References eeeveteeessseseemasasesstessresenseasen aean st aen teassasas e tas st eaaa sstas asos snsen st en tensent sensern

-

Appendix A: User manual for the AquariusProlog compiler

Appendix B: Formal specification of the Berkeley Abstract Machine syntax

Appendix C: Formal specification of the Berkeley Abstract Machine semantics

Appendix D: Semantics of the Berkeley Abstract Machine

Appendix E: Extended DCG notation: A tool for applicative programming in Prolog

Appendix F: Source code of the C and Prolog benchmarks

Appendix G: Source code of the Aquarius Prolog compiler

159
159
159
160
161
162
163

164
171
179
184
203
213 '
220

224

Chapter |

Introduction

-
.

“*You're given the form,

but you have to watce the sonnet yourself.
What you say is completely up 10 you.'
— Madelcine L’Englc, A Wrinkle In Time

1. Thesis statement

The purposc of this dissertation is to provide constructive proof that the logic programming language
Prolog can be implemented an order of magnitde more efficiently than the best previous systems, so that

its speed approaches imperative {anguages such as C for a significant class of problems.

The motfivation for logic programming is to let programmers describe whar they want sepamcly.
from how 1o get it. It is based on the insight that any algorithm consists of two parts: a logical specification -
(the logic) and a description of how to execute this specification (the control). This is summarized by
Kowalski's well-known equation Algorithm = Logic + Control {40). Logic programs are statements
describing properties of the desired result, with the contro! supplied by the underlying system. The hope is
that much of the control can be automatically provided by the sysiem, and that what remains is cleanly
separated from the logic. The descriptive power of this approach is high and it lends itself well o analysis.
This is a stcp up from programming in imperative languages (like C or Pascal) because the system takes
carc of low-level details of how to executc the siatements.

Many logic languages have been proposed. Of thesc the most popular is Prolog, which was origi-
nally created to solve problems in nawral language understanding. It has successful commercial imple-
mentations and an active user community. Programming it is well understood and a consensus has
developed regarding good programming style. The semantics of Prolog strike a balance between efficient
implementation and logical completcness {42,82]. It auempts to make programming in a subset of first-
order logic practical. It is a naive theorem prover but a uscful programming language because of its
mathematical foundation, its simplicity, and its efficicnt implementation of the powerful concepts of

unification (pattern matching) and scarch (backtracking).

w—~

Prolog is being applicd in such diverse arcas as expert sysicms, natural language understanding,
theorem proving [57}, deducuve databascs, CAD ool design, and compiler writing [22). Examples of suc-
cessful applications arc AUNT, a universal netlist uansl‘alor {59), Chat-80, a nawral language query system
{81]. and diverse in-house cxpert systems and CAD 1o0ols. Grammars based on unification have become
popular in nawral language analysis [55,56]. Imporant work in the area of languages with implicit paral-

lelism is based on vanants of Prolog. Our rescarch group has used Prolog successfully in the development

of toals for architccture analysis 12, 16, 35), in compilation [19, 73, 76). and in silicon compilation [11).

Prolog was devcloped in the carly 70's by Colmerauer and his associates [38]. This early system
was an interpreter. David Warren's work in the laie 70°s resulted in the first Prolog compiler {80). The
syntax and semantics of this compiler have become the de facto standard in the logic programming com-
munity, commonly known as thc Edinburgh standard. Warren’s later work on Prolog implementation cul-
minated in the development of the Warren Abstract Machine (WAM) in 1983 [82], an execution mode! that

has become a standard for Prolog implementation.

However, these implemcentations are an order of magnitude slower than imperative languages. As a
result, the practical application of logic programming has reached a crossroads. On the one hand, it could
degenerate into an intcresting aéademic subculture, with litde use in the real world. Or it could flourish as
a practical tool. The choice between these two directions depends crucially on improving the execution

efficicncy. Theoretical and experimental work suggests that this is feasibie—that it is possibie for an

implcmentation of Prolog to usc the powerful features of logic programming only where they are necded.

Thercfore { propose the following thesis:

A program written in Prolog can execute as efficiently as its imple-
mentation in an imperative language. This relies on the development
of four principles:

(1) An instruction set suitable for optimization.

(2) Techniques to exploit the. determinism in programs.

(3) Techniques to specialize unification.

(4) A globat dataflow analysis.

2. The Aquarius compiler

I have tested this thesis by constructing a new gptimizing Prolog compiler, the Aquanus compiler.

The design goals of the compiler are (in decreasing order of importance):

8))

¢))

3

High performance. Compilcd code should execute as fast as possible.

Portability. The compiler’s output instruction sct should be easily retargetable to any scquential
architecture.

Good programming style. The com.pilc'r should be written in Prolog in a modular and dectarative
styl_.c. There are few large Prolog programs that have been writien in a declarative style. The com-

piler will be an addition to that set.

I justify the four principles given in the thesis statement in the light of the compiler design:

16))

@

&)

Reduce instruction granularity. To generate efficient code it is necessary to use an execution
model and instruction set that allows extensive optimization. | have designed the Berkeley Abstract
Machine (BAM) which retains the good features of the Wamren Abstract Machine (WAM) {82],
namely the data structurcs and execution modcl, but has an instruction set closer to a sequential
machine architecturc. This makes it easy to optimize BAM code as well as pon it 10 a sequential
architecture.

Exploit determinism. The majority of predicates written by human programmers are intended 1o be
executed in a deterministic fashion, that is, to give onl)" one solution. Thesc predicates are in effeal
case statements, yet systems 00 often compile them inefficiently by using hacknckiﬁg to simulate
conditional branching. It is imponant to replace backtracking by conditional branching.

Specialize unification. Unification is the foundation of Prolog. It is a general pauem-maiching
operation that can maich objects of any size. Iis logical semantics correspond 0 many possible
actions in an implementation, including passing parameters, assigning values to variables, allocating
memory, and conditional branching. Often 6nly onc of these actions is nceded, and it is imponant o
simplify the gencral mechanism. For example @ of the most common actions is assigning a valuc

10 a variablc, which can often be simplificd w a single load or store.

(4) Dataflow analysis. A global dataflow analysis supports techniques o exploit determinism and spe-
cializc unification by deriving information about the program at compile-time. The BAM instruction

sct is designed 10 express the optimizauons possit;lc by these techniques.

Simulancously with the compiler, our research group tilas developed a new archiwccture, the VLSI-BAM,
and its implementation. The first of several target machines for the compiler is the VLSI-BAM. The
interaction between the architecture and compiler design has significandy improved both. This dissertauon
describes only the Aquarnius compiler. A description of the VLSI-BAM and a cosvbenefit analysis of its

features is given clsewhere [34,35).

3. Structure of the dissertation

The structure of the dissertation mirrors the structure of the compiler. Figure 1.1 gives an overview
of this structurc. Chapter 2 summanzes the Prolog language and previous techniques for its high perfor-
manc.c execution. Chapters 3 through 6 describe and justify the design of the compiler in depth. Chapter 3
discusses its two intcmnal languages: kemel Prolog, which is close to the source program, and the BAM,
which is close 10 machine code. Chapter 4 gives the optimizing transformations of kemel Prolog. Chapter
5 gives the compilation of keme! Prolog into BAM. Chapier 6 gives the optimizing transformations of
BAM code. Chapter 7 does a numerical evaluation of the compiler. It measures its performance on several

machines, docs an analysis of the effectiveness of its optimizations, and briefly compares its performance

with the C languagc. Finally, chapter 8 gives concluding remarks and suggestions for further work.

The appendices give details about various aspects of the compiler. Appendix A is a user manual for
the compiler. Appendices B and C give a formal definition of BAM syntax and semantics. Appendix D is
an English description of BAM semantics. Appendix E describes the extended DCG notation, a tool that is
used throughout the compiler’s implementation. Appendix F lists the source code of the C and Prolog

benchmarks. Appendix G lists the source codc of the compiler.

4
7

Prolag s
p d
4

Conver to
kernel Prolog
(Chapter 3)

standard form
transformation

l_ head unraveling j
anithmetic
tansformation

[cut nansfonnaxion—]

L]

flauening

Keme! Prolog
(Chapter 3) e

R 1 ,

Kerne| Prolog
transformauons
(Chapter 4)

Optimized
kernel Prolog

Y

Kemel 1o BAM
compilation

(Chapter 5)

BAM code
(Chapier 3) it

BAM
transformations

(Chapter 6)

[formula manipulation] ‘
/

[factoring

dawafiow analysis

determinism
transformation

predicate compiler

clause compiler

elimination
| dead code elimination |
| jump elimination |
[label elimination |
| synonym optimization |
[peephole optimiuﬁoﬂ
determinism
optimization

duplicate code N

¢ [symbolic execution]

| enuy speciatization |

uninigialized register
conversion

{ type updating J

[head unraveling j

{ head-body segmentation |
{ type enrichment J
[goal reordering J
| determinism exoraction |

| disjunction compiler |
| deserminism compiter |

| entry speciatization . |
wrile-once
transformation

dereference chain
transformation

(unification compilc:-—]
1— goal compiler |
|| register aliocator |

Figurc 1.1 - Structure of the compiler and the dissertation

O

4. Contributions

4.1. Demonstration of high performance Prolog execution

A dcemonstration that the combination of a new absuact machine (the BAM), new compilation tech-
niques, and a global dataflow analysis gives an average speedup of five times over Quintus Prolog (58), a
high pcrformancc commercial system based on thc WAM. This speedup is mcasured with a sct of
medium-sized, realistic Prolog programs. For small programs the dataflow analysis does better, resulting in
an average specdup of closer to seven times. For programs that use built-in predicates in a realisuc
manncr, the average specdup is about four times, since buili-in predicates are a fixed cost. The programs
for which dau}ﬂow analysis provides sufficient information are competitive in speed with a good C com-

piler.

. On the VLS1-BAM processor, programs compiled with the Aquanius compiler execute in 1/3 the
cycles of the PLM [28), a special-purpose architecture implementing the WAM in microcode. Static code
size is three times the PLM, which has byte-coded instructions. The WAM was implemented on SPUR, a
RISC-like architecture with extensions for Lisp {8], by macro-expansion. Programs compiled with

Aquarius exccute in 1/7 the cycles of this implementation with 1/4 the code size [34].

4.2. Test of the thesis statement

A test of the thesis that Prolog can executc as efficiently as an imperative language. The results of
this test are only pantially successful. Performance has been significantly increased over previous Prolog
implementations; however the sysiem is competitive with imperative languages only for problems for
which daaflow analysis is able to provide sufficient information. This is due to the following factors:

o 1 have imposed restrictions on the dataflow analysis 10 make it practical. As programs becomc
larger, these restrictions limit the quality of the results.
. The (ragility of Prolog: minor changes in program text ofien greaty alier the efficiency with which

the program exccutes. This is due to the under-specification of many Prolog programs, i.c. their logi-

cal meaning rules out computations but the compiler cannot deduce all cases where this happens.

For cxamplc, often a program is deterministic (docs not do backtracking) even though the compiler
cannot figurc it oul. This can result in an enormous difference in performance: often the addition of

-

a single cut operation or type declaration reduces the time and space needed by orders of magnitude.

. The creauon and modification of large data objects. The compilation of single assignment semantics
into destructive assignment (instcad of copying) in the implementation, also known as the copy
avoidance problem, is a special casc of the gencral problem of effliciendy representing time in logic.
A quick solution is to usc nonlogical puil_l-in predicates such as setarg/3 [(63). A better solution

bascd on datafiow analysis has not yet been implemented.

o Prolog’s apparent need for architectural support. A general-purpose architecture favors the imple-
mentation ‘of an imperative language. To do a fair comparison between Prolog and an imperative
languagc,. one must take the architecture into account. For the VLSI-BAM processor, our rescarch
group has analyzed the costs and benefits of one carefully chosen set of architecwral extensions.

With a 5% increase in chip area there is a 50% increase in Prolog performance.

4.3. Development of a new abstract machine

The development of a riew absiract machine for Prolog implementation, the Berkeley Absuract
Machine (BAM). This abstract machine allows more optimization and gives a better mawch o general-
purpose architectures. Iis execution flow and data siructures are similar to the WAM but it contains an
instruction set that is much closer 10 the architecture of a real machine. It has been designed to allow
extensive low-level optimization as well as compa:l encoding of operations that are common in Prolog.
The BAM includes simple instructions (register-transfer operations for a tagged architecture), complex
instructions (frequently needed complex operations), and embedded information (allows better translation
10 the assembly language of the targer machine). BAM code is designed to be easily poried w general-
purpose architeciures. 1t has been poried 10 severa_l platforms including the VLSI-BAM, the SPARC, the

MIPS, and the MC68020.

4.4. Development of the Aquarius compiler

The development of the Aquarius compiler, a compiter for Prolog into BAM. The compiler is
sufficicntly robust that it is uscd routinely for large programs. The compiler has the following distinguish-

ing fcatures:

) It is wnitten in 2 modular and declarative style. Global information is only used to hold information

about compiler opuons and typce declarations.

-

. It represents types as logical formulas and ‘uses a simple form of deduction 10 propagate information
and improve the generated code. This extends the usefulness of dataflow analysis, which derives

information about predicates, by propagating this information inside of predicates.

. It is designed (0 exploit as much as possible the type information given in the input and extended by
the dawflow analyzer.

o It incorporates gencral techniques 10 generate cfficient deterministic code and 0 encode each
occurrence of unification in the simplest possiblc form.

. It supports a class of simplified unbound variables, called uninitialized variables, which are cheaper
to create and bind than standard variables.

The compiler development procecded in parallel with the development of a new Prolog system, Aquarius

Prolog [31]. For ponabifity reasons the system is written completely in Prolog and BAM code. The Prolog

component is carclully coded to make the most of the optimizations offercd by the compiler.

4.5. Development of a global dataflow analyzer

The development of a global dataflow analyzer as an integral pan of the compiler. The analyzer has

the following propertics:

) It uscs abstract interpretation on a lanice. Abstract interpretation is a gencral technique that proceeds
by mapping the valucs of variablcs in the program to a (possibly finitc) sct of descriptions. Exccu-
tion of the program over the descriptions completcs in finitc time and gives informaton about the

exccution of the original program.

° It derives a smail sct of types that lets the compiler simplify common Prolog operations such as vari-
able binding and unification. These types are uninitialized vanables, ground terms, nonvariable
terms, and recursively dereferenced terms. On a; representative set of Prolog programs, the analyzer
finds nontrivial types for 56% of predicawc argﬁmcnts: on average 23% arce uninitalized (of which
onc third arc passed in registers), 21% are ground, 10% are nonvariables, and 17% are recursively
dereferenced. The sum of these numbers is greater than 56% because arguments can have multiple
types.

) It provides a significant improvement in performance, reduction in static code size, and reduction in
theProlog-specific operations of trailing and dereferencing. On a representative set of Prolog pro-
grams, aflalysis reduces execution time by 18% and code sizc by 43%. Dereferencing is reduced
from 1 l‘%; 10 9% of execution tme and wrailing is reduced from 2.3% (0 1.3% of execution time.

. It is limited in scveral ways to make it practical. Iis type domain is small, so it is not able to derive
many useful types. It has no explicit representation for aliasing, which occurs when two terms have
variables in common. This simplifics implemenwation of the analysis, but sacrifices potentially useful

informatuon.

4.6. Development of a too! for applicative programming

The development of a language cxlcnsion_ to Prolog to simplify the implementation of large applica-
tive programs (Appendix E). The extension generalizes Prolog’s Definite Clausec Grammar (DCG) notation
1o allow programming with muluple named accumulators. A preprocessor has been written and used

extensively in the implementation of the compiler.

Chapter 2

Prolog and Its High Performance Execution

This chapter gives an overview of the fcatures of the Prolog language and an idea of what it means 1o
program in logic. It summarizes previous work in its compilation and the possibilities of improving its exe-
cution efficicncy. It concludes by giving an overview of related work in the arca of high performance Pro-

fog implementation.

1. The Prolog language

This scction gives a bricf introduction to the language. It gives an example Prolog program, and
gocs on o summarize the data objects and control flow. The syntax of Prolog is defined in Figure 2.2 and
the semantics arc defined in Figurc 2.3 (section 2.1). Sterling and Shapiro give a more detailed account of

both [62], as do Percira and Shicber {56].

A Prolog program is a sct of clauses (logical sentences) writien in a subset of first-order logic called
Horn clause logic, which means that they can be interpreted as if~statements. A predicale is a set of
clauses that defines a relation, i.e. all the clauses have the same name and arity (number of arguments).
Predicates are often referrcd l;) by the pair name/arity. For example, the predicate in_tree/2

defines membership in a binary tree:

in_tree(X, tree(X, ,_)).
in_tree(X, tree(V,Left,Right)) :- X<V, in_tree(X, Left).
in_tree(X, tree(V,Left,Right)) :- X>V, in_tree(X, Right).

(Here ** : - " means if, the comma **, ** means and, vaniables begin with a capital letter, tree(V,L,R)

is a compound object with three fields, and the underscore *“_'" is an anonymous variable whose value is
ignored.) In English, the definition of in_tree/2 can be interpreted as: **X is in a tree if it is equal ©
the node value (first clause), or if it is less than the node value and it is in the left subtree (second clausc),

ot if it is greater than the node value and it is in the right subtree (third clause).”

The definition of in_tree/2 is direcily exccutable by Prolog. Depending on which arguments
arc inputs and which arc outputs, Prolof’s exccuuon mechanism will exccute the definition in different

ways. The definition can be uscd to verify that X is in a given tree, or w0 insen or look up X in a tree.

10

1§

The exccution of Prolog proceeds as a simple theorem prover. Given a query and a set of clauses,

Prolog attempts to construct valucs for the variables in the query that make the query tue. Excecution

procceds depth-first, i.c. clauses in the program are tried in the order they are listed and the predicates
insidc each clause (called goals) arc invoked from left to right. This strict order imposed on the execution
makc: Prolog rather weak as a theorem prover, but uscful as a programming language, cspecially since it

can be implemented very efficiendy, much more so than a more gencral theorem prover.

1.1. Data

The.data objects and their manipulation are modeled after first order logic.

1.1.1. The logical variablet

A variablc represents any data object. Initially the value of the variable is unknown, but it may
becc;mc known by instantiatzion. A variable may be instantiated only once, i.c. it is single-assignmeni.
Variables may be bound to other variables. When a variable is instantiated to a value, this value is seen by
all the vaniables bound to it. Variables may be passed as predicate arguments or as arguments of com-
pound data objects. The latier casc is the basis of a powerful programming technique based on partial data

structures which are filled in by different predicates.

1.1.2. Dynamic typing

Compound data types arc first class objects, i.c. new types can be created at run-time and variables
can hold values of any type. Common types are atoms (unique constants, e.g. £oo, abcd), integers, lists
(denoted with square brackets, e.g. [Head|Tail), [a,b,c,d)), and stuctures (e.g.
tree(X,L,R), quad(X,C,B,F)). Structures are similar to C structs or Pascal records—they have a
name (called the functor) and a fixed number of arguments (called the arity). Atoms, intcgers, and lists arc

uscd also in Lisp.

t Not10 be confused with variables of type LOGICAL in Fonran

12

Figurc 2.1 — An example of unification

1.13. Unification

Unification is a pattcrn-matching operation that finds the most general common instance of two data
objecis. A formal definition of unification is given by Lloyd [42). Unification is able w0 mau:h compound
data objects of any size in a siqglc primitive operation. Binding of vanables is done by unification. Asa
part of matching, the variables in the terms are instantiated to make them equal. For example, unifying
s(X,Y,a) and s(2,b,2) (Figure 2.1) matchcs X withZ, Y with b,and a with Z. The unified term

is s(a,b,a),Yisequalto b,and both X and Z are equal to a.

1.2. Control

During execution, Prolog auempts to satisfy the clauses in the order they are listed in the program.
When a predicate with more than one clause is invoked, the system remembers this in a choice point. 1f the
system cannot make a clause truc (i.e. execution fails) then it backtracks to the most recent choice point
(i.c. it undoes any work done trying to satisfy th§l clause) and tries the next clause. Any bindings made
during the auempted execution of the clause arc u;'adonc. Executing the next clause may give variables dif-
ferent valucs. In 3 given exccution path a variable may have only onc value, but in different execution

paths a variablc may have differcnt values. Prolog is a singlc-assignment language: if unification atempts

13

10 give a variablc a different value then faifure causcs backuacking w occur. For cxample, trying 0 unify

s(a,b) and s (X, X) will fail becausc the constants a and b arc not cqual.

There are four [caturcs that arc used 10 manage the control flow. These are the “*cut’” opcration

(dcnoted by *“ ! " in programs), the disjuncuon, the if-then-clse construct, and negauon-as-failure.

1.2.1. The cut operation

The cut operation is used to manage backtracking. A cut in the body of an clause effectively says:
*“This clause is the comrect choice. Do not try any of the following clauses in this predicate when back-
tracking..’ Exccuting a cut has the samc effect in forward execution as executing true, i.e. it has no

effect. But it aliers the backtracking behavior. For example:

p(a) :- q(A), ', r(A).
p(A) :- s(A).

Du;ing execution of p(A),.if g(&) succeeds then the cut is executed, which removes the choice points
created in g (A) as well as the choice point created when p (A} was invoked. As a result, if r (A)
fails then the whole predicate p (A) fails. If the cut were not there, then if r (A) fails exccution back-
tracks first to g (A), and if that fails, then it backtracks further 10 the second clause of p(A), and only

when s (A) in the second clausc fails does the whole predicate p (R) fail.

1.2.2. The disjunction

A disjunction is a concisc way to denote a choicc between several aliematives. 1t is less verbosc than
defining a new predicate that has cach alternative as a separatc clause. For example:
q(A) :~- (A=2a ; A=b ; A=c).

This predicatc rcturns the three solutions a, b,and ¢ on backtacking. Itis equivalent to:

q(a).
q(b).
qfc).

1.2.3. If-then-else

The if-then-else consuruct is used 10 denole a sclq:lion between two alternatives in a clause when it is
known that if onc altcrnative is chosen then the other will not be needed. For example, the predicate

p (A) abovc can be writien as follows with an if-then-clsc:

p(AYy = (g(A) -> r(A) ; s{A)).

This has identical semantics as the first definition. The arrow -> in an if-then-else acts as a cut that

removes choicc points back 10 the point where the if-then-else stans.

1.24. Neéation-as-failure

Negat.ion-in Prolog is implcmented by negation-as-failure, denoted by \+(Goal). This is not a
true negation in the logical sensc so the symbol \+ is chosen instead of not. A negated goal succeeds if

the goal itscif fails, and fails if the goal succeeds. For example:

r(A) :- \+ t(A).

The predicate r (A) will succeed only if t (A) fails. This has identical semantics as:

r(A) :- t(A), !, fail.
r(A).

In other words, if t (A) succeeds then the fail causes failure, and the cut ensures that the second
clause is not tried. If t (A) fails then the sccond clausc is tricd because the cut is not execuied. Note that
negation-as-failure never binds any of the vaniables in the goal that is negated. This is different from a
purely logical negation, which must return all results that are not equal 1o the oncs that satisfy the goal.
Negation-as-failure is sound (i.c. it gives logically corvect results) if the goal being negated has no unbound

vanables in it

13. Syntax

Figurc 2.2 gives a Prolog definition of the syntax of a clause. The definition does not present the
namcs of the primitive goals that are pan of the system (c.g. arithmetic or symbol tablc manipulation).

These primitive goals are called **built-in predicates.”” They are defincd in the Aquarius Prolog usce

15

clause (H) :- head(H).

clause ((H:-B)) :- head(H), body(B).

head (H) :- goal_term(H).

body (G} :- control (G, A, B}, body(A), body(B}.

body (G) :- goal (G).
goal (G) :- \+control(G. _, _), goal_term(G).

control ((A;B), A, B). N
control((A,8), A, B).

control {(A->B), A, B).

control_(\‘l' (A), A, true).

term(T) :~ var(T).
term(T) :~ gbal_term(T}.

goal_term(T) :~ nonvar(T}, functor{(T. _, A), term args(l, A, T).

term_args(I, A, _) :- I>A.
tesm_args(I, A, T} :- I=<A, arg(I, T, X}, term(X), 11 is I+l, term args(Il, A, T).

% Built-in predicates needed in the definition:
functor (T, F, A) :- (Term T has functor F and anity A).
arg{(I, T, X) :- (Argument]of compound term T is X).
var(T) :- (Argument T is an unbound variable).

nonvar(T) :- (Argument T is & nonvariable).

Figure 2.2 - The syntax of Prolog

manual [31). The figure defines the syntax after a clause has already been read and converted w Prolog's
internal form. It assumes that lexical analysis and parsing have alrcady been done. Features of Prolog that
depend on the exact form of the input (i.e. operators and the exact format of atoms and variables) are not

defined here.

To understand this definition it is necessary to understand the four built-in predicates that it uses.
The predicates functor (T, F, 2) and arg(I, T, X) are used 10 examine compound terms.
The predicatcs var(T) and nonvar (T) arc oppositcs of each other. Their meaning is straightfos-
ward: they check whether a term T is unbound or bound 0 a nonvariable term. For example, var(_)

succeeds whercas var (foo(_)) docsnot.

10

2. The principles of high performance Prolog execution

The first implementation of Prolog was dcvclopgd by Colmerauer and his associawes in France as a
by-product of rescarch into natural language understanding. This implementation was an interpreter. The
first Prolog compiler was developed by David Warren in 1977. Somewhat later Warren developed an exe-
cution modcl for compiled Prolog, the Warrcn Abstract Machine (WAM) [82]. This was a major improve-
ment over previous modcls, and it has become the de facto standard implementation technique. The WAM

defines a high-level instruction sct that corresponds closely w0 Prolog.

This scction gives an overview of the operational semantics of Prolog, the principles of the WAM, a
summary .of its instruction set, and how to compilc Prolog into it. For more detailed information, please
consult Maier &'Wancn {43] or Ait-Kaci [1]. The execution model of the Aquarius compiler, the BAM
(Chapter 3), uses data structures similar to thosc of the WAM and has a similar control flow, although its

instruction set is different.

2.1. Operational semantics of Prolog

This scction summarizes the operational semantics of Prolog. It gives a precise statement of how
Prolog executes without going .imo details of a particular implementation. This is useful o separaic the
execution of Prolog from thc many optimizations that are done in the WAM and BAM execution models.
This scction may be skipped on first reading.

Figurc 2.3 defincs the scmantics of Prolog as a simple resolution-bascd theorem prover. For clarity,
the definition has been limited in the following ways: It does not assume any parucular representation of
terms. It does not show the implementation of cut, disjunctions, if-thcn-else, negation-as-failure, or built-in
predicates. It assumes that variables are renamed when necessary to avoid conflicts. It assumes that failed
unifications do not bind any variablcs. It assumes also that the variable bindings formed in successful
unifications arc accumulated until the end of the computation, so that the final bindings give the computed

answcr.

Terminology: A goal G is a predicate call, which is similar 0 a proccdure call. A resolvent R is a

listof goals [Gy ,G2....,G,). The query Q is the goal that stans the cxecution. The program is a list of

17

function prolog_cxccute(Q : goal) : boolean;

var ‘
B : stack of pair (hist of goal, integer); /* (hc backtrack stack */
R :listof goal; /* the resolvent */
{ :aateger; /* index into program clauses */

begin
R:=(Q1
B :=cmply;
push(R .HonB;

while true do begin
/* Controt step: find next<clause. %/
if cmpty(8) then return false else pop B into (R ,i);
if (R =[]) then return true;
if ({+1<n) then push(R,i+1)on B ;

/* Resolution step: try to unify with the clause. */
/* At this poinl.R ={ 01 . oery G,]and A = (H.' A .A..‘) */
/* Unify the first goal in R with clause A, . */
unify G, and H;;
if successful unification then begin
/" In R, replace G by the body of 4, */
/* 1f A; does not have a body, then R is shortened by one goal */
R :=[An,..,Ay ,G2,....G/]
push (R.1) on B /* proceed to next goal */
end
end
end;

Figure 2.3 — Operational definition of Prolog cxecution

clauscs [A}, Az, ... , A,). The number of clauses in the program is denoted by n. Each clause A, has a
hcad /J, and an optional body given as a list of goals { A,y , Aiz, ..., Al).

Execution starts by setting the initial resolveat R 10 contain the query goal Q. In a resolution-based
theorem prover, the resolvent is transformed in successive steps until (1) it becomes emply, in which case
execution succeeds, (2) all the clause choices are exhausted, in which case execution fails, or (3) the pro-
gram gocs into an infinitc loop. In a singlc transformation sicp, a goal G s taken from the current resol-
vent R and unified with a clausc in thc program. The next resolvent is obained by replacing G by the
body of the clausc. .

This proccss is nondeterministic, and much work has been donc in the arca of automauc theorem

proving to reducc the sizc of its scarch space [7). To got cfficiency, the approach of Prolog is 10 restrict the

process in two ways: by always waking the first goal from R and by trying clauses in the order they arc
listed in the program (Figurc 2.3). If no successful match is found, then the program backtracks—a previ-
ous resolvent is popped off the backurack stack and exccution continues. Therefore the execuuon flow of

Prolog is identical to that of a proccdural language, with the added ability to backtrack 10 carhier execution

states.

The functon prolog_cxecute(Q) retums a boolcan that indicatcs whether exccution was successful
or not (Figurc 2.3). If exccution was successful, then there is a sct of bindings for the vanables in Q that
gives the result of the computation. As a definition, prolog._exccute(Q) faithfully mirrors the execution of
Prolog. As an implementation, however, it is incredibly inefficient. For cach clause that is tned, it pushes
and pops the qﬁnplctc resolvent (which can be very large) on the backirack stack. The backtrack stack

grows with each successful resolution step. A practical implementation avoids much of this overhead.

» The ncxt section describes the WAM, an exccution model that is much more efficient. In the WAM,
the resolvents arc stored in a compact form on scveral stacks. Only the differences between successive
resolvents are stored, so that memory usage is much less. The stack discipline is used 10 make backurack-
ing efficient. The WAM also defines a representation for data items that allows an efficient implementation

of unificauon.

2.2. Principles of the WAM

Thc WAM dcfines a mapping between the terminology of logic and of a sequenual machine (Figure
24). Predicates correspond 10 procedures. Procedures are always written as one large case statement
Clauses correspond to the arms of this case statement. The scope of variable names is a single clausc.
(Global variablcs exist; however their use is inefficient and is discouraged.) Goals in a clausc correspond to
calls. Unification corresponds (0 parameter passing and assignment. Tail recursion corresponds to itcra-
tion. Featwres that do not map dircctly arc the single-assignment nature and altering backtracking bchavior

with the cut operation.

The WAM is bascd on four ideas: usc tagged pointers (0 represent dynamically typed data, opuimize

backiracking (cxploit deicrminism by doing a conditional branch on the first argument), specialize

19

Prolog Imnperative language

sct of clauses ~————a~ program

predicate; set of clauses ~e———— procedure
with same name and arity

clause; axiom -e———— if statement; one am of 2 nondclerministic
case statement; senies of procedure calls

goal invocation ~s————~ procedure call

unification ~———— parameter passing; assignment;
dynamic memory allocation;
conditional branching

backiracking —«s————#~ continuation passing;
execution state manipulation

logical variable ~——————& pointer manipulation

tail recursion -~-4——————p= jieration

Figurc 2.4 - Mapping between Prolog and an imperative language (according 10 WAM)

unification (instead of compiling a general unification algorithm, compile instructions that unify with a
known term), and map the execution of Prolog to a real machine. The WAM defines a high-level instruc-

uon set 1o represent these operalons.

2.2.1. Implementation of dynamic typing with tags

Data is represented by objects that fit in a register and consist of two parts: the tag ficld (which gives
the type) and the value field (Figure 2.5). The value ficld is used for different purposes in different types: it
gives the valuc of integers, the address of variablcs and compound terms (lists and structures), and it
ensures that each atom has a unique value different from all other atoms. Unbound variables are imple-
mented as self-referential pointers (that is, they point to themselves) or as pointers 1o other unbound vari-
ables. The semantics of unification allow variables to be unified wogether, so that they have identical values
from then on. In the implementation, such variables can point 10 other variables. Therclore retrieving the

value of a variable requires (ollowing this pointer chain (o0 its end, an opcration calicd dereferencing.

20

s heap
Atom | tetm] Unique ID tatm | Name/Arity
Integer tint Value E
Supfmm tstr —
L'm'-' tlst -—"—/—.-
‘Variable |tvar - tvar 1
N\

Figure 2.5 — Representation of Prolog terms in WAM and BAM

)

Main functor

First argument

-

Last argument

Head of list
Tail of list

2.2.2. Exploit determinism

It is often possible 1o reduce the number of clauses of a predicatc that must be tried. The WAM has

instructions that hash on the valuc of the first argumcent and do a four-way branch on the tag of the first

argument. These instructions avoid the execution of clauses that could not possibly unify with the goal.

The four-way branch distinguishes between the four data types—variables, constants (atoms and integers),

lists (cons cells), and structures. The hashing instructions hash into tables of constants and tables of struc-

wres. For example:

week (monday) .
week (tuesday) .
week (wednesday) .
week (thursday) .
week (friday) .
week (saturday) .
week (sunday) .

21

This is a set of seven clauses with constant arguments. If the argument X of the call week (X) is a con-

stant, then at most one clause can unify success{ully with it. Hashing is used to pick that clause. If X is an

unbound vanable then no such optimization is possible and alf cfauses are mcd in order.

2.2.3. Specialize unification

Most uses of unification arc special cases of the general unification algorithm and can be compiled in

a simpler way using information known at compile-time. For example, consider the following clausc

which is part of 2 qucue-handling package:

% queue(X,Q) is true
& if Q is a queue containing the single element X.

‘

queue (X, q(s(0). [XIC].C)).

A queuc is represented here as a compound term. The complexity of this term is typical of real programs.
In the WAM, a unification in the source code is compiled into a sequence of high-level instructions. The

compiled code exccutes as if the original clausc had been defined as follows, with the nesied term q/3

compleicly unraveled:
queue (X, Q) :~ Q=g(A.B,C}), A=s(0), B=[X(C].

(The nowation P=Q means 10 unify the two terms P and Q.) The compiled code is:

procedure queue/2

get_structure q/3,r(1) $ Q=q(<~ Start unification of q/3

unify variable 1x(2) s

unify variable 1r(3))

unify variable r(4))

get_structure s/1,r(2) L A=s(<~ Start unification of s/1

unify_ constant O h Q)

get_list r(3) \ B= <~ Start unification of list

unify_valve r(0) %

unify_value r(4))
L

proceed <- Return to caller

(r(0) and r (1) are rcgisters holding the arguments X and Q, and x (2) . r(3), ... arc temporary
registers.) Unification of the nested suucture is expanded ino a sequence of operations that do special
cases of the gencral algorithm. Thesc operations arc encapsulated in the get and unify instructions.

Unification has two modcs of opcration: it can takc apart an cxisung SLUructurc or it can crcalc 2 new onc.

22

In the WAM, the decision which mode to usc is made at run-time in the get instructions by checking the
type of the object being unificd. A mode flag is set which affects the actions of the following unify
instructions (up to the next get). A more dewiled overview of the WAM instruction set is given in sec-

uon 2.3 below.

2.2.4. Map execution to a real machine

The controt fiow of Prolog is mapped 10 multiple stacks. The stack representation holds the resol-
veats in a form that makes each resolution step as efficient as a procedure call in an imperative language.
The stack-based. structure allows fast recovery of memory on backuracking. As a result, some applications

do not nced a garbage collector.

A funhcrbplimizalion maps Prolog variables to regisiers. The variables in a clause are partitioned
into three classes (1empa.ay, permanent, and void) depending on their lifetimes. Void variables have no
lifetime and need no storage. Temporary variables do not need to survive across procedure calls, so they

can be storcd in machine registers. Permanent variables are stored in environments (i.¢. stack frames) local

to a clausc.

23. Description of the WAM

The previous scction gave an overview of the ideas in the WAM, with a simple example of generaied
code. This section complctes that description by presenting the data storage, execution state, and instruc-
tion sct of the WAM in full. It also gives a larger example of generated code and a scheme 0 compile Pro-

log into WAM.

23.1. Memory areas

Memory of thc WAM is divided into six logical areas (Figure 2.6): three stacks for the data objects,
one stack to support unification, onc stack w0 sup;ion the interaction of unification and backuracking, and
one area as codc spacc.

(1) The global stack. This stack is also known as the heap, although it follows a stack disciplinc. This

stack holds erms (lists and structurcs, the compound data of Prolog).

23

Three kinds of data objecys on stacks

/“‘—"’&-‘_ﬁ

r(e) r(b) r(h)
I(e)] .
environ- choice Prolog
r(a) ment point term
£ (b) (local] (data
frame) . object)
r(h)
r (hb) Support for
(o) . : unification and
backwracking
ripe) | 1 /____&
r (cp) .
r(s) : r(tr)
mode ? 1
r(0)
r(l)
r(2)
execution environment choice point global stack gail push-down
sae stack stack (heap) stack stack

Figurc 2.6 - Daia struciures of WAM and BAM

(2) The environment stack. This stack holds environments (i.c. local frames) which contain variables
local (0 a clausc. Because of backtracking (control may return to a clausc whosc environment is
decp inside the stack), this area does not follow a strict stack discipline, however, convention has

kept this naming. (Thc other stacks in the WAM do follow a stack discipline.)

(3) The choice point stack. Also known as the backirack stack, this suack holds choice points, dawa
objects similar 10 closures that encapsulate the execution state for backtracking.
(4) The trail. The trail stack is used 10 save locations of bound variables that have to be unbound on

backtracking. Saving variables is callcd trailing, and restoring them o unbound is called detrailing.

Not all variables that are bound have to be trailed. A vanable must only be trailed if it continues o
exist on backtracking, i.c. if its location on the heap or the environment is older than the most recent

choice point. This is callcd the trail condition.

(5) The push-down stack. This stack is uscd as a scraich-pad during the unification of nested com-

pound tcrms.
(6) The code space. This arca holds the compiled code of a program.

It is possible to vary the organization of the memory areas somewhat without changing anything substantal
about the exccution. For example, some Prolog systems (including the Aquarius system) combine the
environment and choice point stacks into a single memory area. This area is ofien called the local stack.

Since the push-dbwn stack is only used during general unification, it can be kept on the top of the heap.

2.3.2. Execution state

-

The internal state of the WAM and the BAM is given in Table 2.1. The differences between WAM
and BAM are indicated in the table: The BAM adds the register r (tmp_cp) for efficient interfacing of
Prolog predicatcs with assembly language. The WAM adds the register r(s) and the mode flag mode
for use by the unification instructions. The registers p (I) are not machine registers, but locations in the

current environment, pointed to by r (e).

Tablc 2.1 - Exccution staic of WAM and BAM

Register Description
r(e) Current cavironment on the environment stack.
r(a) Top of the environment stack (WAM only).
r(b) Top-most choice point on the choice point stack.
r(h) Top of the heap.
r (hb) Top of heap when op-most choice point was created.
r(tr) Top of the trail stack.
r (pc) Program counter.
r(cp) Continuation pointer (return address).
r(tmp_cp) Continuation pointer to interface with assembly (BAM only).
r(s) Structure pointer (WAM only).
mode Unification modc flag (valuc is read orwrite, WAM only).
r(0),r(1),.. | Registers for argument passing and temporary storage.
p(0),p(1),.. { Locations in thc currcnt environment (permancat variables).

(28]
(93

2.3.3. The instruction set

Table 2.2 contains the WAM insuuction sct, with a brief descripton of what each instruction does.
The get_(...) and unify (...) instructionsecho the put instructions, so their listing is abbre-
viated. v (N) is shorthand notauon for r(N) or p(N). *“Globalizing™ a vanablc (see the

put_unsafe_value instruction) moves an unbound vanable from the environment to the heap to avoid

dangling pointers.

Tablc 2.2 - The WAM instrucuion sct

Loading argument registers (just before a call)

put_variable v(N), r(I) Create a new vaniable, putin v (N) and r (I).
put_value v(N), r(I) Move v (N) tor(I).
put_unsafe value v(N), r(I) Move v (N) 1o r (I) (and globalize).
put_constant C, r(I) Move immediate value C to r (I).
put_nil r () Movenil tor(I).
put_structure F, r(I) Create functor F,putin r (1).
put_list r(I) Create a list pointer, putin r (I).
Unifying with registers and structurce arguments (head unification)
get_(...), r(I) Unify (.. .) with £(I).
unify (...) Unify (...) with structure argument.
Procedural control
call Label, N Call a predicate.
execute Label Jump 10 a predicate.
proceed : Retum from a predicate.
allocate Create local stack frame.
deallocate Remove local stack frame.
Selecting a clausc (conditional branching)
switch_on_term V,C,L,S Four-way branch on £ (0} 's tag.
switch_on_constant N, Tbl Hash wablc lookup of an atomic term in r (0).
switch_on_structure N, Tbl Hash wble lookup of a functorin r (0).
Backtracking (choice point management) .
try_me_else Label try Label Create a choicc point.
retry_me _else Label retry Label Change retry address.
trust_me_else fail trust Label Remove top-most choice point.

23.4. An example of WAM code

Figure 2.7 gives the Prolog definition and the WAM instruciions for the predicatc append/3. fhe
mapping between Prolog and WAM instructions is straightforward: the switch instruction branches ©
the right clausc depending on the type of the first argument, the choice point (t ry) instructions link the

clauses together, the get instructions unifly with the hecad arguments, and the unify instucuons unify

with the arguments of structurcs.

The samc instruction scquence is uscd to take apart an exisung structure (read mode) or to build a
ncw structure (write modce). The decision which mode to use is made in the get instructions, which set a
modc flag. For example, if get_list r(0) sees an unbound variable argument, it sets the flag

write mode. If it sees a list argument, it scis the flag to read mode. If it sces any other type, it fails, i.e. it

backtracks by restoring statc from the most recent choice point.

Choicc point handling is donc by the try instructions. The try me_else L instuction
crcates a choice point, i.c. it saves all the machir'u: registers on a stack in memory. It is compiled before the
first clause in a predicatc. It continues exccution with the next insruction and backtracks to label L. (The
try L insu'ucition is identical to try_me_else, except that it continues execution at L and backtracks
to the next insﬁucu'on.) The retry me_else L instruction modifies a choice point that already exists
by changing the address that it jumps to on backtracking. It is compiled before all clauses after the first but
not including the last. The trust_me_else fail instruction removes the top-most choice point from

the stack. Itis compiled before the last clausc in a predicate.

23.5. Compiling into WAM

Compiling Prolog into WAM is straightforward because there is almost a one-to-onc mapping
between items in the Prolog source code and WAM instructions. Figure 2.8 gives a scheme for compiling
Prolog 10 WAM. This compilation scheme gencrates suboptimal code. One can optimize it by generating

switch instructions 1o avoid choice point creation in some cases {73].

The clauses of predicatc p/3 are compiled into blocks of code that are linked together with try
instructions to manage choice points. Each block consists of a sequence of get instructions 10 do the
unification of the head arguments, followed by a sequence of put instructions (0 set up the arguments for
cach goal in the body, and a call instruction 10 execute the goal. The block is surrounded by allo-

cate and deallocate instructions to create an environment for permanent variables.

The last call optimization, or LCO (also called tail recursion optimization, although it is applicable 10

all predicates, not just recursive oncs) converts a call instruction followed by a retumn into 2 jump, i.c. it

27

append ([}, L, L).

appead ([XIL1], L2, [XIL3))

:~ -append (L1, L2, L3).

Prolog definition of append/3

append/3:

switch_on_term V1, Cl1, C2, fail

Vi: try me_else V2

Cl: get_nil r(9)
get_value r(l),r(2)
proceed

v2: tgﬁst_me__else fail

C2: get_list r(0)
unify variable r(3)
unify_variable r(0)

. get_list r{2)
unify value r(3)
unify variable r(2)
execute append/3

:Gow VIif £ (0) isa variable.
1Go10Clif r(0) isaconstant.
:Go1oC2if r (0) isalisL

s Failif £ (0) is a structure.

; Creatc a choice point

s Unify £ (0) withnil.
:Unify r (1) and r(2).

: Retumn 1o caller.

; Remove choice point.

; Start unification of r (0) with a list
; Load head of listinw r (3).

: Load wail of list into r (0).

; Start unification of r (2) withalist

: Unify head of list with r (3).

: Load wil of listinto r (2).

+ Jump 10 append/3 (last call optimization).

WAM code for append/3

Figare 2.7 - Compiling append/ 3 into WAM code

reduces memory usage on the environment stack. For recursive predicates, the LCO converts recursion

into itcration, since the jump is 10 the first instruction of the predicate. The WAM implements a generaliza-

tion of last call optimization called environment trimming that allows the environment to become smaller

after each cail.

3. Going beyond the WAM

Prolog implementations have made great progress in execution efficiency with the development of

the WAM [82). However, these systems arc still an order of magniwde slower than implementations of

popular imperative languages such as C. To improve the exccution speed it is necessary to go beyond the

WAM. This section discusscs the limits of the WAM and how the four principlcs of the Aquarius compiler

build on the WAM 10 achicve higher performance.

————_-——J

28

P(E,F,G) :- k(X,F,P), m(S,T), ...

p(Alalc) i q(Alzl",l r("lTlB)l ceoor Z(Alx)'

choice
point
«R,S) - ... -
p@ ! Original Prolog predicate
_ Compiled WAM code
Ll: r try me else L2
code folf allocate Creale environment.
. clause (get arguments) Unify with caller arguments.
- ut arguments
L2: retry me else L3 ®) Load arguments and call.
- - call q/3
. code for + | (put arguments) Load arguments and call
clause 2 call x/3)
. (put arguments)
. deallocate Remove environment.
K execute z/2 Lasicall is a jump.
Ln: \ trust_me else fail

A single compiled clause

code of
last clause

Figurc 2.8 - Compiling Prolog into WAM

3.1. Reduce instruction granularity

The WAM is an elegant mapping of Prolog to a sequential machine. Its instructions encapsulawe
parts of the general unification algorithm. However, these parts are quite large, so that many optimizations
are not possible. For examplc, consider the predicatc:

p(bar).

This is compiied as:

29

get_constant bar, r(0)
proceed

The get_constant instuction encapsulaics a sefies of operations: dereference r (0) (follow the
pointer chain 10 its end), test its type, and do cither read mode unification (check that the value of £ (G) is
bar) or writlc mode unification (trail r(0) and storc bar in its cell). All this generality is often
unneccssary. For example, if the predicatc p(X) is always called with a dereferenced atom, then

unification reduccs 0 a simple check that the value is correct. The other operations are superfluous.

The Aquarius compiler’s execution mod;:l. the BAM, is designed to retain the good feawres of the
WAM while allowing optimizations such as this one. It retains data structures and an execution flow simi-
lar 10 the WAM, but it has an instruction set of finer granularity (Chapter 3). The compiler does not use the
WAM during c.'ompilauon, but dircctly compiles to the BAM. It is of fine enough grain 10 allow extensive
optimization, but it also encodes compactly the operations common in Prolog. For example, it includes an

explicit dereferencing instruction, which makes it possible o reduce the amount of dereferencing

significanuy by only doing it when it is necessary and not in every instruction.

3.2. Exploit determinism

The majority of predicates written by human programmers are intended to give only one solution, i.c.
they are deterministic. However, 100 oftcn they are compiled in an inefficient manner using shallow back-
vacking (backtracking within a predicate 1o choosc the correct clause), when they are really just case state-

ments. This is incfficient since backtracking requires saving the machine sute and restoring it repeaiedly.

3.2.1. Measurement of determinism

Measurements of Prolog applications support these assertions:

(1) Tick shows that choice point references constituic about half (45-60%) of all data refercaces {69).

(2) Touau and Despain show that at least 40‘7;. of all choice point and fail operations can be removed
through optimization (70}.

The latter resuft is especially interesting because it attempts to quantily how ofien shallow backuacking is

30

optimizablc. It considers a choice point to be avoidable if between the access of a choice point and its
removal by a cut there arc no calls o non-built-in predicates, no returns, and only binding of variables that
do not have (o be restored on backuracking. Avoid;ble choice points do not have to be created because
they are removed immediately. For a set of mcdium-.sizcd programs, on average the following percentages
of choice point creations arc avoidable: 57% of the ones removed by cut, 43% of the ones removed by
trust, and 48% of the ones restored by fail. The variance of these numbers is large, but the potenual for
optimizaton when these situations do occur 1s significant. The Aquarius compiler is able to take advantage
of these .op&imiw.ions and more, e.g. due 0 t}zc factoring transformation (Chapter 4) it is able to compile
the partition/4 predicate in Warren's quicksont benchmark [30) into deterministic code. The optimi-

zations are synergistic, that is, doing them makes other improvements possible:

-

(1) Less stack space is necded on the environment/choice point stack. Choice points and environments
arc both stored on this stack, which means that often a clausc’s environment is hidden undemeath a
morc recently created choice point When this happens the last call optimization is not able 0

recover spacc. If fewer choice points are created, then last call opumization is effective more often.

(2) There arc fewer memory references to the heap because binding a variable is postponed until a

clause is chosen.
(3) There is less trailing because it is only needed for bindings that cross a choice point.

(4) Garbage collecuon is more efficient, since the creation of fewer choice points means that there are

fcwer starting points for marking.

3.2.2. Ramifications of exploiting determinism

The goal of compiling deterministic predicates into efficient conditional branches affects a large part
of the compilcr. Many of the transformations donc in the compiler are intended to increase the amount of
determinism that is casily accessible. This includes formula manipulation, factoring, head unraveling, the
determinism transformation (all in Chapicer 4), the determinism compiler (Chapter 5), and the determinism

optimization (Chaptcr 6).

31

Through these transformations the compiler creates a decision graph to index the arguments of a
predicate. Type information derived by dataflow analysis is exploited to simplify the graph. The graph is
created in an architecturc-indcpendent way through lhc concept of the test set (Chapter 4). Intuitively, a
test sct is a sct of Prolog predicates that are muwally disjoim (only one can succeed at any given umc) and

that correspond to a mulu-way branch in the architecture.

33. Specialize unification

Thc WAM unification instructions (get and unify) arc complex. They operaie in two modes
(read mode and write mode) depending on the type of the object being unified, they dereference their argu-

ments, and they trail variable bindings. It is beuer o compile unification dircctly into simpler instructions.

In the Aduarius compiler, unification is compiled into the simplest possible BAM code waking the
type information into account {Chapter 5). Often it is possible to reducc a unification 10 a singic foad or

store. The use of uninitialized variables (see below) to simplify variable binding greatly improves the gen-

crated codc.

registers memory

Uniniiagliiszg m N value ignored
[____] value important

Uninitialized

memory |tV2% - \\\\\\\

it]y

Figurc 2.9 - Threc categories of unbound variabics

3.3.1. Simplifying variable binding

A major sourcc of incfficicrcy in WAM implementations is that logical variables are often created as
unbound (i.c. as scl{-referential pointers) and then uqiﬁcd soon afterwards. Crcating and unifying does
much unnccessary work: it would be faster just to reserve a memory location and then write 10 it. The
Aquarius compiler defines such a representation, called uninitialized variables. Conceptually, uninitialized
variables arc defincd at 1wo levels:

(1) At the logical level, an uninitialized variaplc is an unbound variable that is not aliased, i.¢. there are
no other variables bound 10 it. The dauafiow analyzer (Chapter 4) uses this definition to derive unini-

tialized variable types.

(2) At the ilnplementation level, an uniniualized vanable is a location that is allocated w0 contain an -
unbound variable, but the location is not given a value. The kemel Prolog compiler (Chapters 4, S, .

* and 6) uscs this dcfiniuon to compile uniniualized variables efficiently.

The location containing an uninitialized vaniable can either be a register or a memory word, resulling in
two kinds of uninitialized variables, namely uninitialized regisier and uninitialized memory variables. The
first are registers whosc conteats are ignored. The second are pointers 1o memory locations whose conients
arc ignored. Standard unbound variables are called initialized variables; they are pointers to locations

pointing to themselves. Figure 2.9 illustrates the three categories of unbound variablcs.

Table 2.3 - The cost of uninitializcd variables
Typc of vaniable Cost (VLSI-BAM cycles)
For Unification For Backtracking
Creation | Binding || Trailing | Detrailing |
Uninitialized Register ¢] 0 0 /)
Uninitialized Memory 1 1 0 0
Initialized Variable 2 5 2 Oor4

The dataflow analyzer derives both uninitialized register and uninigalized memory types. It is oficn
able 10 determinc that an argument is uninitialized; for a representative set of programs it finds that 23% of
all predicatc arguments are uninitialized. Of these, two thirds have uninitialized memory type and onc

third have uninitialized register type.

L)
s

Table 2.3 gives the minimum run-time costs on the VLSI-BAM processor for the three categories of
unbound variables. Costs are given for unification support (creation and binding) and for backiracking sup-
port (trailing and detrailing). Binding an initialized lvariablc is expensive because the vanable must be
dereferenced before the new value can be stored in ;hc memory cell. Binding an uninitialized memory
variable reduces 10 a single memory store operation. Binding an uninitialized register vanable is free if
is crcated in the register that needs at. The cost of detrailing (restoring a variable 10 an unbound state on
backtracking) is zero for uninitialized variables. For initalized variables it depends suongly on the effec-

tiveness of the compiler in gencrating deterministic code. It is 0 cycles if the vaniable does not have to be

unbound on backuracking, and 4 cycles otherwisc.

¢

3.4. Datafiow analysis

The Aquarius compiler implements a dawaflow analyzer that is based on abstract interpretation. It -
ua;\slaxcs the program (o onc in which predicatc arguments range over a finite set of values. Each of the
values corresponds 10 an infinite sct of values (i.c. a type) in the original program. The analyzer derives a
small set of types—uninitialized, ground (the argument contains no unbound variables), nonvariable (the
argument is not an unbound variable) and recursively dereferenced (the argument is dereferenced, i.c. it is

accessible without pointer chasing, and if it is compound, then all its arguments are recursively derefer-
enced). These types have been chosen carefully to be useful during compilation.

Dataflow analysis by itsell is not enough. The rest of the sysiem must be ablc to usc the information
derived by the analysis. The techniques to exploit dewerminism and specialize unification in the Aquarius
compiler have been developed in tandem with the analyzer for this purpose. In addition, the fine instruc-

tion granularity of the BAM is designed to support these optimizations.

4. Related work

First a survey is given of work that is related w the four principles of the Aquarius compiler. Then

an overvicw is given of Prolog implementations that are intercsung in some way.

33
4.1. Reduce instruction granularity

Tamura ct al {39,65] have done fundamental wotk at IBM Japan in reducing the grain size of com-
piled operations for Prolog. Their compilation is donc in three steps. The first step is to compile Prolog
into WAM. In thc sccond step the intermediate code is translated into a dirccted graph. Each WAM
instruction becomes a subgraph containing simple operations such as case sclection on tags, jumps, assign-
ments, and derefercncing. The graph is optimized through rewrite rulcs. Case sclections based on a lag
valuc, never-sclected cases, redundant lcs'ts. Gasc statements with only onc branch, and unreachablc
insu'uclion's arc pliminalcd. Known valucs are propagated. These rewrites are applied several umes and
the resulting gréph is then translated back into intermediate code. In the third step the intermediate code is
translated into a PL.8 program which is sent to a high-quality PL.8 optimizing compiler [3). Performance
results are given for a few small programs and are quite good. There are several problems in their

approach. They still use the WAM as an intermediate language, and compiling is prohibitively slow

because their system is experimental. Without compile-time hints their performance drops significanily.

4.2. Exploit determinism

Significant improvemcm; over the WAM are possible 10 avoid choice point creation in deterministic
predicates. The WAM indexes on only the first argument and saves all registers in choice points. Turk
{72] describes several optimizations that reduce the time necessary to restore machine staie when back-
tracking. In [74), I describe a compilation scheme that attempts W0 take advantage of the fact that most Pro-
log predicates arc deterministic. Choice point creation and moves to and from choice points are minim-
ized. Clauses are compiled with multiple entry points and predicates are compiled as decision trees. The
techniques used in the Aquarius system are inspired by this work. Carlsson {15) measures the performance
improvement of a scheme for creating choice points in two parts, saving only a small pan of the machine
state first, and postponing saving thc remainder until later in the clause when it can be determined that the
hcad unification and any simplc tests have succeeded. Implemented in the SICStus Prolog sysiem, this

reducces execution time by 7-15% on four large programs.

Recenly there have appeared scveral commercial Prolog-like languages (Trilogy and Turbo Prolog)

35

that gencraie cfficient code for programs annotated with type and detcrminism declarations. In this regard
Trilogy [79] is noteworthy because it gives a logical semantics 10 programs writien in a Pascal-like nota-
tion. Typed predicates that arc annotated as being d::lcrminisu'c are compiled into efficient native code.
The achievement of Trilogy s reassuring; since many 'prcdicatcs in standard Prolog are intended w be exe-
cuted in a deterministic way, with some analysis it should be possible to obtain the same efficiency for

standard Prolog.

Scveral sysiems have generalized the first argument indexing of the WAM. BIM_Prolog [4] can
indcx on any argument when given appropriate declarations. SEPIA [29) incorporates heuristics 10 decide
which predicate arguments are important for deterministic selection. It uses the first “‘indexable’ argu-
ment of a prediCate. If there are several possibilitics it first uses the argument where it is more likely that _

fewer clauscs will be selecied.

. Several papers describe fast implementations of the cut operation. Bowen et al [9] implement cut by
adding a register that holds the address of the most recent choice point before entering the predicate. This
register is updated by each call and execute instruction. Cut is implemented by moving this regis-
ter 10 the WAM's choice point register r(b). Marién and Demoen [46] implement cut in a similar
fashion. These schemes suffc.r from having (o do an additional register move for each procedure call,

unless a different call inswruction is used for predicates with and without cut. The scheme implemented in

the Aquarius compiler does not slow down procedurc calls and does not need an additional register.

43. Specialize unification

Significant improvements over the WAM are possible for unification. Turk [72) describes several
optimizations relatcd 10 compilation of unification, w0 reduce the overhead of explicitly maintaining a
read/write modc bit and remove some superfluous dereferencing and tag checking. Maricn {44] describes a
method 10 compile writc modc unification that uscs a minimal number of memory operations and avoids all
superfluous dercferencing and tag checking. Ia [75], 1 build on this work by introducing a simplificd nota-
tion and extending it for read modce unification, but my scheme suffers from a large code size cxpansion.

The Aquarius system modifics this technique to fimit the code size expansion at a slight exccution ume

cost. Meier {48] has devcloped a technique that generalizes Marién's idca for both read and write mode
and achieves a lincar code size, also with a slight execution time cost This technique is implemented in

thc SEPIA system (29].

Beer 5] has suggested the use of a simplified representation of Prolog variables for which binding is
much faster. He introduces several new tags for this representation, which he calls uninitialized variables ,
and keceps track of them at run-ume. He shows that both dereferencing and trailing are reduced
significandy. This idca was a strong influcnce on the Aquarius compiler. At the Prolog level, logical

semantics are prescrved, but at the code level there is now a coherent integrated use of destructive assign-

-

ment for valucs that fit in a register. My scheme is different from Beer's—it uses the same tag for both
uninitialized ard standard Prolog variables. The analyzer finds uninitialized variables at compile-time and

the compiler determines when it is safe 10 use destructive assignment 10 bind them.

4.4. Dataflow analysis

R. Warren et al [84] have done the most comprehensive work measuring the practicality of global
dataflow analysis in logic programming. Their paper describes two dataflow analyzers: (1) MA3, the MCC
And-parallel Analyzer and At;nomor. and (2) Ms, an expcrimental analysis scheme developed for SB-
Prolog. MA3 derives aliasing and ground types and keeps track of the structure of compound terms, while
Ms derives ground and nonvariable types. The paper concludes that both dataflow analyzers are effective
in deriving types and do not increase compilation time by 00 much. My dauflow analyzer differs from
both MA3 and Ms in thrce ways. First, the analyzer works over a diffesent domain. Second, it avoids
problems with aliased variables by deriving only limited type information for them. Third, it is integrated

into a compiler which has been developed 10 take full advantage of the types it derives.

For corrcciness, it is imperative to consider the effects of vanabie aliasing on dataflow analysis.
Aliasing occurs when (two variables are bound 10 terms that have variables in common. Finding accurate
aliasing information is an important topic in current research {18,36]. However, aliasing complicates the
impicmentation of datwaflow analysis. My analyzer considers only unaliascd variabics as candidatcs for

unbound variablc types. Mcasurements of the analyzer show that unaliased variables occur ofien enough

1o make the analysis worthwhilc. This conscrvative trcaument of aliasing simplifics the implementauon,
since it is nol necessary to explicitly represent and propagate aliasing information. Of coursc, it also

reduces the effcclivencss of the analysis. Thus aliasinf; needs to be studied further.

Maricn ct al [45] have performed an interesting experiment in which several small Prolog predrcates
(recursive list operations) were hand-compiled with several levels of optimization based on informauon
derivable from a dataflow analysis. The analysis was donc by hand at four levels: The first level derives
unbound “-ariablc and ground modcs. The sccond level also denves recursively defined types. The third
level also derives lengths of dereference chai;rs (pointer chains that must be followed at run-time). The
fourth level also derives livencess information for compound datwa structures and is used 1o determine when
they are last x‘JSed so that their memory may be recovered (compile-time garbage collection). Exccution
time mcasurcrﬁems show that each analysis level improves speed over the previous level. This experiment

shows that a simplc analysis can achieve good results on small programs.

4.5. Other implementations

This section gives an overvicw of interesting Prolog implementations that are related o this dissera-
tion in some way. Most existing implementations of Prolog, both on gencral-purpose and special-purposc
machines, are based on the Warren Abstract Machine (WAM) or are derived from it. The general-puipose
and special-purposc approaches are presented separately. The first subsection describes some imponant
software implcmentations and their idcas. The sccond subsection summarizes some imponant architec-

tures and their innovatons.

4.5.1. Implementing Prolog on general-purpose machines

As far as 1 know, the earliecst WAM conipilcr was my PLM compiler, completed and published in
August 1984 [73].1 The compiler was interesting as it was itsell written in Prolog, unlike many later Prolog
compilers. The first commercial implcmentation of the WAM was Quintus Prolog, announced in

November 1984.

$ The PLM compiler is still available from us, but is now obsolcic and not recommended for current research work. Qur
research group expects 10 release soon a complete Profog system based on the Aquanus compifer.

38

Among the highest performance commercial implementatons available today are IBM Prolog,
Quintus Prolog {58], BIM_Prolog [4], and ALS Prolog [2]. There arc threc significant tmplementations of
Prolog availabic today that were developed at rcscarcl.l insututions: SICSwus Prolog {63), SEPIA [29], and
SB-Prolog {83]. All of thesc sysiems are bascd on extensions of the WAM (except possibly 1BM Prolog,
of which I have little information) and compile to WAM-like instructions which are cither emulated on the
target machine or macro-cxpanded to native code. Some of thesc systems (c.g. SB-Prolog and IBM Pro-

log) arc able o compiie special cases of determinisuc programs into efficient code.

4.5.1.1. Taylor’s system

lndcpcm‘icnuy of this research, Andrew Taylor is impicmenting a high performance Prolog compiler
for the MIPS ;;roccssor [67]. The compiler includes a dataflow analyzer that explicidy represents type,
aliasing, dereference chain lengths, and trailing information [66). His preliminary results indicate that it is
of comiparable performance to the compiler presented in this dissertation. Running a set of small bench-

mark programs on the MIPS R2030 processor, the system is 24 times faster than compiled SICStus Prolog

version 0.6 and the code size is similar to that of the KCM.

4.5.1.2. 1BM Prolog

IBM Prolog accepts mode declarations, implements more general indexing than the WAM, does a
limited global analysis (however, it docs not derive any types), and gencrates high performance native

codc. Itis ablc to compile some kinds of deterministic programs with conditional branchcs.

4.5.1.3. SICStus Prolog

SICStus Prolog was developed at the Swedish Institute of Computer Science in Stockholm. A back-
end module was written” for it by Mats Carlsson which generatcs native code avoiding the superfluous
memory rcfcrénccs of a naive WAM translation [14,44]. It is comparabic in performance to Quintus Pro-

log when no built-in predicates arc uscd.

39

4.5.1.4. SB-Prolog

SB-Prolog was developed at SUNY in Stony Bréok. It recognizes a special case of t'.c general tech-
niques for extracung determinism discussed in this dissertation: it recognizes when anthmeltic tests that are
cach other’s opposites appear, and compiles a conditional branch. It also incorporates a simple partial
evaluator which is used for macro cxpansion and a simple dataflow analysis scheme has recently been

developed for it [84].

4.5.2. Implementing Prolog on special-purpose machines

In ;hc past, because the WAM was regarded as the bcst way to implement Prolog, the performance
gap between sp;cial-purposc architectures and general-purpose architectures was large. Much of the effort
in high performance Prolog imnplcmentation was put into architecture design, and in panticular in hardware -
support for thc WAM instructions. This dissertation shows that a better understanding of Prolog execution

narrows the performance gap. The implications of this development for the future of special-purpose

architectures are discussed in the VLSI-BAM paper [34) and summarized in this section.

4.5.2.1. PLM

The first special-purpose Prolog architecture that was built is the PLM (Programmed Logic
Machinc), duc 10 Dobry et al [26-28]. Its design was inspired by a proposal of Tick & Warren [68). The
PLM implecments the WAM in microcodc with a 100 nis clock cycle. It was built on wirc-wrap boards and
ran a few small programs in 1985. Spin-offs of this project included the VLSI-PLM single-chip implemen-

tation {60] and the Xenaologic X-1, a commercial coprocessor for Sun workstations.

Several papers have compared the number of cycles needed by the PLM 1o that of gencral-purpose
architectures. These ratios are valid 1neasurements of the effect of the PLM's architectural suppon for
WAM implementation. Mulder & Tick [51] and Patt & Chen [54] have compared the performance of the
PLM [28), a microcodcd implementation of the WAM, 10 a macro-expanded WAM on the MC68020 pro-
cessor. They find that the MC68020 nceds 3 w0 4 times the number of cycles as the PLM 1o execuie the

WAM. Patt and Chen find that static code size on the MC68020 is about 20 times the PLM.

40

4.5.2.2. SPUR

Boricllo ct al {8] have implemented a macrosexpanded WAM on the SPUR processor (Symbolic
Processing Using RISCs). They find that the SPUR takes about 2.0 times the number of cycles as the PLM
and that static code size is about 14 times the PLM. These numbers include local optimizations imple-

menicd by Chen and Nguyen [20) that improve the original numbcers by about 10%.

4.5.2.3. PSI-I and PIM/p

In the context of the FGCS (Fi‘th Generation Computer System) project, researchers of ICOT (the
Japanese’ Instiwte for New Generation Computer Technology) have designed and built several sequential
and paralle! architectures for logic programming [64,71). One of the more interesting sequential machines
is the PSI-II (Personal Sequential Inference machine II) (52] a microcoded implementation of the WAM
whif:h executes at speeds similar 10 the PLM. The processing efements of the PIM/p (Paralicl inference
Machinc) architccture are cusrently the highest performance sequential logic machines at ICOT. They exe-

cute at two 1o three times the speed of the PLM.

4.52.4. KCM

Benker et al {6) describe a special-purpose Prolog machine, the KCM (Knowledge Crunching
Machinc), which is based on an extended WAM. lts instruction set consists of two parts: a general-purposc
instruction set, and a microcoded Prolog-specific instruction set. It has a cycle time of 80 ns and exccutes
in about 1/3 the number of cycles of the PLM. Its code size is about three times greater. The KCM project
was done together with the development of a Prolog system and environment called SEPIA (see previous

section). About 60 KCM machines were constructed and delivered to the ECRC member companies.

452.5. VLSI-BAM

Holmer et al [34] describe a singlc-chip microprocessor with extensions for Prolog, the VLSI-BAM
(VLSI Berkeley Abstract Machinc). It is a pipelined load-store processor with a cycle ume of 33 ns. It

takes about 1/3 the number of cycles to run programs as the PLM and its code size is about three times

41

greater, results similar o the KCM. However, they are achicved largely through the effort of the compiler.

The goal of thec BAM project is 1o find the minimal cxtensions t0 a general-purpose architecture 1o support

a high performance Prolog implementation. The rationale for the VLSI-BAM architecwure is that existing
general-purposc architectures are designed to exccule imperative languages like C and do not have ade-
quate support f{or Prolog. The compiler described in this dissertation was developed simulancously with

the architecture, and interaction between the two designs has significandy improved both.

Thc BAM project has determined that a small amount of architectural support (5% incrcase in chip
area) gives a large performance boost (50% performance increase) for programs that use Prolog-specific
feawures. The support docs not intcrfere with the general-purpose architecture, so it is possible for futurc
gencral-purpost machines 1o incorporate this support for high performance symbolic computing. The sup-
port is dcsignéd specifically 10 support the logical variable, dynamic typing, unification, and backwacking.

A language that uscs any of these features can benefit from it.

Chapter 3

The Two Representation Languages

1. Introduction

This chapter defines the two languages used by the compiler to represent programs: kernel Prolog, a
simplificd form of Prolog, and the Berkeley Abstract Machine (BAM), a low-level instruction set and cxe-
cution modcl that is close to a standard sequential processor. Kemel Prolog is an intemal language that is
not accessible to the user. BAM is the output language of the compiler.

2. Kernel Prolog

.

The first representation language in the compiler is kemel Prolog, a simplified, canonical form of
Prolog. The syntax of kemel Prolog is given in Figure 3.1. This should be compared with the definition of .
fuli Prolog syntax given in Chapter 2. The control flow of kemel Prolog is simpler, a set of intemal primi-
tives is defincd that arc only used inside the com_pilc:: and a case statement is defined. Kemel Prolog does
not have nested disjunctions, if-then-else, cut, negation, or arithmetic expressions. Each predicate is
represented as a single term (H:-D) containing a head H with distinct vaniable arguments and a body D

that is a single disjunction (an OR choice). Each aliemative of the disjunction is a conjunction, i.c. an

AND sequence of goals. Unifications in the head of the original predicate are represented as explicit

unifications in the arms of the disjunction. Disjunctions, negations, and if-then-clse forms in the original
predicate are converied into dummy predicates. Cut and arithmetic expressions arc convericd into simpler
internal built-in predicatcs.

For example, the predicate:

a(b).
a(X) :2- (0 is X mod 2 => e(X) ; £(X)).

is represented as follows in kemel Profog:

42

43

predicate((H:-D)) :- head(H), disjunction"(D) .
head (H) :- goal_term(H).

disjunction(fail).
disjunction((C:D)} :- conjunction(C), disjunction(D).

conjunction(true).

conjunction{(G,C)) :- goal(G), conjunction(C).
goal (G) :- case_goal (G). T

goal (G} :- internal_goal (G).

goal (G) :- external_goal(G}).

case_go~al {’Scase’ (Name, Ident,CB)) :- test_set(Name, Ident), case_ body(CB).

case_body('_Sélse' (D)) :- diSjunction(D) .
case body((“Stest’ (T,D):CB)} :- test(T), disjunction(D), case_body (CB) .

external goal (G) :- goal_term(G), \+case_goal(G), \+internal_goal (G).

term (T) :- var(T).
term(T) :- goal temrm(T).

goal_term(T) :- nonvar(T), functor(T. _, A), term args(l, A, T).

term args(I, A, _) :- I>A.
term args(I, A, T) :- I=<A, arg(I, T, X), term(X), 11 is I+l, term args(Ii, A, T).

A Predicates defined in tables:

internal _goal(G) :- (Defined in Table 3.1).
test_set (Name, Ident} :- (Definedin Table4.11).
test (T} :~ (Decfined in Tablc 4.11).

% Built-in predicates needed in the definition:
functor (T, F, A) :- (Term T has funcior F and anity A).
arg(Il, T, X) :- (Argumentlof compound term T is X).
var(T) :- (Argument T is an unbound variable).

nonvar (T) :- (Argumemt T is a nonvariabie).

Figure 3.1 ~ Syntax of kemel Prolog

a(X) := (X=b, true
; '8d (X)), true
; fail
).
8d' (X} :- ("Scut_load’ (2), *S$d2"(X, Z). true
; fail
).
*8d2° (X, 2) :- (*‘$mod’ (X.,2,0), *Scut’ (Z), e(X), true
; £(X), true
; fail

) -
All predicates that stant with the character ¢ $* arc creaied intemally. Cut is implemented with the two
built-ins '»* Scut_load’ (X) and ‘Scut’ (X). The arithmetic expression 0 is X mod 2 is
replaced by a call 1o an explicit arithmetic built-in * $mod’ (X,2,0). The if-then-else is replaced by 2
call 1o the dumn\y predicatc ¢ $&° (X). All dummy pr dicates are given uniquc names.

. Kemel Prolog has many advantages over standard Prolog. The scope of variables is not limited to a
single clause, but is extended over the whole predicate. Many optimizations are easier 1o do—for example,
dataflow analysis and determinism extracion. Compilation o BAM code and register allocation are
simplificd.

The following two sections describe the internal predicates of kemel Prolog and how standard Prolog

is convericd 1o kernel Prolog.

2.1. Internal predicates of kernel Prolog

The kemel Prolog form of a program contains predicates that are not pant of standard Prolog and that are

invisible to the user. The intemal predicates always begin with the character 7 $‘. They are of threc

kinds:

(1) Imternal built-in predicates (Tablc 3.1). These arc classified into three categories depending on
their use: (1) implementation of cut, (2) type checking, and (3) arithmetic. They are expanded into
BAM instructions before being output, so thc user never sees them.

(2) A case statement. This control structurc is designed to express deterministic sclection in Prolog.

Chapter 4 describes how the case statement is created. It is wanslated direcdy into conditional

3

Table 3.1 — Intemnal built-ins of kemel Prolog

Built-in Description
‘$cut_load’ (X) Load the choice point register r (b) into X.
’Scut’ (X) Make the choice point pointed 1o by X the new top of the

chaice point stack.

‘Sname_arity’ (X,Na,Ar)

‘Stest’ {X,T)

‘ Sequal’ (X, Y)

Test that X has functor Na and arity Ar. This only docs a
check: it never binds X.

General type-checking predicate that tests whether the type of
X is in the set T, where T < {unbound vanable, nil, non-nil
atom, ncgative integer, nonnegauve inweger, float, cons, struc-
turc}).

Test that X and Y arc ideatical simple terms.

*$add‘ (S1,52,D)
“$sub’ (51,52,D)
“$mul’ (S1,52,D)
*$div’ (51,52,D)
* $mod’ (51,52,D)
“$and’.(S1,52,D)
“Sor’ (§1,52,D)

*$xor’ (S1,52,D)
“$s511° (51,52,D)

| *$sra’ (s1,82,D)

‘Snot’ (S,D)

Ineger addition D « S1+S2.

Integer subtraction D « S1-52.
Integer multiplication D « S1*S2.
Intcger division D « S1/S2.

Intcger remainder D « S1 mod S2.
Bitwise integer “‘and’’ D « S1 A S2.
Bitwise integer “‘or”’ D « S v §2.
Bitwise integer exclusive-or D « S1 @ S2.
Logical left shift D «~ S1<<S2.
Arithmetic right shift D « S1>>82.
Bitwisc integer negation D < not S.

branches in the BAM code and has the following syntax:

*Scase’ (Name, Ident,CaseBody)

where:

CaseBody = (*Stest’ (Test, Code)

4 e e

‘Selse’ (Code)

).

CaseBody is a disjunction of * Stest’ goals, terminated with an * Selse’ goal

any valid kemcl Prolog disjunction.

Code is

Name and Ident identify the test set, and Test isa Pro-

log predicate (Table 4.11). Test is the test that is valid along the branch. For example, for the

hashing function it will be the goal X=a wherc a is the atom or structure uscd in that direction.

“Dummy*’ predicates. Kemcl Prolog does not allow control structurcs (i.e. disjuncuons, if-then-

else, and negation) in clauscs, but only calls. The control structures arc transformed into calls ©

dummy predicates, which are predicates that exist only inside the original predicate. Dummy predi-

cates are created with unique names that arc acrived from the predicatc they are contained in.

o~

40

2.2. Converting standard Prolog to kerne! Prolog

The first stage of compilation is a sequence of five source transformations that converts raw input
clauses into kemel Prolog. An input predicate in standard Prolog is transformed inw a tree thai contains a
kemncl Prolog form of the original predicate and a set of dummy predicates in kernel form created dunng
the transformation. Care is taken (o put the predicate in a form that maximizes opporwnitcs for dctermin-
ism cxtracion. The five transformations arc:

(1) Standard form transformation. Cc;mucn the raw Prolog input 1o a convenient standard notation.

Thi; docs scveral housckeeping tasks: it properly terminates conjunctions (with t rue) and disjunc-

-

tions (with fail), and it converts negation-as-failure into if-then-clsc.

L

(2) Head unraveling. Rcwrite the head of each clause as a new head and a list of unification goals such
that all the arguments of the new head arc distinct vaniables and the head unifications are unification

goals.

(3) Arithmetic transformation. Compilc arithmetic expressions to internal arithmetic built-ins,

(4) Cut transformation. Implement cut by converting all uses of cut and if-then-else o intemal cut
built-ins.

(5) Flattening. At this point all complex control has been converted to disjunctions. Conven nested

disjunctions 0 dummy predicates.

2.2.1. Standard form transformation

The standard form of a clause is intended 1o simplify its syntax so that traversing it is as simple as
possible. The standard form satisfies the rules in Table 3.2. These rules are ignored in the presentation of
most of the examplcs in this disscriation becausc thcy make the examples less readable (although they arc

always satisfied in the compilcr).

2.2.2. Head unraveling

Unravcling the hcad of a clause consists of rewriting it as a new hcad and putting 2 serics of

unification goals in the clausc’s body so that all the head’s argumcents arc distinct variables and all the head

47

Tablc 3.2 - Standard form of a clausc
Rulc Description

1 Conjuncuons and disjuncuons arc right assoclaive.

Conjunctions have no internal t rue and arc terminated by t rue.

Disjunctions have no intemal fail and are terminated by fail.

Single goals inside disjunctions arc considered as conjuncuons (and therefore rule 2 applics).
There 1s no negation (it 1s converted to if-then-clsc).

Arguments of if-then-clse arc considered as conjunctions (and therefore rulc 2 applics).
{A->B) as a goal 1n a conjunction is convericd t0 (A->B;fail).

Thce first argument of all unify goals is a variabic.

0 NN b WN

unificauons are unification goals in the body .,

If this is not donc correcdy then much opp.onunily for later optimization is fost. From the predicaie's
type formula, the compiler knows which head arguments are nonvariable and which head argumcents arc
unbound. Uniﬁéu‘on goals arc created that satisfy two constraints:

(1) Maximize the number of nonvariablc arguments that are unificd together. Put these unifications first
- in the unraveled clause.
(2) Minimize the number of unification goals that contain unbound variables. Put these unifications last
in the unraveled clausc.
For example, consider the clausc:
:=-mode ((a (A, B, C) : -nonvar (A) ,nonvar (B) ,var(C))}.
a(A,A,A) :- atomic(A),

The type declaration says that the first two argumcents arc nonvariables and the third argument is an
unbound variable. Thc argument A appears three times in the head. Therefore there are three ways 0
unravel this clause: (a(X,Y,2) :~X=Y,X=2), (a(X,Y,2):-Y=X,¥Y=2), and (a(X,Y,2):-

z=X, 2=Y). Considering the mode declaration, the head is transformed into the first of the three unraveled
versions:
a(A,B,C) :- A=B, A=C, atomic(A},

The first unification A= is of two nonvariables. The second unification A=C is of a nonvariable and an

unbound variablc. This satisfics both constraints.

48

expression((X is Expr), Code) :- expr(Expr, X, Code, {}).

expr(V, V) ==> {var(V)ij, !.

expr (A, A) ~-> {integer(A)}, !.

expr (A+B, C) --> expr(A, Ta), expr(B, Tb). (’Sadd’(Ta,Tb,C}].
expr (A-B, C) --> expr{A, Ta), expr(B, Tb), {[‘Ssub’(Ta,Tb.C)]}.
expr(A*B, C) -~> expr(A. Ta), expr(B, Tb), [’$mul’(Ta,Tb.C)]}.
expr (A/B, C) --> expr(A, Ta), expr(B, Tb), [‘$div’(Ta,.Tb,C)].

Figurc 3.2 - Compiling an arithmetic expression

2.2.3. Arithmetic transformation

The is 45. predicatc is translated into intemal three-argument arithmetic built-ins (Table 3.1). Fig-
ure 3.2 gives a simplified but fully functional version of the algorithm used w compile expressions. It han- .

dles arbitrary expressions containing the four basic arithmetic operations. For example, the call:
expression(X is 23+ (Y+2), Code)

gives the code:
Code = (’Sadd’ (¥,2,T), *Smul’ (23,T,X)]}

The full algorithm handles all the arithmetic primitives of Table 3.1 and does partal constant folding.

2.2.4. Cut transformation

The cut operation modifies control flow by removing all choice points created since entering the
predicate containing the cut, including the choice point of the predicate itself. Cut is implemented by
means of a source transformation. It requires no support from the architecture except the ability to access

and modify the register r (b), which points to the most recent choice poinL

The cut transformation is given in Figure 3.3. A call wo the buift-in * Scut_load’ (X) is put at
the entry of a predicaic containing a cut. This built-in moves the r (b) regisier w X, which marks the 10p
of the choice point stack on entry to the predicatc. The argument X is passed W the predicate’s body. Each

occurrence of cut in the body is replaced by a call to the built-in * Scut’ (X). This built-in loads r (b)

49

procedure cut_tansformation;
var P’ :listof clausc;
begin .
for each predicate P in the program do begin
if P contains a cut then begin
/* AtthispointP =(Cy,...,C,) (listof clauscs) and C, = (H, - B,) %/
Add thc argument X o allH, in P,
. Replace cach occurrence of ** ™" in P by * Scut”’ (X):
P =P,
Add the predicate P’ to the program;
H := (new head with same functor and arity as all A,);
H’ := ({1 with the addiuonal argument X);
P :=[(H :-"S$cut_load’ (X),H'))
end

end
end;
Figure 3.3 - The cut ransformation

from X, which restores the original top of the choice point stack. For example, consider the predicate:

pP:-q, ! .
P - s.

‘ This is transformed into:

p :- *Scut_load’ (X}, p’ (X).

p'(X) :~q, 'Scut’ (X), r.
‘ p'({X) :~ s.

Compilation then continucs in the usual manner. This method is simplc and efficient. Vanations of it have
been implemented in other Prolog systems {4, 13,45). This method differs from these variations in that the
compiler does not always swre the value of r(b) on the environment stack, but puts it in a predicate

argument X. Itis stored in an environment only if the clause is compiled with an environment.

2.2.5. Flattening

Al this point, all thc complex conurol in a predicate (disjunctions, if-then-else, and negation-as-
failure) has been translaed to disjunctions. Flatiening replaces the disjunctions by calls to dummy predi-

catcs. For cxamplc, the definition:

.A

a(X,Y) :- (bl(X,A) ; b2(X,B),t(B))}, d(Y,A).

Y3

ts transformed into:

a(X.Y) :- 'Sflatten_a/2_1' (X,A), d(Y.A).
Sflatten_a/2_1 (X,A) :- bl(X,A).
*Sflatten_a/2_1‘ (X,A) :- b2(X,B), t(B).

50

Compilation then continues in the usual manner and the dummy predicate * $flatten_a/2_1’ (X,A)

is compiled as in-linc code. The dummy predicaic ts created with a unique name derived from the name of

the original predicate. The argument list of the dummy predicate is the intersection of the set of variables

used inside the disjunction and the set of variables used outside it. In this example the argument list is the

in(crscctionof._lx,Y,A} and (X,A,B),whichis {X,A).

51

3. The Berkeley Abstract Machine (BAM)

The foundation of the efficiency of the compiler is its execution modcl, the BAM. The BAM has
been designed to suppont all compiler optimizations .and 0 make the system easily retargetable to the
VLSI-BAM and gencral-purposc machines. The design evolved by interaction with the development of the
compiler, the architecture design of the VLSI-BAM processor, and the requirement of portability to other
architeciures. The BAM was developed in tandem with the VLSI-BAM processor, but the two instruction
sets are quite different. The VLSI-BAM is constrained by its hardware implementation; the BAM evolved

by looking at the requirements of Prolog and is designed to allow a great deal of low-level optimization.

-

The Aquarius compiler uses a simplc output language and not an existing high-level language such
as C or an existing low-level language such as an assembly for a particular machine. There arc several rea-
sons for this:

OB Choosing an existing language requires choosing representations for tags and datwa structores, and
writing frcquently used Prolog-specific operations as subroutines. This is undesirable for two rea-
sons: First, the VLSI-BAM is one of the target machines and its architecture has a more abstract
representation for tags and Prolog-specific operations than general-purpose processors. Second,
these representations are not necessarily the best for all machines.

(2) Choosing an existing high-level language is unsatisfactory for the VLSI-BAM processor since the

only compiler for it is currently thc Aquarius compiler.

(3) An unpredictable factor is introduced when doing performance evaluauons. The performance on dif-
ferent machines varies depending on the sophistication of the implementation of the existing
tanguage. It is no(always easy w0 determine the performance of the existing language from inspec-

tion of its source code.

The syntax and semantics of the BAM is prescnted at several levels of detail, from a discussion of its
feawres in English down to a decuailed formal specification of its scmantics in Prolog. The body of the
dissenation dcfincs the daa 1ypes of the BAM, gives an overview of its instruction sci, and justifics the

choice of instructions. Appendices B and C give formal specifications of BAM synax and semantics, and

52

Appendix D gives a concise but complete English descrijtion of BAM semantics.

This section has four parts. The first pan presents the data types of the BAM. The second part sum-
marizes the BAM instruction sct. The instruction sct consists of four parts: simple instructions (tagged
load-store architccturc), compicx instructions (Prolog-specific operations), pragmas (embedded informa-
tion to allow beuter translation to a rcal machine), and user instructions (intended 10 allow the complete
run-time systcm to be written in BAM). The third pan justifics the complex instructions. The fourth part
justifies the instructions needed o implement unification by showing how they are constucted from a

unification aigonithm given a few simple assumptons about the architecture.

-

3.1. Data types jn the BAM

.

The data types of the BAM are classified into two groups: the types used during execution and the
types used to represent instructions (Table 3.3). The BAM has four data types that are used during execu-
tion: words, natural numbers, symbolic labels, and mappings. These are denoted as the set of all words W,
the set of natural numbers N, the set of mappings M, and the set of symbolic labels L. A word is a pair
TN where T is the tag and N is the value. A natural number is a nonnegative integer. A mapping (not
shown in Table 3.3) isa corrcspbndencc between a set of objects and their values (which are often words).

A symbolic label marks a position in the program.

Scveral definitions in Table 3.3 require some clarification. Sets are denoied by bold capital leuters,
variables by capital leuters, and constants by lower case letters. Addressing modes are defined recursively,
with a base case consisting of registers and atomic terms, and a recursive case oonsnsung of three parts: tag
insertion (T X), indirection ({X]), and offset ((X+N)). The BAM uses oaly a subset of the infinite set of
addressing modcs defined here. Of all the intemal registers of the BAM, only the argument registers
r (I), the heap pointer r (h), and the backirack pointer r (b) are visible in the instruction set. Appen-
dix B gives a precise definition of instruction syntax including the addressing modes that are actually used.

The meaning of the instructions is defined informally in section 3.2 and formally in Appendix C.

A erm can be of arbitrary size. A term that fits complctely in a register is called simple. All other

terms arc called compound. A register cannok store all possible terms, but it can contain encoded informa-

53

Tablc 3.3 - Types in the BAM
Types used during execution
Namc s Definition

Word W = [T"NITeT, AnawrallN)] v A

Symbolic label L ={fail) v {F/N,1(F/N,I) | atom(F) A naturalN) A natural(l))
Natural numbcr N

Atomic term A = (tatm Vv | atlom(V) v V=(FN) A atom(F) A nawral(N))} v

{v linteger(V) } U {tf1t-v | floaw(V))
Types uscd 10 represent insuructions
Namc Dcfinition

Tag T = (tvar,tlst,tstr,tatmtint,tpos,tneq,tflt]=T,uT,

Pointer tag T, = {tvar,tlst, tscr)

Atomic tag Ta = {tatm tint, tpos,tneq,tflit]

Condition C = (eq,ne,1lts, les,gts,ges)

Equaljty condition C, = {eq,ne)

Arithmetic operation E = {add, sub,mul,div.mod, and, or, xor, sl1l, sra}

Siate registe, R; = (r(h), r(b),r(e), r(hb), r(pc), x(cp), ritmp_cp),r(tr))

Argument segister R, = [r(I) | natwral(l))

Permanent register R, = { p(I) | nawral(l))

Addressingmode X = AUR,UR, U (r(h),r(b)} U (T°XITeT, A XeX} u
(X} 1 XeX] u {x+N | XeX A natural(N) }

Instruction I (The set of BAM instructions is defined in section 3.2 and Appendix B)

tion about a term. The tag of a term stored in a register is the information about the term that is indepen-
dent of the term’s location in memory and can be obuained without doing a memory reference. The value
of a term in a register tells where 1o find the rest of the ierm. A register is panitioned into two fields which

contain the tag and the valuc of a term.

The encoding of information in tags is designed 10 simplify common operations. [t is similar to the
encoding used in the WAM (Figurc 2.5). Atoms are represented as immediate values with a tatm tag.
Intcgers arc represented as themsclves, and are considered to have tint, tneg, or tpos tags for the
conditional branches that look at tags. Unbound variables are represented as pointers widn a tvar lag
that point to themselves or another unbound variable. Suuctures and lists are represented as pointers with
tags tstr or tlst. They point lo a contiguous block of their arguments on the heap. The main functor
and arity of a structurc are storcd there encoded in a single word. The main functor and arity of a list (cons
cell) are not stored since they arc known implicitly.

The BAM defines five mappings to represent and access all data structures used during exccution
(Table 3.4). These mappings arc the Register Sct, the Heap, the Trail, the Code Space, and the Label Map.

An infinitc numbcer of argument and permancnt registers is assumed to exist. Of all registers, only the heap

54

Tablc 3.4 - Run-time data structures of the BAM
Namec Definition

Register Set R, UR; UR,) - W

Heap W-o W

Trail : No W

Codc Space N-o 1

Lzhel Map L-> N

poinier r (h) and the backirack pointer r (b) arc made explicit in the instruction set The others arc
implicit in its execution. Environments and choice points arc represented as register sets that are stored in
registers r(e) and r(b), respectively.’ Prolog terms are stored in registers, on the heap, and on the
trail. Compound terms are stored on the heap as sequences of words in the same manner as is done in the
WAM (F;gum '?;.S). For all types except atoms, the value field of 2 word is a natural number that indexes

into the heap, and therefore points to terms on the heap. For atoms, the value field is the symbolic atom

itsell. The correspondence between tags and Prolog data types is given in Table 3.5.

Table 3.5 — Correspondence of tags with Prolog data types

Tag _ Data type
tvar | Anunbound variablc or a general pointer.
tstr | Pointer to a structure—a compound term with a functor and fixed number of arguments.
tlst | Pointer to a cons ccll—a compound erm consisting of two parts, a head and a wail.
tatm |{ Anatom. '
tpos | A nonncgative integer.
tneg | A negative integer.
tint | Aninteger.
tflt { A floating point number.

 The following descriptions clarify the correspondence between BAM types and Prolog types:

(1) The valuc corresponding (0 a pointer tag is an index into an array of words. This is normally imple-
mented as an address.

(2) The value comresponding to.a tatm tag is a symbol that uniquely identifies an atom or the main
functor of a structurc. It is a Prolog atom or a Prolog structure of the form F/N where F is a Prolog
atom representing the functor and N is 2 nonnegative intcger representing the arity. For correctness,
the assembler and run-Limc System must guaranice an exact correspondence between this symbol and-
the contents of the run-timc symbol tabic, so that the built-ins name/2, functor/3, arg/3,

and =../2 all work comrecly.

55

(3) The valuc corresponding 0a tpos Or tneg lag is a nonnecgative integer that represents the abso-

lute value of the integer represcnted by the word.

-
.

(4) The valuc comesponding 10 2 tint tag is an integer that represents the valuc of the integer

represented by the word.

(5) The value comresponding (03 tflt tag is a floating point number that represents the value of the

number represented by the word.

Nothing is assumed about how these types are, represented on a reai machine. When the BAM is targeted
{0 a real machine then the representation of types on the machine must be defined. The representation of
types Mges with different target machines, different versions of the system, and even different programs.
The lmplemcm_z'nion Manual [31) discusses how to port the BAM. Symbolic labels are pointers o code.

Since mappings can be of any size, they are pointers 10 data stacks in memory. The representation of a
word depends on the encoding used to represent tags on the machine, the word size of the machine, and on
the encoding of Prolog atoms into unique bit pattems. For the VLSI-BAM processor, all four types are

mapped into 32 bits and words consist of 4 bit tags and 28 bit values.

Table 3.6 — Notation for arguments of BAM instructions |
_Argument Type _
X, ¥, 2 Addressing modes, elements of X. Most instructions use a subset of all possible
addressing modes.
L, L1, L2, L3 | Branch destinations, elementsof L.
N A natural number, element of N.
A A Prolog atom, element of A.
Tag A 1ag value, element of T.
Eq An equality condition, element of C,..
Cond A condition, element of C.
Op An arithmetic operation, element of E.
ReglList A list of registers used in choice point management.
Reglist € { (0o, 0.0,) In€N,0;€ (i, no) }.

3.2. Ao overview of the BAM

The BAM uses types and data structures similar 10 the WAM. It has registers and stacks similar to
the WAM and uses a similar execution stratcgy. However, the instruction set is compietely different. The
BAM has a load-store instruction set that is extended with tagged addressing modes and a few primitive

Prolog-specific instructions. A summary of the addressing modes and instructions is given in Tables 3.6

56

through 3.10. All instrucuons usc only a subsct of the addressing modes given in Table 3.3. The instruc-
uon sct includes:
. Simple instructions (Tablc 3.7). These arc simple register-transfer level operations for a tagged

architecture. They include move, push, conditional branch, and arithmetic. These instructions are

used to implement many cases of unification and many built-in predicates.

. Complex instructions (Tablc 3.8). There arc five frequendy-used opcrations defined as single
instructions: dercferencing (following a ?oinlu chain o its end), trailing (saving a variable’s address
so it can be restored on backtracking), general unification (when the compiler cannot simplify the
gc;xctal case), choice point handling (saving and resworing state for backtracking), and environment

handling (crcating and removing local stack framcs).

o Embedded information (Table 3.9). This allows a better ranslation to the assembly language of the
- target machine. This information is expressed in two ways: (1) with pragmas, which resemble
instructions but are not executable, and (2) by extending instructions with additional arguments. An

example of (1) is the tag pragma, which gives the tag of a load or a store, e.g.:

pragma (tag(r(l),tvar)). ¥ Register r(l) contains a tvar tag.
move ({r(1)],.r(0)). % Load register r(0) from register r(l).

By giving the tag at compile-time, this avoids tag masking on a general-purpose processor and

allows the load to be donc in a single cycle. An example of (2) is:

unify(r(0),r(l),?,nonvar, fail). t Register r(l) is nonvariable.

This gives no information about x(0) but says that r(1) is nonvariable. This allows the

unification 1o be done more efficiently because no check has to be done whether r (1) is unbound.

. User instructions (Table 3.10). Thec BAM language is extended with several instructions, registers,
and ags that arc ncver output by the compiler, but arc intcnded for usc only by a BAM assembly
programmer. This allows the non-Prolog component of the run-time system to be writicn completely

in BAM asscmbly. Thesc instructions arc described in Appendix D.

Table 3.7 - Simple instructions

Instruction Meaning
equal(X,Y,L) Branch to L if X and Y are not equal.
move {X, Y) Move X0 Y.
push (X, ¥, N) Push X on stack with stack pointer Y and post-increment N.
Op(X,Y,2) Perform the arithmetic operation Op on X and Y and store the

adda(X,Y,2)

pad (N)

result inZ. Trap if an operand or the result is not integer.
Full-word non-trapping add of a word X and an offsct Y, giving
aword Z.

Add N to the heap pointer.

switch(Tag, X,L1,L2,L3)

test (Eq, Tag,X, L)
hash(T,X,N, L)

-

Threc-way branch; branch 1o L1, L2, L3 depending on whether
theagof X is tvar, Tag, or any other value.

Branch to L if the tag of X is equal or not equal to Tag.

Look up X in a hash table of length N located at L. If X is in
the table then branch to the label in the table, else fall through.
Te {atomic, structure}.

pair(E, L) A hash table entry.- E is either an atom or a pair functor/arity.

jump (Cond, X, Y, L) Jump to L if the arithmetic comparison of X and Y is true. Trap
if an operand is not integer.

Jump (L) Jump unconditionally to L.

label (L) L is a branch destination.

procedure (Name/Arity) Mark the beginning of a procedure.

call (Name/Arity)

jump (Name/Arity)

return
simple call (Name/Arity)

simple_return

Call the procedurc Name/Arity.

Jump to the procedure Name/Arity.

Return from a procedure call.

Non-nestable call used to interface with routines writen in
BAM assembly.

Non-nestable return used for routines written in BAM assembly.

33. Justification of the complex instructions

The execution of Prolog requires five complex operations: dereferencing, trailing, unification, back-

tracking, and environment management. These operations are represented as single instructions in the

BAM. In thc WAM, derefcrencing, trailing, and unification are donc implicitly by many instructons even

when they are not needed. Making them explicit allows the compiler 10 minimize their use as much as pos-

sible by doing them only when they are really needed.

The complex instructions could be expanded into sequences of simple instructions; however, this

expansion is not done at the BAM level but is delayed o the machine level. There are two reasons for this:

)

Somc machincs may implement part or all ofa complcx instruction directly. Expanding it into sim-

ple instructions is thercfore premature since it would make this harder to detect. For example, the

VLSI-BAM processor has suppon for some complex instructions (c.g. dereferencing, trailing, and

unification).

58

Table 3.8 - Complex instructions

Instruction

Meaning

deref (X,Y)
trail (X)

Dereference X and store resultin Y.
Push X on the trail stack if the trail condition is satisfied.

unify(X,Y,Tx,Ty,L)

unify atomic(X,A,L)

Gencral unification of X and Y, branch 10 L if fail. Trailing is
done by this instruction. The extra parameters Tx, Ty € {2,
var, nonvar) give information 10 improve the translation.
They are not nceded for correctness.

Unify X with thc atom A and branch o L if fail. No trailing is
done by this instruction.

allocate (N)
deallocate(N)

Create an environment of sizc N on the local stack.

*Remove the 1op-most environment from the local stack.

choice(1/N,RegList, L)
choice (I/N,RegList, L)

(1<I<N)
choice (N/N,ReglList, fail)

fail

move (r (b) , X)

cut (X)

Create a choice point containing the registers listed in
RegList and set the retry address to L.

Restore the argument registers listed in RegList from the
current choice point, and modify the retry address to L.
Restore the argument registers listed in RegList from the
current choice point, and pop the current choice point from the
choice point stack.

Restore the machine state (except the argument registers) from |
the most recent choice point, restore 10 unbound all variables
on the trail that were bound and trailed since the creation of
this choice point, and transfer control 1o the retry address.
Move the backtrack pointer to X. This must be done at the en-
my of any predicate containing a cut.

Make the choice point pointed 10 by X the new top of the
choice point stack.

Table 3.9 - Embedded information (pragmas)

Instruction

Meaning

pragma (align(X,6N))
pragma (tag (X, Tag))
pragma (push (term(N}))
pragma (push (cons})

pragma (push (structure(N)})
pragma (push (variable))
pragma (hash length(N))

The contents of location X are a multiple of N.

The contents of location X have tag Tag.

A temm of size N is about 10 be created on the heap.

A cons ccll is about 10 be created on the heap.

A structure of arity N is about 10 be created on the heap.
An unbound variable is about to be created on the heap.
A hash wable of length N is about w be created.

(2) For best performance, optimizations

should be done at all levels. The BAM level makes cerain

optimizations easy, e.g. the determinism optimization in Chapter 6. Keeping the complex operations

as single instructions allows them to be optimized directly. For example, if a variable is dercfer-

enced twice then the second dereference can be removed. This is much harder to detect if the

dereference instruction is cxpanded into a foop.

It is best w0 avoid assumptions about the characteristics of the target machine. In the cases where such

assumptions would be useful, the BAM uses pragmas to give the information without compromising the

59
Table 3.10 ~ User instructions
Instruction Mcaning

ord (X, Y) Extract the value of X and move it 1o Y.

val(T,X,Y) Create the word Y from the tag T and the value X.

jump_reg (R) Jump to address stored in register R.

jump_nt (Cond, X, Y, L) Jump 1o L if the full word companison of X and Y is true.
Never wrap.

Op_nt (X,Y,2) Perform the full word arithmetic operation Op (except mulu-
ply and divide) on X and Y and storc the result in Z. Never
wap.

trail_bda (X) Push address X and the value stored there on the trail stack if
.the trail condition is satisficd. This is a special trail instruction
for backtrackable destructive assignment.

machine independence. The translator is free to use or ignore this information.

-

3.4. Justification of the instructions needed for unification

This section constructs the BAM instructions that contain the required instructions and addressing
modes to support unification. It wns out that both simple and complex instructions are necessary 10 sup-
port unification. The instructions are constructed starting from an algorithm for unification and a very gen-
eral intermediate language. The algorithm is decomposed into specialized instructions depending on the
form of the data known at compile-time.

The two starting points arc (1) an aigorithm for unification (a specification of a unification algorithm
is given in Appendix C), and (2) a very. general instruction set. The method proceeds in a top-down
manner by decomposing the unification algorithm into specialized instructions depending on information
about the form of the data known at compile-time (Figure 3.4).

This method is inspired by Kursawe {41] and Holmer (32]. Kursawe applies partial evaluation and
specialization in a top-down manner starting from a2 Prolog program and obtains an insguction set resem-
bling the WAM. Holmer describes several techniques for the automatic design of instruction sets, of which
decomposition is onc. To go beyond the WAM it is necessary 1o make assumptions about the architecture,
a step that Kursawe does not take. The design of the BAM stans with a gencral instruction set that does
make these assumptions.

The choice of what general instruction set 10 start with is impornant. It is not useful 1o stan with an

instruction sct that has 100 litde expressive power, for examplc onc with a limited sct of addressing modcs,

Unification
Algorithm
General Specific
Intermediate lme;’xc:;dliaw
Language . Language
Decomposition

Figure 3.4 - Decomposition of unification

because the required addressing modes are not yet known. Prematurely decomposing complex instructions
into simplec ones sidc-sieps the results.
The following assumptions are made:
(1) The architccture is sequential and of Von Neumann design with multiple registers.
(2) The basic daa element i; a word, which is large enough to contain an address. A regisicr holds one
word.
(3) The instructions have three parts:
) An action. Some sample actions are data movement (move, push), conditional branching
(equal), and general unification (unify). Other imponant actions are multi-way branching
(switch) and several Prolog-specific operations (deref, trail).
] A sct of arguments. Unification acts on two operands, so typically two arguments arc
sufficient.
. A set of destination addresses. Dcpcﬁding on the outcome of the action, control continues at

onc of the destinations. The size of the sct and the meaning of its members depends on the

action. The address of the ncxt instruction in the instruction stream is an implicit member of

61

the sct.
(4) Arguments arc referenced with multiple addressing modes. An infinite set of addressing modes are
dcfined in Table 3.3. The instructions derived in this section will need only finite subscl. For clanty,

Table 3.11 gives some abbreviations uscful for this subset.

Table 3.11 ~ Useful abbreviations

Nouation Mcaning
Disp a positive heap displacement (bounded by the size of a term).
Offset | anonncgative offsct into a structure (bounded by the arity).

Imm an immediate valuc; an atom or a numeric constant.
Var a variable local 10 a clause, i.c. £ (I) orp(J).
Arg denotes Var or {(Var+Offset].

Construction o{ the instruction set proceeds in the following steps. The daw representation has already
been fixed (section 3.1). The existence of two forms of unification (read mode and writc mode) and the
nced for dereferencing and a three-way branch is shown. The instructions required for read mode and
writc mode arc constructed. Finally, the effects of variable representation (in registers or on the environ-

ment) on the instruction sct are discussed.

3.4.1. The existence of read mode and write mode

The compilation of the unification Ty= T2, where T and T3 are two arbiurary terms, is reduced ©
the compilation of V = T wherc at compile-time V is a variable and T is any term. At run-time there are
two valﬁcs of V that result in different actions of the unification aigorithm:

(1) V is an unbound variable, in which case T is construcicd on the fly and bound to V (this is calicd
write mode). To satisfy the standard definition of unification, when T is bound 10 V' a check needs 0
be done (the occur check) that T does not contain V. Following Prolog implementation convention,
this check is ignored for efficiency reasons.

(2) V is a nonvariablc term, in which casc it is checked that the form of V matches T, and the algorithm

is invoked recursively for the torm’s arguments (this is called read mode).

62
3.4.2. The need for dereferencing

Unifying two unbound variablcs makes one point to the other. Doing this several times leads 0
pointer chains, with the common valuc of all the vanables in a single location at the end of the chain. To
get a variable’s valuc, the pointer chain is followed w0 its end, an operation known as dereferencing. It can
be provided as an addressing mode or as a separaic instrucuon. Making it an instruction avoids repeated

dercferencing. Therefore the following instruction is added:

deref (Varl,Var2)

First varl is movedto Var2. Then the tag of var2 ischecked. If it is an unbound variable (tvar)
it reads memory and a loop is entered replacing Var2 by the referenced valuc while itstag is tvar and

its pointer pan is different from Var2. A wwo-argument dercference is chosen over a single-argument

dereference because it allows a more compact representation of write-once variables (Chapter S).

It is assumed in what follows that V and T arc dereferenced when necessary, in particular that both

the trail and unify instructions are always given derefercnced arguments.

3.43. The need for a three-way branch

The code for a unification V = T consists of three parts: (1) a check whether V is an unbound vari-
able or a nonvariable for choosing between write mode and read mode unification, (2) the instructions for

read mode unification, and (3) the instructions for writc mode unification.
The tag field is availablc directly for the check of (1). The check has three possible results: the tag of

V matches a known tag (read mode), the tag is an unbound variable tag (write mode), or the tag is neither

(failure). This implies the following three-way branch:
switch (Tag, Var, Varlbl, Taglbl, Faillbl)

I the tag of Var is tvar (an unbound variabic) then jump to VarLbl. If the 1ag of Var matches
Tag then jump 10 Taglbl. Otherwisc jump to Faillbl. The failurc address is explicit insicad of

implicit (o0 allow the implementation of fast incremental shallow backtracking.

63

3.4.4. Constructing the read mode instructions

The general case of read modc unification is V =T, where at compile-ume V is a vaniable or an
argument of a compound term, and T is a term. The first argument of each instruction is the value of V.

Twao locations arc possiblc for its valuc:

Var V is a variable
{Var+Offset] V is an argument of a compound term

The abbreviation Arg is used to denotc one of these two addressing modes (Table 3.11). _The second
argument and the action are determined by the compile-ume knowledge of T. The possibilities are:
(1) T is panially or wholly known at compile-time. The possible information known about T is:
) Tis 'an unbound variable that has not yet been initialized, e.g. because it is the first occurrence
in the clause. V ismoved directlyto 7.
‘e T is an unbound variable. V is stored to T s location in memory.
e T isatomic. Unification reduces to a check that T and V have the same atomic valuc. If the

values do not match the unification fails.

. T is compound. Unification reduces 10 a check that V has the cormrect functor and arity, fol-
lowed by a unification of its arguments with T's arguments. If V's arguments are loaded into
registers then the unification can be compiled recursively. It follows that arbitranily deep nest-

ing of addressing modcs is not necessary if onc instruction is added:
move ((Var+Offset], Var)

(2) Nothing is known about T at compile-time. The unification of V and T requires a general
uvnification.

The following tablc of primitive instructions summarizes the action and both arguments:

Action Argument V. Argument T Explanation

move Arg Var T is an unbound variable that has not yet
been initialized.

move Arg (Var) T is an unbound varniable that has been
initalized.

equal Arg var T is atomic or compound and its main
functor is not known at compile-ume.

equal Arg Tag "~ Imm T is atomic or compound and its main
functor is known at compile-time.

unify Arg Var Nothing is known about T at compile-
ume.

The instructions equal and unify bothcan fail, so they have a failure address as third argument. The

equal insuuction compares its arguments and jumps 0 FailLbl if they are not equal.

General unification (unify) is the most complex instruction. If the unification fails it jumps o0
Faillbl. Th:‘s'instruction can be implemented using only the other instructions. However, it seems that
onc additional ir;suucuon is useful: 2 muli-way branch with a different destination for each possible tag

. value. If therc arc many possible tags this implies the exisience of a jump table in memory, so that the
instruction must do a memory reference before it can branch. Instead of using this instruction, another
approach is 10 use a multilevel tree based on the three-way branch, Both approaches are viable since gen-
eral unification is used rarely in real programs. According to measurements done by Holmer for several
large programs [33], general unification takes about 4% of the total execution time of the VLSI-PLM ([61)].

More than 95% of these calls have arguments that are not compound terms of the same type and therefore

do not need the recursive algorithm,

3.4.5. Constructing the write mode instructions

The general casc of write mode unification is V =7, where V is known 10 be an unbound variable at
run-time and T is a term. Assume that the term 7T is created on a stack (called the heap) with a minimal
number of move instructions. This assumption forces us to derive the form that a compound term has on

the heap. The following are the possible values of words of a compound tcrm:

Var a variable (assumed initialized)
Tag~ Imm a simple subterm of T
Tag" {r (h) -Disp) a pointer to a compound subterm of T

These arc the source addressing modes for the move insuvuctions. A variable Var docs not have o be

65

dercferenced when it is stored on the heap because its value is not read. The destination of the move

instruction is a location on the heap. This location can be addressed either by a displacement addressing

mode offset from the heap pointer r (h),ie. [r (h:) -Displ, or by an auto-increment addressing mode,

i.e. a push instruction. The BAM uscs the auto-incrcxﬁcnl addressing modc, for thesc reasons:

(1) Preliminary studies using exhaustive search (32] show that with the VLSI-BAM microarchitecture
thc optimal way to creatc structures in writc modce is by means of the idiom “*load register, load
register, double-word push ™, i.e. two registers are loaded and then pushed in a single instruction.

(2) Instruction encoding is compacier, i.c. a push does not need a displacement field.

3) In the VLSI-BAM architecture the push instruction is given a displacement field anyway. This
allows .efficient implementation of uninitalized variables. For example, a cons cell whose cdr is’
uninitialized can be created with a single push that has a displacement of 2.

(4) In the VLSI-BAM architecwre the use of a push instruction allows a cache optimization: when push-
ing a dinty line it is not necessary to flush the line first (17]. This optimization was first done in the
PSI-I1 architecture [S2].

To summarize, to create a term on the heap it is sufficient 0 choose from the following set of three instruc-

tions (where r (h) isthe stack pointer and 1 is the increment):

push (Var, r(h), 1)
push(Tag~Imm, r(h), 1)
push(Tag” (x (h)-Disp), r(h), 1}

It is also neccssaryi 10 bind the term to V. This requires us to consider the form an unbound variable can

take. There are iwo possibilitics:

(1) V has not yet been initialized, e.g. because it is the first occurrence in the clause. The term is moved
directly to V.,

(2) V has been initialized; it points to a location in memory. The term is stored in this location.

These two possibilitics result in the following two instructions:

move (A, Var) store directly to a variable
(variable is not initialized)

move (A, ([Var]) store to variable’s location
(variable is initialized)

The addressing mode of the argument A depends on whether the term is compound or simple, and if it is

simplc, whether it i1s an atom or a variable. This results in three possible valucs for A:

Var a simple term (variable)
Tag™ Imm a simple term (nonvariable)
Tag " r(h) a compound term (on the heap)

In additon to the above instructions, it is also necessary to initialize the first occurrence of a variable. One

-

way to do this fs:

move (tvar” (r (h) -Disp)., Var)
push (Var, r(h), 1)

With these instructions it is possible to create a term of size n on the heap in n pushes, a great improve-
ment over the WAM, which requires n + f -1 stores, f -1 dereference operations, and f ~1 trail checks,

where f is the number of functors in the term. This idea was first proposed by André Marién [44].

3.4.6. Representation of variables

Assume that the execution model represents variables local to a clause in an environment, or stack
frame. There is a dedicated register r (e), called the eavironmen:t pointer, that points to the current
environment in the environment stack. Variables Iocal to a clause are stored either in registers or in an

environment, so the notation Var denotes one of the following two addressing modes:

r(I) a variable in a register
p(J) a variable on the environment stack

where p(J) is implcmenicd as an offsct into the environment, i.e.as [r(e)+J’] for some J’. This
implies that double indircction is possiblc: the addressing mode {var+Offset]) is (p(J)+Offset] .

when Var is an cnvironment variable. The doublc indirection is avoided by including onc instruction:

move (p(J)., r(l))

67

Tablc 3.12 ~ Data movement instructions for unification

Read mode

Write mode

move (Arg, Var)
move (Arg, (Varj}}

eqgual (Arg, Var, F)
equal (Arg, Tag Imm, F)

vnify(Arg, Var, F)

pushévar, r(h), 1)
push(Tag " Imm, r(h), 1)
push (Tag~ (r (h)-Displ), r(h), 1)

move (Varl, Var2)

move (Tag™ Imm, Var)

move (Tag~ (r (h) -Disp), Var)
move (Tag " r (h), Var)

move (Varl, (Var2})
‘move (Tag™Imm, [Var])

move (Tag"r(h), {Var])

Table 3.13 - Control flow and other instrucuons for unification

jump (Lbl)
deref (Varl, Var2)

switch(Tag, Var, Varlbl, Taglbl, F) three-way branch

join read and write mode paths
dereference a pointer chain

3.4.7. Summary of the unification instructions

This section summarizes the BAM instructions necessary to support unification. Tables 3.12 and

3.13 present the instructions. They use only a smail finite subset of the addressing modes of Table 3.3.

The following typical instructions illustrate the meaning of the notation:

move (tatm~axe, r(3))

move([r{(3)+5],r(4))

equal(r(2),tatm-cat,F)

unify(p(2),p(3),F)

switch(tatm,r(3),V,T,F)

Move the atom axe into register r(3).

Move the word located at address r(3)+5 imo
r(4).

Il r£(2) 1is equal to the atom cat then fall
through, elsc jump to {abel F.

Unify the term located in p (2) with the term locat-
ed in p(3). Jump to label F if the unification
fails. '

If r(3)'stagis tvar then jump to label V. If
r(3)’'stag is tatm then jump to label T. Other-
wise, jump to label F.

Chapter 4

Kernel transformations

1. Introduction

Four opuimizing transformations are done on the kemnel Prolog representation of programs: formula

manipulaton, factoring, global dataflow analysis, and determinism extraction. The goal of the transforma-

tions is to reduce a single metric: The total execution time of all unifications in the program. This metric is

approximated by the number of unifications and by the size of the terms being unified. The chapier first

describes_ the representation of types as logical formulas in the compiler. This is followed by a description

of each of the fqur rransformations:

O]

2

3

@

Formula. manipulation. The compiler implements a set of primitive transformations to replace Pro-
log code and types (both are represented as logical formulas) with simpler versions that have identi-
cal semantics. The simplicity of a formula is defined as the number of goals in the formula. These
transformations are.done whenever there is a possibility that the code is 100 complex, i.e. upon read-
ing in a program and after other transformations such as the determinism transformation (see below).
Factoring. This wransformation groups sets of clauses in a predicate together if they have head
unifications in common. This reduces the number of head unifications and shallow backuracking
steps.

Global datafiow analysis. This stage analyzes the program, annotates it with types, and restructures
it. The analyzer uscs abstract interpretation to determine the types of predicate arguments.
Determinism transformation. This stage rewrites the program to make its determinism explicit, i.e.
it replaces shallow backuacking by conditional branching. Many of the other transformations in this
chapter are chosen 1o make this transformation possible more often. The transformation converts the
predicate into a serics of nested case statements. Sometimes this is only parually successful; cenain
branches of the casc staicments may still retain disjunctions (OR choices) that could not be converted

into deterministic code.

69

To improve readability, the cxamples in this chapter are given in standard Prolog notation. It is understood

that they are represented internally in kemel Prolog.

.e

2. Types as logical formulas

Throughout the compiler, type informauon about variables is represented with logical formulas.
During compilation, any information lcamcd is added w0 the formula, and deduction based on the formula
simplifies the gencrated code. 1t is a simple and powerful approach to avoid doing redundant operations at
run-time. For example, if a variable is de.refc':rencod once, then it should never be dereferenced again.

Types in the compiler are defincd as follows:

Definition T: Given a predicate f /n with main functorf and arity n,atypeof f /n is a term
(f(A,.A2, --- ,A,) - Formula) where the A,,A2, --- ,A, are a distinct variables and
Formula isa logical formula (i.c. a Prolog term).

For example, the type (range (A, B,C) :-integer (A) ,var (B) , integer (C)) says that the first
and third arguments of range/3 are integers and the second argument is an unbound variable. The com-
piler recognizes all Prolog type-checking predicates in the type formula. Appendix A gives a table of the
types recognized by the compiler. In addition to these types, several other types are recognized that do not
correspond to Prolog predicaids. These types inroduce distinctions between objects that depend on the
implementation and are indistinguishable in the language, for example, the difference between an integer
and a dereferenced integer, and the difference between an unbound variable that is not aliased o any other

and an unbound variablc that may be aliased. The following types are recognized that do not exist as Pro-

log predicates: .
Intcrmal Type Description

uninit (X) X is an uninitialized memory argument.

uninit_mem(X) | Xisan uninitialized memory argument.

uninit_reg (X) | X isan uninitialized register argument.

unbound (X) X is of onc of the types uninit_mem(X),
uninit_reg(X),0r var(X).

deref (X) X is dereferenced, i.c. it is accessible without follow-
ing any pointcrs.

rderef (X) X is recursively dereferenced, i. it is dereferenced,
and if it is compound then all its arguments arc recur-

. sively dereferenced.

70

These types should not be given by the programmer since incorrect code or a significant loss of
cfficiency may result if they are used incorrectly. For example, declaring an argument of a predicatc to be
of uninitialized register type, 1.c. the argument is an output that is passed in a register, may cause a large
increase in suack space used by the program if that predicate is the last goal in a clause, because last cail
optimizaton is not possible in that instance. The safe approach is o leave the usc of these types up to the
compilcr.

The usc of logica!l formulas to hold information during compilation can be conurasted with the use of
a symbol tabic in a2 compiler for an imperative language.t Representing types as logical formulas has two
advamag.cs over a symbol table: (1) They are more flexible duning compiler development. The kind of
information sto_r'cd in a symbol table must be known when the compiler is designed. Formulas can contain
kinds of information that are not known during the compiler’s design. (2) They lead themselves to power-
ful .symbolic manipulation such as deduction. Improving the deductive abilities leads w better code
without having 10 change any other part of the compiler. The disadvantage of this representation is that its
manipulation is slow. Futurc versions of the compiler could use a representation that is faster in the com-
mon cascs.

Typc formulas are used in the f.ollowing ways in the compiler:

(1) Representing typc information known about a set of variables. For example, the formula
(var (X),atom(Y)) means that X is an unbound variable and Y is an atom. The user manual
(Appendix A) lists the types recognized by the compiler.

(2) Using a primitive form of deduction to simplify the generated code. For example, assume the for-
mualais (list (X),var(Y),deref(Z),...). To compile a run-time check that X is a non-
variable, the compiler first checks whether this formula implies nonvar (X) . This is true because

list (X) imp'ics nonvar (X) ,so no run-timc check is necessary.

(3) Updating the type formula when new information is lcarncd. Afier compiling a goal, the formula is

updated o represent the new knowledge that is gained. For example, after executing the arithmetc

+ Of coursc, both the assembler and the run-ume sysiem use suandard symbol tabies.

71

expression X is A+B it is known that X is an integer, so the formula is extended with

integer (X) .
In most cases, logical formulas are immutable, e.g. wh;:n a vanable X is known 10 be a list (represented as
list (X}), that fact remains yue forever. This is not true for all types. The types used 10 denote unbound
variables (e.g. var (X) and uninit (X)) become false as a result of an instanuation. This is also true

of the standard order comparisons (c.g. X@<Y, X@>Y, and so forth) and the types deref (X) and

rderef (X). The compiler is careful 1o take this into account when updating the type formula.

Tablc 4.1 — Primitives to manipulate logical formulas and Prolog formulas
Pnmiuve Description
F, implies F, Implication: Succeeds if it can determine that there
L does not exist an assignment to vanables in F; and
F 5 that causes both F; and not(F,) to succeed.
£ o := simplify(F) F, is a simplification of F .
F 1 := subsume(F , F,) F, is a simplification of £, given that £ is uue.
F 1 := update_formula(F ,F,) | F,is the result of removing information conuadicted
by £ from £, and adding F t0 F .

3. Formula manipulation

The compiler implements a set of primitive ransformations to manipulate formulas. They are sum-
marized in Tabie 4.1, where £, F, and £, are logical formulas. Each of these primitives has two versions:
a pure logical and a Prolog version. The logical version is used to manipulate types (see previous section).
It assumes the formula has a purely logical meaning, i.c. that the opcrational concepts of cxecution order of
goals, number of solutions, and backtracking behavior are not important The Prolog version is used 10

manipulate kemel Prolog code. It assumes the formula must keep Prolog’s operational semantics.

Implication is implemented to work well with most combinations of Prolog predicates that are used

in type declarations. The following examples all retum with success:

Table 4.2 ~ Examples of simplification

-

Formula Simplified formula Comments
logical Prolog:
(true ; true) true (true ; true) | The Prolog version is unchanged
) unless the compiler option
same_number_solutions is
disabled.

(p,fail) fail (p,fail) The Prolog version is unchanged
unless the compifer can deduce that
p has no sidc effects (read / writc

or assert / retract).
(‘yp : Q) (p : Q) * (Lp) Cut is logically identical 0 true,

but it must be retained since it
modifies backtrack behavior in the
entire clause oomaining it

atom(X) implies nonvar (X)

X<Y implies integer (X)

X<S impliecs X<10

uninit (X) implies deref (X)
functor (X, _, 0) implies atomic (X)
+ (X==a; X==b) implies atom (X)

Simplification is donc on standard Prolog, on keme! Prolog, and on type formulas. Table 4.2 gives some
examples to illustrate the difference between logical and Prolog semantics. A single function simpli{y(F)
handles both logical and Prolog semantics (Figure 4.1). For conciseness, the definition of simplify(F) uses

the compound terms (A, B), (A;B), (A->B),and (\+(A)) both as selectors (to choose the branch

of the case statement) and constructors (in the calls to simp_step(F)). Tables 4.3 and 4.4 define pant of the

definition of simp_step(F'). the primitive simplification step. The complete definition contains about 50

rules. The functions subsume(F , F1) and update_formula(F , F ;) are implemented in a similar way.

function simplify(F : formula) : formula;

begin

case [* decompose the formula */

F = (A:B)

: return simp_step((simplify(a), simplify(8))). /* and */
: return simp_step((simplify(A): simplify(B))). /* or */

F = (A->B) : return simp_sicp((simplify(R)->simplify(B))) /* implics */

F =\+4+(A)
otherwise

end
end,

: retarn simp_step(F);

: return simp_step(\+ (simplify(R))). /* negation */

Figure 4.1 - Simplification of a formula

73

Table 4.3 - Simplification rules (pan of simp_step’s definition)
Rule Condition to apply this rule
Input formula Output formula :
{(true,R) A ({none)
(A, true) A {(none) : .
(true:A) true semantics(prolog) A no_side_effects(A) A diff_sol A no_bind(A
{true;A) true semantics(logical)
{A,fail) fail semantics(prolog) A no_side_effects(A)
(A, fail) fail semantics(logical)
(fail,A) fail (none)
(fail; A; A (none)
(A->true;B) A semantics(prolog) A succeeds(A) A deterministic(A)
(A->true;B) A semantics(logical) A succeeds(A)
A fail semantics(prolog) A fails(A) A no_sidc_effects(A)
A fail semantics(logical) A fails(A)
Table 4.4 - The conditions for applying simplification rules
Gondition Description
semantics(S) Simplify according 10 secmantics S where S € (prolog.logical).
no_side_effects(A) | Formula A does not have side effects when executed.
deerministc(A) Formulia A gives only one solution when executed.
. no_bind(A) Formula A does not bind any variables.
diff_sol Relax semantics of Prolog to allow a different number of solutions.
succeeds(A) Formula A always succeeds when executed.
fails(A) Formula A always fails when executed.

4. Factoring

Factoring is based on the operation of finding the most-specific-generalization, or MSG, of two
terms. Factoring collects groups of clauses whose heads can be combined in nontrivial fashion using the
MSG operation. The advantage of factoring is that it reduces thc number of unifications performed duning
execution. Figurc 4.2 defines the MSG in terms of unification. Given two texins T, and T, consider the
set M of all terms that unify with both of them. The MSG of T, and T is the unique element T, of M
which unified with any other element U of M gives T, . Intuitively, this says that T, contains the maximal

common information of Ty and T'5.

The MSG (also called anti-unification) is the dual operation to unification. Given two terms,
unification finds a (crm that is a more instanualicd casc of cach of the two, i.e. the most gencral common
instance of the two. The MSG is a term of which each of the two is a morc instantiated casc. For exampic,
consider the two compound terms s (A, %x,C) and s (A,B,y). Unifying these two terms results in

s(A,x,y). The MSG of thc two terms is s (A, B, C). Unification may fail, i.c. thc most gencral unificr

74

function msg(7, , T2 : term) : worm;

var
M : setof term;
T.. .U :term;

begin
M = { T | T unifics with T and T unifies with T };
FindTneM suchthat VU € M cunify(U , T,) = Ta:
return 7,

end;

Figurc 4.2 - The most specific generalization

is the empty set. Finding the MSG never fails. In the worst case, the generalization of the two terms is an
unbound ;aﬁabic, which represents the set of all terms. For example, consider the 1wo atomic terms x
and y. Unifyiqé these two results in failure, whereas the MSG is an unbound vanable.

Another way of viewing the MSG operation is as an approximation 10 the union of two sets. Every
term corresponds to a set by instantiating the variables in the term to all possible ground values. In general,
the union of 1wo of thesc sets does not correspond 1o any term. The MSG finds the smallest superset of the
union that is represented by a term. A similar propernty holds of unification: it finds the largest subset of the
intersection that is represémcd by aterm.

For all arguments of the predicate, the factoring transformation finds the largest contiguous set of
clauses whosc MSG is 2 compound term. This set is used w define a dummy predicate and the definition of
the original predicate is modified 10 call thc dummy predicaic. The algorithm is given in Figurc 4.3. Asan

example of factoring, consider the predicate:

h({xi_1).
h(lyi_1).
h({l}.

The lists in the heads of the first two clauses are combined: the MSG of {x1_} and (yl_Jlis [_I_J.

The result after factoring is:

75

procedure factoring:
var
M :term;
C. .C’, : clausc;
%, Px: list of clausc;
a.i,p,q :integer,
begin
for cach predicate P in the program do begin
/* Atthispoint P = [Cy,C3a, ..., Ca) (Qistof n clauses) */
/* and C; = (#, :- B;) (Each clause has head H, and body B,) */
for a := 1 to anty(P) do begin-
Partition P such that each coatiguous groupn= (G, ,CparCq) (1SpSqsn)
satisfies exaclly one of the two propertics:

- 1. Either p =q (% contains only onc clausc‘). or
2. n is the largest group for which M = MSG (argument a of H,) is compound.
(=p

.

« for cach contiguous group ntdo if p <g then begin
f* Create the dummy predicate Py */
for i := p to q do begin
Ci=GCi;
. Remove M from H°;;
Add all vaniables in M as arguments o H ;
end;
Py= [C’p v eeey C'q I
I* Create the call 10 the dummy predicate */
H := (new head with same functor and arity as P and M in argument a);
H x == (new head with same functor and arity as P);
for i i= 1 toanity(P)doif i #a then begin
Make argument i of H and /{, identical
end;
Replace x in P by the single clause Cx = (H - Hy)
end
end
end
end;

Figure 4.3 — The factoring transformation

h({AIB]}) :- h’ (B, A}.
hi{l)).

h’ (B, x).
h’ (B, y).

Factoring reduces the numbcr of unifications done at run-time in two ways: (1) compound terms arc only
created once during predicate exccution, instead of being repeated for cach clause (¢.g. the list [AIB] in

the exampic), and (2) the arguments of compound 1crms become predicaie arguments, which morc ofien

allows the determinism transformauon 10 convent shallow backtracking into deterministic selection (e.g. the
value of the sccond arpument of the predicatc h’ determines the correct clause direcly without any

superfluous unifications). The following heunistic is used:

Factoring Heuristic: For cach argument in a predicate, factor the largest set of contiguous
clauses whose MSG is a compound term. Repeat this operation until no more factoring is pos-
sible.

This heuristic needs refinement in some cascs to avoid superfluous choice point creation which may slow
down cxecution. The savings of multiple structure creation (how many fewer unifications are done) should

be weighed against how much deterministc selection is possible in the dummy predicates.

If ;l\c compiler option same_order_solutions is enabled (the default) then the operational
semantics is thal of standard Prolog, i.¢. the order of solutions rewumed on backtracking is identcal to that
of standard Prolog. Disabling the option relaxes the semantics of standard Prolog by also factoring non-
contiguous clauses whose MSG is a compound term. This may change the ordering of solutions on back-

tracking. This option allows experimentation with variations of standard Prolog semantics.

To illustrate how factoring can reduce the amount of shallow backtracking, consider the following predi-

cate, which is part of a definiton of quicksort:

partition({Y|L]),X, [YIL1]},L2} :- Y=<X, partition(L,X,L1l,L2).
partition([YIL), X,L1,({YIL2}) :- ¥Y>X, partition(L,X,L1,L2).
partition({)._. (},[)).

The first argument of the first two clauses can be factored, resulting in:

parcition({YIL),X,L1,L2) :- partition’(L,X,L1,12,Y).
partition([)._.1).1)).

partition’ (L. X, [Y{L1],L2,Y) :- Y=<X, partition(L,X,Ll,L2).
partition’ (L,X,L1, {Y|L2}),Y) :- ¥Y>X, partition(L,6X,L1,L2).

(In the compound term (Y (L] the rightmost vaniablc L is kept in the samc argument position and the
other variable Y s put at the end of the goal)) The ransformation results in only a single unification of
(Y1L) instead of two in the original definition. In the dummy predicaic the compansons Y=<X and
Y>X usc arguments of the predicate, not arguments of a compound term. This makes it possiblc o compile

partition/4 with a conditional branch instead of with shallow backuacking.

77

5. Globa!l dataflow analysis

It is difficult to obtain information about a program by executing it in its original form, since the
range of possibie behaviors is potenually infinite, and even simple properucs of programs may be undecid-
able. To get around this problem, the idea of abstract interpretation is o transform the program into a
simpler form which allows practical analysis. Afier the analysts the inverse ransformation gives informa-
uon about the oniginal program. The fundamcnuals of a general methad based on this approach and its
mathcmatical underpinning are explained by Kildall (37] and Cousot & Cousot {23). Marriou and Sonder-
gaard [47] give a lucid explanation of the basic ideas. This method has been studied extensively and
developed into a practical ool for Prolog (18, 21,24,25,49,50,53,66.67,76,84].

The four ‘secu'ons that follow summarize the relevant paris of the theory of abstract interpretation,
present my application of it 1o Prolog, describe the analysis algorithm in dewail, and discuss the integration .
of the algorithm into the body of the compiler. In Chapter 7 an evaluation is done of the effectiveness of

the algorithm.

5.1. The theory of abstract interpretation

The transformed prograﬁx should mimic the original faithfully. This is made rigorous by introducing
the concept of descriptions of dala objects. Let E be the powerset, i.e. the set of all subsets, of a set of data
objects, and D be a paruiatly ordered set of descriptions. Then an abstract interpretation is defined by the
following conditions:

(1) Ep:E—-E, Dp:D—D

2) a:E-D,y:D->E

(3) «aandyare monotonic.

@) VdeD:d=a(y{d))

(5) VeeE :c¢c <y(a(e))

(6) VdeD :Ep(y(d)) <y(Dp(d))

.r‘-

78

The operator Ep in the first condition describes a single step of the cxecution of the program P as a state

transformation. Symbolic execution of the transformed program is described by the operator Dp. Except

-
)

for the conditions given above, the choice of Ep and Dp is completely free. The choice is guided by
several trade-offs. for example: (1) speed versus precis:ion of the analysis, (2) complexity versus confidence
in the correciness of the analysis.

As an example of £p (from Cousot & Cousot {23}). consider a program in an imperative language
represented as a graph where cach node is 2 simple statement such as an assignment or a conditional. Let
an environment be dcfined as a corrcspondcnce’belwccn each variable in the program and a possible value.
Then for"each edge of the graph a set of possible environments (called a context) is given. Initially they are
all unknown. An applicaton of £, transforms all contexts to their new values reached after one execution
step. |

For Prolog, a natral choice is to identify Ep with the standard operator Tp :2%—2% which
describcs its procedural semantics. In this case E is 2%, where Bp is the Herbrand universe of the program
P, i.e. the set of all ground goalst that can be constructed using predicates, functors, and constants of the
program. Tp does a single *“‘forward chaining™ step to find the conclusions that can be inferred from a
given sei of ground goals. For‘mally, Tpmapsany/ CBp intoTp(J)={A€Bp:A - A,,--- Ajisa
ground instance of aclausc in P and {A,,- - - ,A. } gl). In other words, an application of 7 transforms
a subset of Bp into a ncw subsct containing the new goals inferred from the program’s clauses given the
old goals. The meaning of a program P 1is dcfined as Ifp(7p) (where Ifp = the least fixpoint opcrator).
This is the set of all ground goals that can be derived from the program clauses. For example, consider the

following program:

nat (0) .
nat(s(X)) :- nat(X).

which states that nat (X) is truc if X is zero or X is the successor of a natural number. The program’s

meaning is:

1 These are calicd ““atom+”" in mathematical logic. To avoid confusion with the aom data type in Prolog, this disscna-
ton uses the Prolog terminology .

79

{ nat (0), nat(s(0)), nat(s(s(0))). nat(s(s{(s(0})))., ...}
which represents the set of natural numbers. s

The second and third conditions introduce the operators a (the abstraction function) and v (the con-
cretization function). The operator a: £ - D determines the description corresponding 10 a particular set
of data objects. The operator y:D — E determines the set of data objects corresponding to a particular
description.

The fourth and fifth conditions ensué that @ and y behave correctly with respect to each other. Con-
dition foﬁr means that in going from descriptions 1o data objects and back no information is lost. Condition
five means Lh#l in going from a data object to a description and back that the resulting set of data objects
includes the original data object. The sixth condition is known as the safeness criterion. It is necessary 0
ensure that the symbolic execution (through Dp) mimics the execution of P accurately (through £p). In -
othtr words, the abstract interpretation gives descriptions that include all the dawa abjects that the execution
of the original program gives.

To illuswrate what the conditions mean consider the abstract domain of signs of real numbers. The
data objects are real numbers. Let there be three possible signs for numbers: + (positive), — (negative), and
0 (zero). The set of descriptions D describes the possible states of a set of reals, so it contains all combina-

tions of the three signs:

D ={ {}.{0}. (+}. (=), (+.-), (-, 0}, (+, 0}, (+.-. 0} }

According to the second condition & maps a set of reals onto its signs, and Y maps a set of signs oato a set

of reals. For examplc:
a({-5)h=(-)
a({-3,5])=1{+.-]

Y({+])=(re R,r>0]}

The fourth condition says that going from 2 sign to a sct of rcals and back will give the same sign. The

fifth condition says that going from a sct of reals 10 a sign and back will give a sct of reals that includes the

80

original seL. So for cxamplc:

(+} =a(v({+)))

since Y({+))= the sct of positive reals, whose sign is {+}, and:

(5} cy(a({5})
since a({5))={+), and y({+)) is the sct of positive reals, which contains 5. In order to explain condi-
tion six, consider the equation 27x37. Here Ep is multiplication of reals, and Dp is the corresponding
operation in the abstract domain of signs: The multiplication corresponds to {+) x {+] in the abstract
domain._;Thc result of the abstract multiplication should be {+], since 27x37 = 999, which is positive.

Condition six is a formalization of this requirement.

€

Dataflow analysis is done by transforming the original program over the domain £ described by Ep
10 2 new version over the domain D described by Dp. Then Y(lfp(Dp)) (lfp = the least fixpoint operator)
givc‘s a conservative estimate of the required information. Much work has been done in discovering useful

domains D for particular applications and efficient algorithms for finding fixpoints of Dp [10, 53).

5.2. A practical application of abstract interpretation to Profog

The implementation of abstract interpretation presented in this dissertation uses a very different £p
from the one suggested in the previous section by the formal definition of Prolog's procedural semantics.
The choice of Ep uscd in thc Aquarius compilér closely follows execution on a machinc. Consider a pro-
gram with n predicates P;. The data objects are the n-wples (T, ,T,, --- ,7,) where each T; is a funcior
of same name and arity as 7, and the arguments of 7; are terms constructed using data functors and atomic
terms in the program and possibly coniaining unbound variables. E is the powe:iet of these data objects.
The descriptions arc the n-tuples (Ly,L2, - -+ ,L,) where each L; is a functor of same name and arity as
P; and the arguments of L; arc constrained 10 be on a given finite lattice. D is the sct of these descriptions.
A lattice is a parually ordered sct in which every fnoncmpty subsct has a least upper bound (denoted as the
{ub) and a greacest tower bound {(dcnoted as the glb). Each of the elemeats of the lattice corresponds to a
sct of possible valucs in the original program. This lattice is called an argument lattice, since it is used 10

represent the possible values of a predicate argument. A predicate latiice (such as L,) is the Cancsian

81

product of the lattices of all the predicate’s arguments.

The operator £, that mirrors exccution of the program corresponds to a single resolution step. ltisa

N

transformation of a set of data objects and an exccution state 10 another set of data objects and a ncw exe-
cution state, following Prolog’s depth-first execution semantics, that is, its left-to-nght execution of goals
in a clausc, and its top-10-bottom selection of clauses in a predicate. The operator Dp that mirrors execu-

tion of thc program over the descriptions is similar, except that the arguments arc lattice values.

If the conditions of abstract interpretation hold, then the least fixpoint of the symbolic execution over
the lauice 1s a conservalive approximation 1o the global information, in other words the set of valucs that a

variable can have during execution is a subset of what is denived in the analysis.

The threg sections that follow describe the lattice used by the analysis algoritnm. The first section
introduces and defines the lattice elements and the types with which they correspond. The next section
gives an exampic to show how to derive the types. The last section summarizes the properties of the types

that are uscd by the algonthm.

5.2.1. The program lattice

Dataflow analysis for Prolog differs from that of statically typed languages because it does not check

types, but it infers them. The most important information that can be deduced about an argument is
-whether it is used as an input or an output argument of a predicate, i.c. the mode of the argument. After the
modc is determined, it is uscful to find its 1ype, i.c. the sct of values that it can have. The remainder of this
chapter refers only (o the type of an argument, in the assumption that this implizs the mode as well. 1 have
experimented with four lauices of varying complexity in the analyzer, and the latice that is currently

implemented has been chosen 1o give the most information while keeping analysis fast.

During the analysis the algorithm maintains two lattices for each predicatc in the program. These
lattices correspond 10 the entry and exir types of the predicate, i.c. the valuc of the variable valid upon
entering the predicatc and upon successful exit from the predicatc. The lattice describing the entirc pro-

gram is the Canesian product of the predicatc lattices.

_any value is possible

-
any“ .
/ \ _ recursively dereferenced
>
nonvar rderef
/ \ / \ _ uninitialized
ground nonvar-+ unini{‘_/
rderef

ground+
rderef

__ the empty set of values
’ P S (unreachable argument)
impossible

Figurc 4.4 — The argument latticc

. The argument lattice of the entry and exit types in the current analyzer is shown in Figure 44, In this
lattice, any (the top element) denotes the set of all values, impossible (the bouom element) denotes
the empty set (i.c. this predicatc is unrcachable during execution), uninit denotes the set of uninitial-
ized variablcs (unbound variables that are not aliased; see Chapter 2), ground denotes the set of values
that are ground (i.c. the term c.onlains no unbound variables). nonvar denotes the set of nonvariables,
rderef denotcs the set of values that are recursively dereferenced (i.c. the term is dercferenced, which
mcans that it is accessiblc without any pointer chasing, and if it is compound ther all its arguments arc

recursively dereferenced), and ground+rderef denotes the sct of values that are both ground and

recursively derefcrenced.

§.2.2. An example of generating an uninitialized variable type

This section gives a simple example of the generation of uninitialized variable types 1o give an idca
of what abstract inicrpretation docs and 1o illustratc the argument lattice. Uninitalized variablcs arc gen-

erated whenever the analyzer deduces that an unbound variable cannot be aliased 1o another. For examplc,

consider the following program fragment:

pred{...) :~ ..., goal(2}., ...

goal (X) :- X=s(Y), goal(Y}. :
If Z ts the first occurrence of that variable in the pred(...) clausc then it is considered a candidate
uninitialized variable. This is possible because it is certainly not aliased to any other vanable. In the
definition of goal (X), if X is uninitalized then the argument Y of the strucwire s (Y) may be con-
sidered uninitialized as well. This Y is passed on as an argument t0 goal (Y). Thereforc both calls of
goal (X) are with an uninitialized argument, so it is consistent 10 give the argument X an uninitalized
variable type.

It may happen that clscwhcrg in the program there is a call of goal (X) where X is not uninitial-

ized (for example it may be a compound term, or it may be aliased). In that case, the assumption that X is
uninitialized is invalidated. This may invalidate assumptions about other arguments of other predicates, so -

it i$ necessary to propagate this information. For comrectness, it is necessary to itcrate until the least

fixpoint is reached. At that point symbolic execution of the program does not-change any of the derived

types.
5.2.3. Properties of the latticé elements

The examplc given above already gives an inkling of the relevant properties of ground, uninitialized,
and recursively dereferenced variables that simplify the analysis. Here is a more complete list of these pro-
pertics:

. The property of being ground, uninitialized, or recursively dereferenced propagates through explicit
unifications. The propagation is bidirectional:

(1) If X is ground, uninitialized, or recursively dereferenced, then after executing an explicit
unification with a compound term (¢.g. X=s (A, B)), all of its variables (e.g. A and B) are
ground, all of the new variables (c.g. A and B) arc uninitialized, or all of the new variables are
recursively dercferenced.

(2) In the other dircction, if all the variables in the compound term are ground, then X is ground.

If all the vaniables are vecursively dereferenced, then X is recursively dereferenced if it was

previously uninitialized.
. The propenty of being ground is independent of aliasing. For example, if X is ground, then it remains
ground aficr exccuting the unification X=Y. This is not true of recursively dereferenced or uninitial-

1zed vanablcs.

. An umnitialized variable is not aliased to any other variable. Lauice calculations for uninitialized

variablcs do not affect each other.

53. Implementation of the analysis algorithm

Previous sections have introduced the ideas underlying the algorithm, the program lattice used by the
algorithm, an cxample of how types are derived, and the properties of the lattice elements. This section)
gives a more complete explanation of the algorithm. The presentation siarts with an overview of the data

representation. It then describes the algorithm, and finally it gives a detailed example of analysis.

Table 4.5 — The components of the variable set VS

Name Description

S The set of variables encountcred so far in the clause. This set
is important because any variable encountered in a goal that is
not in this set is known not to be aliased 10 any other, i.e. itisa
new variable, and therefore it is both uninitialized and derefer-
enced.
G The set of variables that are ground. These variables arc
bound 10 terms that contain no unbound variables.
N The set of variables bound 10 a nonvariable term. This setis a
supersct of G.
U The sct of variables that arc uninitialized. A variable becomes
uninitialized if it is unbound and knowa not © be aliased w0
any other variable. The symbolic execution enforces this con-
straint. This set is disjoint with N,
D The set of variables that are recursively dereferenced. A vari-
able is recursively dereferenced if it is bound 10 a term that is
dereferenced, i.c. it is accessible without any pointer chasing,
and if it is compound then all its arguments are recurssively
dereferenced. This set is a supersct of U.

53.1. Data representation

During analysis the types arc represeated in two ways:

(1) As lattice elements. For cach predicate, there arce two structures containing a latice element in cach

85

argument. These structures represent the entry and exit types of the predicate. For example, the

predicate concat/3 has two structures which could have the values:

entry: concat (any,ground,uninit)
exit: concat (ground, ground, any)

This says that upon entenng concat/3 the sccond argument is ground and the third argument is

uninitalized. When the predicate is exited the first two arguments are ground.

(2) As sets of variables. Typc information can also bc stored as a set for each type that contains the

variables of that type.

These two different representations each have their advantages. The lattice representation makes it easy 0
calculate the lub (least upper bound). The variable set representation makes it easy to symbolically execute .
a clause, i.e. 16 propagate and update information about variables’ types through the clause. Functions are
provided 10 convert between the two representations (Figure 4.7). For the lattice in Figure 4.4, there are
five sets of variables which are updated during the symbolic execution of a predicaie. Conceptually they

are part of a S-uple VS = (S, G, N, U, D) that holds the current type information (Table 4.5).
§3.2. Evolution of the analyzer

The current analyzer was preceded by threc simpler versions. The lautice of the first Myur
represented only entry types and had three elements: impossible, uninit,and any. The second
analyzcr added the ground type in the entry lattice and an exit lauice of the same suucturc. The third
analyzer added the rderef type to these lattices. The current (fourth) analyzer added the nonvar
type. Despite not using a representation for variable ahasmg the third and fourth analyzers are able
derive many nontrivial rderef and nonvar types. The added types are independent, i.c. each version

of the analyzer does no better than previous versions on types that previous versions also derive,

The choice of what lauice types to add was donc by inspecting the compiled code of programs and
by deciding what 1ypcs were casy to derive in the context of the structure of the existing analyzers. Types
were added that arc present in many programs. Mcasurements show that having an cxit lattice and doing

back propagation (scc below) are esscntial features o derive good ground, rderef, and nonvar

86

typcs. A numcrical cvaluation of the efficiency of the analysis (the percentage of arguments for which
types arc derived) and the effect of analysis on execution time and code size is given in Chapter 7.

For the next version of the analyzer the added types rlist (recursive list, i.e. the term is either nil
or a cons ccll whose tail is a recursive list), integer,and ((nonvar+deref) or uninit) (the

erm is either a dereferenced nonvariable or uninitialized) are contemplated.

type varsct = (sct, sct, sct, set, set); /* S-tuple */

var. Program : set of predicatc;
L.un, : mapping predicatc — lattice;
~ L. : mapping predicatc — lattice;
P : predicate;
procedure analysis;
var E :setof predicatce;
VS : varset;
begin
E:={Planity(P) = 0} U (declared enury points);
Initialize L., With the types of the declared entry points;
Initialize L., 10 impossible for all predicate arguments;
while £ = © do begin
for cach predicate P € E do begin
VS := lattice_to_varscl(Leary (P). P):
VS := updatc_exii(VS, predicate_analyze(P, VS), P)
end; .
E := { P | Lo, [P] has changed or 3G € P : L,..:[G] has changed]
end
end:

Figure 4.5 - The analysis algorithm: wp level

5§33. The analysis algorithm

The analysis algorithm is presented at three levels of dewil. An English-language description is
given of the basic idecas. A detailed pseudocode definition (Figures 4.5 through 4.7) describes the complete

algorithm at a high level of abstraction. Appendix G gives the implementation in thc compiler.

The algorithm maintains entry and exit lauiéc clements for each predicatc argument in the program.
Analysis proceeds by uaversing the call graph starting from a sct of entry points that have known types.
The enuy points include all predicates of arity 0 and any entry declarations given by the programmer

(Appendix A). The traversal is repeated until there are no more changes in the latuce valucs, that is, until 2

87

function predicatc_analyze(P : predicate; VS : varset) : varset;
var £ :formula; g
VS, :array {1.. n]of varset;
G, : goal;
i, :intcger,
begin
[* Atthispoit P ={ C, , ..., Cs 1 (ist of a clauses) */
for each non-active clausc C; € P do begin /* Symbolic execution of clause C; */
/* Atthis point C; = (Gi , Gia) (conjunction of n; goals) */
VS, = V§;
for j := 110 n; do begin -/* Symbolic execution of goal G;; */
if (G,, is a unification) then begin
VS: := symbolic_unify(VS;, G;;) /* Figure 4.8 %/
end else if G;; € Program then begin /* G; is defined in the program */
Leamy [Gij] = lub(Leary {Gi;). varset_to_lattice(VS;, G;;)):
if non-exponentiality constraint then begin
. VS, := update_exit(VS;, predicaie_analyze(G;;, VS;), G;;)
end
end else begin /* G;; is not defined in the program */
F == varset_to_type(VS;, G,j)
. 1= entry_specialize(Gy;, F);
VS, := update_exi(Vs, , exit_varse(G,). G;;)
end
end;
V'S, := back_propagate(VS;, C;) /* To obtain more precision */
end; .
return .O: VS; f* Merge the exit values of all VS; */

end;

Figure 4.6 ~ The analysis algorithm: analyzing a predicate

fixpoint is reached. With suitable conditions (i.c. all type updating is monotonic and types are propagated
correctly) this fixpoint is the fcast fixpoint and the resulting types give accurate information about the origi-
nal program. When a goal is encountered during a traversal three things are done: (1) the goal's entry lat-
tice type is updated using the cusrent value of VS, (2) if the goal's. definition is part of the program then the
definition is entered, and (3) upon return, the new value of VS is used o update the goal's exit latice type.
A correct value of VS is mainuined at all times during the traversal of a goal's definition.

The definition of the algorithm in Figures 4.5 through 4.7 leaves out some details but is 2 faithful
description of the analysis. The two conditions non-active and non-exponentiatity are explained in the next
section. The lollowing sections describe what happens in symbolic execution of a predicate (including

back propagation) and symbolic cxecution of a goal.

88

function update_exiy(VS, , VS : varset; G : goal) : varset;
var VS :varset, ’
begin .
/* Calculate new VS from old VS, and exit VS, */
VS .nonvar := V§,.nonvar U VSj.nonvar,
VS .ground := V§.ground v VS§a.ground;
VS .rderef == (VS .rderef N VS,.ground) U VSj.rderef;
VS .sofar := V§,.sofar u vars(G),
VS .uninit := V§,.uninit — vars(G);
J* Calculate new exit lattice */
Lt 1G) = WH(Lxie (G), Varser_to_lattice(VS, G)).
return VS
end;

function lub(L, , L, : lattice) : lattice;
return (lcast upper bound of L and L),

function lattice_to_varset(L : lattice; G : goal) : varset;
return (varsel corresponding 10 L using variables of G);

function varset_to_latice(VS : varser, G : goal) : lattice;
return (lauice corresponding to VS using variables of G);

function back_propagate(V'§ : varset; C : clause) : varset;
return (improved exit varset from VS using unification goals of C);

function varsei_to_type(VS : varser; G : goal) : formula;
return (type formula corresponding to VS using variables of G);

function enury_specialize(G : goal; F : formula) : goal;
return (specializod entry point of G when called with type F);

function exit_varset(G : goal) : varset;
return (exit varset stored for the known goal G);

Figurc 4.7 - Utility functions needed in the analysis algonithm

5§3.4. Execution time of analysis

This section shows that the average analysis time for programs that contain only linearly recursive

predicates (i.e. no clauscs contain more than one recursive call) and that have bounded arity is proportional

to the size of the program. The analysis time Tauuysis is proportional to the time of each iteration T and

the number of iterations N,,,, nccded 10 reach the least fixpoint:

T enatysis = O(Taer “Niter)

For programs that conwin only lincarly recursive predicawes, the umc of cach iteration is:

7;“' =0(S ‘A)

89

where § is the towl number of goals in the program and A is the maximum number of times a predicate is

traverscd. (Programs with non-lincarly recursive predicates are discussed below.) This is true because the

algorithm traverses cach clausc at most once in an itcration. It assumes that the symbolic execution of a
goal whose definition is not wraversed is a constant (}mc operaton. A predicate is traversed only if the
current entry type is worsc than the previous worst enury type. The number of umes this situation can
occur is bounded by the depth of the entry lattice of the predicate, which is proportional to the maximal
arity in the program. Thercfore:

S =

length(C,))

1=t
.4 = 0(maxarity(P,))

where the program contains n predicates, and each predicate P; contains n, clauses C;;. The anity of a .
predicate is denoted by ariry (P;) and thc number of goals in a clause is denoted by length(C;;). The

number of iterations is trivially bounded by the depth of the program lauice:

Nu(r = O(wal)

where Dy 18 given by:

Diowr = 3 2-4-arity(P:)

=]
In this equation, 2 counts the cntry and exit lattices, arity (P,) is the number of arguments in the predicate
fattice, and 4 is the depth of each argument lattice. This bound on N, is wildly pessimistic. For most real
programs N, is bounded by a small constant. All the benchmark programs satis{ly Ny, <7 (Chapter 7).

However, there exist pathological predicates P, for which N, = 6 (arity(P,)). For example, consider the

program:

a(N,A,A,C,D,E,F,G,H,I1,J) :~ N1 is N-21, a(N1,A,C,D.E F,G.H 1.J,A).

The analyzer requires 10 passes to detcrminc that all arguments of a/11 arc ground and dercferenced

L4

upon cxit.

90

To summarize thesc results, the worst-case and average case total execution times of analysis for programs

without non-linearly recursive predicates are:
Tanalyn’.r.wnl =0(A S Dow)

Tamlyw.au =0(A"S)
If the arity is bounded, thea the average exccution time of analysis is proportional 1o the program’s sizc.

For programs that contain non-lincarly recursive predicates this result needs to be amended. There is
a trade-off between precision and execution tme of the analysis. If not enough predicates are traversed
then analysis information is lost. If 100 many predicates are traversed then analysis time becomes too long.

Two constraints,are uscd to prunc the traversal of the call graph:

(1) The non-active consuaint. A clause that is in the process of being traversed is called an active
clause. During recursive calls of predicate_analyze, the algorithm maintains a set of the active

clauscs and will not traverse an active clause twice.

(2) The non-exponentialiry constraint. Traverse a predicate (i.e. call predicatc_analyze) only if one of
two conditions hold: (a) The entry type has changed since the last traversal of the predicate, or (b) At

least one of the predicate’s clauses is active.

Condition (a) is understandablc: it is needed to ensure that an updated type is propagated correctly. The
rationalc for condition (b) is morc subte. If it did not hold, then the exit types derived by the analysis
would be significanly worsc because the base casc of a recursive predicate may not be reached during the
traversal. Running the analyzer both with and without this condition shows this to be true for most pro-
grams.

The problem with condition (b) is that it leads t0 an analysis time that is exponential in the number of
non-lincarly recursive clauses in a predicale. For many programs this is not serious. However, it occurs
often enough that it should be solved. Onc of the benchmark programs, the nand benchmark, has this prob- .
lem. A betier condition is necded to replace condition (b). It must (1) ensurc that the basc case of all
recursive predicatcs is reached (for good cxit types), and (2) not result in time cxponcntial in the number of

non-lincarly recursive predicates.

91
$3.5. Symbolic execution of a predicate

The heant of the dataflow analysis algorithm is the symbolic execution of a predicate (Figure 4.6).
Each clausc of the predicate is traversed from left (o right. During the traversal the 1ype information is kept

in the variablc sc1 VS, Symbolic execution of the predicate consists of four steps:

(1) For cach clausc of the predicate, translate the lattice entry type of the predicate into the variable set

VS, and stan vaversing the clausc.
(2) Symbolically exccute cach goal in the clause and update VS.

(3) At the cnd of each clause, back propagation improves VS by deducing information that only

-

becomes available at the end of the clause. For example, consider the clause:

.

a(X) :- X=[Y|L], b(Y, L).
If both Y and L arc in the ground set G of VS at the end of the clause then this is also true of X
becausc of the unification X={Y|L). Back propagation is used t0 improve the exit types for
ground, recursive dereference, and nonvariable types. Measurements show that it is a necessary step
10 get good exit types.
(4) At the end of the predicalc, combine the variable sets of all clauses by intersecting their correspond-
ing components. Convent the result back 10 the latice representation and update the exit type for the

predicate.

53.6. Symbolic execution of a goal

Symbolic execution of a goal is done in three ways, depending on whether the goal is a unification, the goal

is defined in the program, or the goal is not defined in the program.

5§3.6.1. Unification goals

Symbolic execution of unification is defined by the (unction symbolic_unily(VS, X=T) in Figure 4.8,
which convenis VS = (S, G, N, U, D) into VS = (5, G*,N*, U’, D"). Thesc cquatons usc the utlity func-

tons of Table 4.6. For each component of VS, any equation in Figurc 4.8 with a true condition can be

92

Table 4.6 — Utility functionsof a term T

Notaton

Definition

vars(T)

dups(T)

new(T)=vars(T) - S
oldTy=vars(T) N S
deref{T)=vars(T) - (§ ~ U)

The set of variables in the temn T'.

The set of variables that occur at least twice in the term 7.
The set of all variables in T that have not occurred before.
The set of all variables in T that have occurred before.

The set of all variables in T that arc candidatcs 0 be recursively
dereferenced. This is the same as new(T) v (vars(T) n U), ic.
new(T) supplemented with the variables in 7 that are uninitialized.

S$'= Suvars(X=T)
G'= guvars(’l')

N'= G “u (X)

—vars(X=T)

if XeG
otherwisc

if nonvar(T) or (var(T) and Te N)
otherwisc

otherwise

Duderef(T)u(X) if (XeSorXeU) and old(T)c (DU V)

D uderef (T)

if XeSorXelU) or Xe(DNG)

D uderef (T) - {X) if dups(T)=@ and XeD and old(T) cU

DNnG

U'= {UUMW(T) old(T) ~ (X} - dups(T) if (XeS or XeU)

otherwise

Figure 4.8 - Symbolic unification VS’ := symbolic_unify(VS, X=T)

used. In practice, if more than one condition is satisfied, an equation giving more information (i.c. the

resulting set is larger) is uscd first. These equations are listed first. For example, the first equation of D*

gives a larger set, so it is preferred over the others. If both X and T are vz -:Llles, then the algorithm

switches X and T is 10 sec if onc of the more desirable equations is satisfied before attempting one of the

lesser equations.

Table 4.7 - Conditions for the lattice entry type |
Name Condition
Cround vgrs(X) cG
er Var(X)
Cou X € (dups®P) v S - U)
Clrderes (vars(X) n §) c D
Caoavar (X € N)
. Tablc 4.8 - Calculation of the lattice entry type
C‘mw Cw,r C,u C,d,,,/ C,.”,,., Latuce value
ycs - - yes - ground+rderef
yes - - .no - ground
no no - yes - nonvar+rderef
no no - no - nonvar
. no yecs no - - uninit
no yes yes yes yes nonvar+rderef
. no yes yes yes no rderef
. no yes yes no yes nonvar
no yes yes no no any

53.6.2. Goals defined in the program

93

Symbolic execution of a goal with a definition is done by symbolically executing the definition.

Information is kept about the part of the call graph that has aiready been traversed, so that analysis will not

go into an infinite loop. The function varset_to_lattice(VS, P) is defined by Tables 4.7 and 4.8. For each

argument X of P, first determine the values of the five conditions in Table 4.7. Then use these conditions 0

look up the lauice valuc for the argument in Table 4.8.

5§3.6.3. Goals not defined in the program

" Examples of goals that are not defined in the program being analyzed are built-ins and library predi-

cates. Symbolic execution of these goals is done in two parts. First, entry specialization replaces the goal

by a faster entry (section 5.4.1). Second, the type declarations that the programmer has given for the entry

arc used 10 continue the analysis. If there are nonc, then worst-case assumptions arc madc.

§3.7. An example of analysis . -

The following program is interesting becausc it is mutually recursive:

&
i

Table 4.9 - Analysis of an example program

incl_2(A,B,C) incl_3(A,B,C,D)

A B C ;A B C D
Sarn
entry |impossible impossible impossible|impossible impossible impossible impossible
exit|{impossible impossible impossible]limpossible impossible impossible impossible
After pass 1)
cntry rderef uninit urri uninit rderef rderef uninit
cxit|{ nonvar rderef nonvar rderef any ground nonvar
Aficr pass 2
enuy| rderef uninit uninit uninit rderef rderef uninit
exit{ nonvar rderef nonvar rderef any nonvar nonvar
Afler pass 3
cnuy| rderef uninit uninit uninit rderef rderef uninit
exit| " nonvar rderef nonvar rderef any nonvar nonvar

main :- incl 2([A,B], C, D).

incl_2({). C, [€)).
incl_2([AIE). C. D) :- incl_3(C, A, E, D).

: incl_3(C, A, E, [AID)) :- incl_2(E, C, D).
The predicates incl_2/3 and incl_3/4 are extracted from a definition of set inclusion. Three
analysis passes are necessary to reach the fixpoint (Table 4.9). The entries that have changed with respect
to the previous pass arc in italics. The final types are given in Table 4.10. Most of the comrect types are
determined after the first pass. A single exit type of incl_3/4 is corrected in the second pass. This is

necessary because the third argument of incl_3/4 is the same as the first argument of incl_2/3.

Tablc 4.10 - Final results of analysis
incl_2(A,B,C)
enurytype:. rderef (A),uninit(B),uninit (C)
exillypc: nonvar (A),rderef (B) ,nonvar(C)
incl_3(A,B,C,D)
entry type: uninit (A), rderef (B), rderef (C) ,uninit (D)
exittype: rderef (A),nonvar (C),nonvar (D)

5.4. Integrating analysis into the compiler

Deriving typc information is only the beginning. The analyzer must be integrated into the compiler

10 take advantage of the type information. The dataflow analysis modulc itsclf docs {our source transfor-

mations (Figure 4.9) beforc passing the result 10 the next stage, which docs determinism cxuaction. The

95
kemcl entry
Prolog " declarations types
puts- - - === - - c - e m e e e e e e e s e e e e e
|
Y
enuy - dawaflow
J specializaion [analysis
entry specialized entries dcri\;ed
specialization [type
(replace goals)
kemel Prolog T
«with specialized entries uninitiatized
. - register
conversion #
derived types with
uninitialized register modes —> type
updating
Y updated
head - types
unraveling
kemel Prolog
with unraveled heads
OULPULS- = = | = = = m = o s v o e e e oo e e e e e e e ettt e e e e oo
kemel
Prolog types y

Figurc 4.9 - Intcgrating analysis into the compiler

following source uansformations are done in the daiaflow analysis module:

(1) Entry specialization. Determine a fast entry point for each occurrence of a call whosc definition is
not in the program being analyzed and continue analysis with this entry point

(2) Uninitialized register conversion. Convert uninitialized memory types 10 uninitalized register
types when it results in a speedup. liis don_c when an argument can be retumed in a register without
giving up last call optimization.

(3) Head unraveling. Unravel the heads of all clauses again in the light of the derived type information.

_ For cxample, the hcad a(A,A,A) can bc unraveled in three differcnt ways, namely

-

96

(a(A,8,C):~A=B,C=B) or (a(a,B,C):~-A=C,B=C) or (a(A,B,C):-B=A,C=a). If
both A and B arc nonvaniables and C is unbound, then the first or third possibilities allow the com-
piler 10 do argument selection. Unraveling is alrcady done during the conversion (o kemel Prolog,

but it must be donc again after dataflow analysis since the new types may allow it 10 be done better.

(4) Type updating. Supplcment the type declarations given by the programmer (if any) by the derived

types. All inconsistencics are reportcd and compilation continucs with the corrected types.

The first three of these transformations arc-discussed in meore detail in the following sections.

5.4.1. Entry specialization

During analysis, a fast entry point is determined for each call whose definition is not in the program)
being analyzed (i.e. cach dangling call). For example, the call sort (A, B} is replaced by the enury point
‘$sort *2‘ (A,B) if B is uninitialized. Analysis continues with the types of the fast entry point Thc. .
program is unchanged until the end of analysis, 5o the determination of the fast eatry point is repeated in
each analysis itcration whenever a dangling call is encountered. This mechanism is intended to speed up
execution of built-in predicates and library routines, but it is also availabie 1o the programmer.

The fast entry point is c:jetcnnined by calculating the type formula corresponding to the vanable set
VS with the function varsei_to_type(VS, G) (Figures 4.6 and 4.7). This typc formula is used to traverse
the modal entry tree for the goal. The modal entry tree is a data structure that contains a set of entry points
and the types that cach requircs (Appendix A). Entry specialization is also done in the clausc compiler,

and a detailed example of the use of the modal entry tree is given in Chapies 5 (section 3.4).

5.4.2. Uninitialized register conversion

Ofien an uninitialized memory type can be converied (o an uninitialized register type. The compiler
uses four conditions 10 guide the conversion process. Dcfinc a survive goal as onc that docs not alier any
temporary registers (except for arguments with uninitialized register type, which are outputs). A goal that
potentially alicrs (cmporary regisicrs is a non-survive goal. The compiler maintains a @ble of survive

goals. With these definitions the four conditions for a predicate P arc:

(1)

@

3

C)

97

All arguments of £ with uninitialized memory type are candidates 10 be converted.

A candidatc argument of P must occur at most once in the body of each clavse of P. In each clause

where it occurs, the argument must be in the last non-survive goal or any survive goal beyond it

For cach clausc of P, if the last goal G is a non-survive goal, then the candidate argument of P ;nUSl
be in the same argument position in G as in the head of P. This is necessary 10 avoid losing the
opportunity for last call opumization (LCO): if the argument posiuons are different then a move
instruction is necded beiween the last call and the return. If the last goal is a survive goal then the
condition is unnecessary because it is not as important to retain LCO: a survive goal can never be
mutually recursive with mc‘prcdicale it is pan of.

Ofien thc'lasl goal G has candidate arguments that are not candidate arguments of P, so they have 10
be initialized when returning from G. This has two disadvantages: P loses LCO and P must allo-
catc an environment (which may not exist otherwise). The solution to this problem involves a trade-
off: is it better to have LCO in £ and fewer uninitialized register arguments in G, or to have no LCO
in P and more uninitialized register arguments in G7 The compiler recognizes a class of predicaics
G for which the first is true: Define a fast predicate as one whose definition contains only built-ins
and survive goals. 1If G .is fast then reduce the sct of G s candidate arguments to include only those

that are candidatc arguments of P .

A transitive closurce is done until all four conditions arc satisfied. These conditions can be relaxed slightly

in several ways. Howcver, even with the existing conditions it is possiblc 10 convert about one third of all

uninitialized types into uninitialized register types (Chapter 7). The third and fourth conditions are not

needed for correctness, but only for execution speed. The third condition ensures that LCO is not lost. The

fourth condition speeds up thc chat_parser benchmark by 1% and was added after code inspection

discovered cases where the usc of uninitialized registers slows down execution,

5.43. Head unraveling

This transformation rcpeats the head unraveling transformation (Chapter 3) with the informauon

gaincd from dawaflow analvsis. This incrcascs the opponunitics for determinism extracuon. For examplc,

98

before analysis the clausc:

a(X,X.Xy.
is transformed 1o the following kemel Prolog by making the head unifications explicit (i.c. *‘unraveling™

the hcad unifications):

a(X,Y,2) :- X=Y, X=2.
If analysis derives that X is unbound and both Y and Z are nonvanable, then the above expansion hides the
determinism by twice unifying an unbound variable with a nonvanable. Unraveling the head unifications

again after analysis results in:

a(X, Y 2) :- Y=2, X=Y.

In this version, the nonvariables Y and Z are unified together, better exposing the deterministic check that

is done, and the unbound variable X is only unified once.

6. Determinism transformation

This section groups four transformations that expose the determinism inherent in a predicatic. The
purposc of the first three transformations is to make the determinism in the predicate easily visible, so that
the fourth transformation, determinism extraction, is as successful as possible in generating case state-
ments. The following transformations are done in order:

(1) Head-body segmentation. By scparating the heads of clauscs from the clausc bodies, this reduces
the code expansion caused by type enrichment and determinism extraction.

(2) Type enrichment. This adds types to predicates for which global analysis is not able 10 determine
the typc. The compiler creates different versions of the predicate assuming different input types.

This increases codc size, but improves performance since ofien a predicate is delerministic at run-

time even though this could not be detected at compile-time.
(3) Goal reordering. This rcorders goals in a clause 10 exposc morc determinism. Tests (such as arith-
metc relations) arc moved to the left and predicates guaraniced to succeed (such as unifications with

uninitalizcd variables) are moved to the right,

99

(4) Determinism extraction with test sets. This transformaton converis the predicate into a nesied
casc statement that makes its determinism explicit, so that a straightforward compilation to BAM

code is possible.
6.1. Head-body segmentation

This wransformation reduces the code expansion resulting from earichment and determinism exurac-
tion. A predicate is split into a new predicate and a set of clause bodies. The new predicate contains only
the goals of the original predicate that are us:cful for determinism extraction, i.e. all explicit unifications and
tests (including 1ype checking and arithmetic comparisons, see Table 4.11) in each clause starting from the
head up to the first goal that is not in this category. The rest of the clause bodies are separated (rom the

predicate. This is done 10 avoid code duplication in determinism extraction, since the same clause may

occuwr in scveral leaves of the decision tree.

-

For example, the predicatc:

p(A,B) :-

(var(p), p(A), q(A,C), t(C,D}, u(D,B)
; A=b, r(A). s(A)
).

is transformed into:

p(A,B) :-

{ var(A), ‘$dl’ (A.B)
; A=b, °$d2’ (A)
).

*$d1‘ (A,B) :- p(A), q(A,C), t(C,D), u(D,.B).

*$d2° (A) :- x(A), s(A).
The new predicate consists only of those parts of the original predicate that are useful for exmacting deter-
minism. The determinism extraction is frec 10 crcatc a decision trec from the new predicate without worry-
ing about duplicating the clause bodics at the leaves of the trec. The separated clause bodics arc compiled

once only, and thc BAM transformation stage (Chapicr 6) merges them with the decision tree, thus creating

a decision graph.

100

The decision cxacly where 10 split the clause bodies depends on several faciors. All goals in the
body are classified into two kinds: goals that arc useful for extracling dewcrminism (called *‘tests’’), and
other goals. Then the split follows these rules: (1) Or:ly those tests all of whose variables are in the head
become parnt of the new predicate. (2) If the length of' the clause body is less than a given threshold, then

all of it becomes pant of the new predicalc.

Hcad-body segmentation ineracts with type propagation. i often occurs that a clausc body is called
from several Icaves in the decision tree with different types. In that case, it is compiled with a type that is
the intersection of the types of the enuy po'mLs.' A complication arises when one of the leaves considers a
variable (o be uninitialized, and another leaf docs not. In that case, the first leaf jumps to a piece of code

initialize the varfable, and only afterwards jumps to0 the clause body.

6.2. Type enrichment

-

By looking at the type or the valuc of one or more arguments it is possible to reduce the set of
clauses that have 1o be tried. Often the dawafiow analysis is able 10 derive sufficiendy sorong types so that a
good selection can be done, i.e. a deterministic predicate can be compiled efficiently. However, if the
types given for the predicaic are weak then a source transformation is done to enrich them. The enrich-
ment consists of adding a test to check at run-lime whether an argument is a variable or a nonvariable, and

to branch 1o different copics of the predicate in each case.

The number of arguments that arc enriched is given by the argument S of the compiler option
select_limit (S). Define a good predicale argument as one that is an argument of a unification not
known (0 succeed always, i.¢. in the unification neither argument is known to be unbound. An argument is
known 10 be of a given type if the type is implied by the type formula. Whether or not enrichment is done

is bascd on the following heuristic:

Enrichment Heuristic 1: If th¢ numbcr of good arguments known 0 be nonvariable is less
than the selection limit S, then choose the lowest numbcered good argument that is not known
10 be nonvariablc. Otherwise choose only the first argument, if it is a good argument and i is
not known to bc nonvariable.

This heuristic is applicd recursively on enriched predicates. The default selection limit is always S=1.

This dcfault is jusuficd given that (1) a sclecuon limit S=1 alrcady gencralizes the first argument selection

101

of the WAM, and (2) compilation time and object code size increasc rapidly with the selection timit. Even
with S=1, the source transformation occasionally results in some duplicate code being generated. This is

removed by thc BAM wransformation stage. When S=1 the heuristic is simpler.

Encichment Heuristic 2: If there exist no good arguments known to be nonvanablc, then
choosc the lowest numbered good argument that is not known to be nonvaniable. Otherwise
choosc the first argument, if it is a2 good argument and i 1s not known 10 be nonvanablc.

This heuristic generalizes the first-argument selection of the WAM, i.c. it always docs at least a first argu-
ment selection, but depending on the types that the predicate has (often derived from datafiow analysis) and
the predicate itsell (what kinds of head unifications it does), the amount of selection can be vasuy greater.

The heuristic may seem complex, but it is a natural way to make a predicate deterministic.

To show how enrichment works, consider the following predicate without type declarations:

a(a).
a(b).

1t is transformed into:

a(p) :- var(A), a_v{(A). % If A is unbound.
a(d) :~ nonvar(A), a_n(A). % If A is nonvariable.
a_v(a). a_n(a).

a_v(b). a_n(b).

The predicate a/1 has been eariched with an unbound type (in a_v/1) and with a nonvarniable type (in

a_n/1). Asanothcr example, consider the definition without any type declarations:

member (X, [X!_}).
member (X, [_IL}).

In this case the heuristic picks the second argument, since the first one does no useful unifications. After

enrichment, the predicate becomes:

member (X, L) :- var (L), member v(X, L).
member (X, L) :- nonvar(lL), member n(X, L).

member_v(...) :~ (same as original definition)

member _n(...) :- (same as original definition)

The two tests var (L) and nonvar (L) determinc which of the two dummy predicawcs to exccule,

member v/2 or member_n/2, and arc compilcd into a singlc conditional branch. This is a

102

conscquence of the fact that the two tests are mutually exclusive, i.c. if one succeeds then the other fails
and vice versa. Both member_v/2 and member_n/2 have the same definition as the original predi-
catc, but they have different types for the second méumcm. The predicate member_ v/2 is compiled
assuming the sccond argument 1s a vanable. The p'rcdicale member_n/2 is compiled assuming the
second argument is 2 nonvariable. Both member_v/2 and member_n/2 are also targets of the factor-

ing ransformauon (sccuon 4).

Type cnrichment can introduce 2 significant increase in code size if it is not handled carcfully. In
practice, the code size is kept small because: (1) the added types result in significandy smaller code for
clausc selection in each of the two dummy predicates, (2) before doing enrichment, head-body segmenta-
tion scparates Flausc heads from the bodies, so that long clause bodies arc not duplicated, and (3) the BAM
transformation stage (Chapter 6) removes any remaining duplicaie code. In a sense, the definitions are first
‘loosened up™ by head-body segmentation and type enrichment 10 allow more optimization, and then later

*“‘tightened up.**

63. Goal reordering

This transformation reorders goals in a clause to increase determinism and 10 reduce the number of
superfluous unifications thai arc done. Goals that are uscful in determinism extraction are put as early as
possiblc, and goals that are certain 10 succeed (such as unifications with uninitialized variables) are put

later.

The goals in a clause are classified in four cawegories: tests (Table 4.11), unifications with unbound
variables, unifications with uninitialized variables, and other goals. The goals are ro;ordeted so that tests
are first (for deterministic selection), followed by unifications with unbound variables (may be affecicd by
aliasing), unifications with uninitialized variables (unaffected by aliasing, so they can safcly be put last),
and the other goals. The reordering takes into account the fact that unification is commutative, i.c. that
unification goals can bc permuted in any way wiMl changing the semantics. Some rcorderings arc beuer
than others because aliasing can worsen the type formula. c.g. if X is unbound (var (X)) then after per-

forming the unification Y=2 it may not bc unbound any morc, if it is aliased to Y or Z. The rcordening is

103

constrained so that aliasing docs not change the opcrational semantics.
For exampic, consider a predicate that has an uninitialized argument:
i~ mode((a(A,B,C) :- uninit(C))).

a({X, ¥, 2) :- 2={X|IL}, X«Y,
The transformation knows that the unification Z=(X|L] does not instantuate X or L because Z is unbound
and unaliased. Thercefore the unification is moved back:

a(X, Y, Z) :- X<Y, 2={X|L}.

This has two advantages: (1) the test X<Y is brought forward so that it can be used by determinism extrac-

tion, and (2) the upification 2=[X{L] is not done if the test X<Y fails.
This ransformation compensates for the popular programming style which puts all unifications in the
head and all 1ests in the body, e.g. people prefer to write:
a((XiLj, {XiM])} :- var(X), ...

instead of:

a([xirj}, 2) :- vag(X), Z=[XIM]), ...

The first version does not imply anything about the instantiation patiern of the arguments, whereas the

transformed version does.

6.4. Determinism extraction with test sets

The majority of predicates written by human programmers are intended to be executed in a deter-
ministic way. These predicates are in effect case statcments, yet they are t0o often compiled in an
inefficient manner, by means of shallow backuracking (i.. saving thc machine state, unification with the
clause heads, and repeated failurc and statc restoration). This section describes the gencral technique used

in the compiler (o0 convert shallow backtracking into conditional branching.

104

Test set : Instruction

branch if less than

{ A<B, A2B }

four-way branch on type

{var(A),atomic(A),cons (a),structure (A)}

‘ " look up in hash table
{A=a,A=b,A=c, A=d,A=e,A=f,6 A=qg]}

Figure 4.10 — Some examples of test sets

6.4.1. Definitions

Predicates arc compiled into code which is as deterministic as possible through the concept of the
test set. Two definitions are useful:

Definition ST: A goal G is a simple test with respect o the kemel Prolog predicate P and the
type formula £ if it satsfics the following conditions:

o (; uses only variablcs that occur in the hcad of P,

o The implementation of G docs not change any statc in the excoution model, ic. G
docs not causc side-cffects (I/0 or database opcrations), G does not creawe choice points,
and G does not bind any variables.

oG docs not always succeed.

Definition TS: A set of goals is a test set with respect to the kemel Prolog predicate P and the
type formula F if it satisfies the following conditions:

e Each goal in the set is a simple test according 0 definition ST.
o With a given set of vaniable valucs, at most one goal in the set can succeed.
e A mulu-way branch in which each destination comresponds 10 the success of one of the

goals in the sct can be implemented in the target architecturc.

The tests in the sct need not actually be present in the definition of P. Whether or not a given set of goals is

a test sct depends on the architccture and the predicaie P.

105

6.4.2. Some examples

Most conditional branches in an architecture carrespond (o a test set. For example, a branch-if-less-
than instruction corresponds to the test set {A<B, -A2B}. More complex conditions such as an n-way
branch implemented by hashing can also be represented as test sets. Figure 4.10 shows some examples of

test sc1s. The second and third examples correspond to WAM instryctions.

To illustratc the usc of test scts, consider the predicate:

max{A, B, C) :- A<B, C=B.
max(A, B, C) :- A2B, C=A.

~

which is onc way (o calculatc the maximum of A and B. It is compiled as:

.

max(A, B, C} :- if A>B then C=A
else if A<B then C=B
else (C=B or C=A)

('ﬁre Prolog notation is simplified for readability.) The predicate is executed completely deterministically if
A>B or A<B; a choice point is created only when A=B. The choice poinl maintains the operational
semantics: since both clauscs of the original predicate succeed when A=B, there are two identical solu-

uons.

type tesisel = testset(testset_name, testset_ident, set of goal),

function detcrminism(D : disjunction; H : goal; F : formula; Previous : set of testset) : disjunction;
var TS :tcstsct;
TSser - sct of testset;
begin
iflength(D) < 1 then return D;
TS;e o= find_testsets(D , H , F, Previous);
7S, = Dthenreturn D;
TS := pick_testset(TS .);
return code_testisey(7S, D, H , F, Previous)
end;

Figure 4.11 - The determinism extraction algorithm

106

function find_testsets(D : disjunction, H : goal; £, : formula; Previous : set of testset) : set of testset;
var TS :1esisct;)

TS.er - set of testsct;

{ ./ :integer;
begin

[* Atthis point D = (C, ; ... ; Ca) where D has a choices */

TSser =D,

fori :=1to n do begin

I* Ci =(Gi ,Gin) where C; has n; goals */
for j:=1ton; do
if G;j = "!" then exit inner loop
else for all testscts TS from table do begin
/* TS = testset(Name ,Ident , Tests) from Table 4.11 */
if TS e Previous and vars(G;;) c vars(H) and bindset(G;;, F) = @ then
if 3T € Tests : (G;; implies T and nou(F implics T)) then
. TS0t =TSee v (TS)
M end

end;

return 75,
end;

Figure 4.12 - Finding all test sets in a predicate

function pick_testset(TS,,, : set of testset) : testset;
var TS :testsey :
begin
pick TS € TS,,, such that .
V U€eTS,, : goodness(TS) 2 goodness(U); /* From Equation (G) */
return 7S
end;

Figurc 4.13 — Picking the best test set

6.43. The algorithm

Given a predicate, the compiler proceeds by first finding all test sets that conuin tests that are
implied by goals in the predicatc. This depends on the type formula that is known for the predicate; for
example, the unification X=a is only a est if X is nonvariable, i.e. if the type formula implies
nonvar (X) . Then a “‘goodness’” measurce is cakculated for cach test set, and the test set with the largest
goodness is uscd first. The goodness mcasure is calculated heuristically; in the current implementation

each test set is weighted by an architecturc-dependent goodness (which depends on how efficiendy it is

107

function code_testset(TS : testsct; D : disjunction; & : goal; £ : formula; Previous : set of testset) : disjunction;
var T :goal; i
Choices : disjuncuon:
begin
Choices =1).
/* At this point TS = tesiscy(Name , Ident , Tesis) */
for all T € Tests do begin
D o5t = subsume(7T,D);
Diese = determinism(D . . H , update_formula(T, F), Previous u (TS),
append ‘ Stest’ (T, D) to Choices;,
D :=subsume(no(7), D)
end;
D :=dcterminism(D , H , F, Previous v {TS});
append ‘ Selse’ (D) w Choices;,
return ‘ Scase’ (Name , ldent , Choices)
end;

L

Figure 4.14 — Converting a disjunction into a case statement

implemented in the architecturc) and by the number of possible outcomes (e.g. hashing with a large number
of cases is considered better than a two-way branch). The predicate is converted into a case statement
using the best test set. The algorithm is calied recursively for each arm of the case statemeat o build a

decision tree. This tree is collapsed into a graph by the BAM transfonmnation stage.

Figures 4.11 through 4.14 give a pseudocode definition of this algorithm. The figures define the
function determinism(D, H, F, Previous) that performs the determinism extraction. Given a predicate
wrilten as a head /1 and a disjunction D , along with the type formula F that is true for that predicate, the
function finds as many test sets as possibie in the disjunction and converts them into casc statements. It
relums a new disjuncﬁbn that contains these case siatements. The parameter Previous is used to avoid
infinite recursion. It contains all test sets that have already been used 10 make sure each test set is only

used once.

The function find_testsets(D , H , F, Previous) retums a list of all test sets in the disjunction (Figure
4.12). It picks a test set if there is a goal in the predicate which implies a test in the test ser. It limits the
goals 10 thosc that do not bind any variables (bindscy(G;;, F) = @) and thosc that usc only variables lhal.
occur in the head (vars(G,;) < vars(H)). The function pick_tesisel(TS,,) retums the test sct with the

greatest measurc of goodness, as given by Equation (G) (Figure 4.13). The function code_testise(7S, D,

108

H , F, Previous) converts the disjunction D into a casc statement when given a test sct 7S (Figure 4.14).

It uses the funcuons subsumc({F , F) and update_formula(F , F), which are defined in section 3.

Table 4.11 - Test sets

Name Examplc Test Examplc BAM wanslation

equal X==Y equal (X, Y,Lbl)
(X or Y is simple at run-ime)

equal(atomic,A) X==A equal(X,A,Lbl)
(A is an alom)
equal(structure F/N) ‘S$name_arity’ (X,F,N) equal ([X]),F/N, Lbl)
(F/N is namc/anity) L
hash(atomic) X=A (A is atomic) hash(tatm, X, N, Lbl)
hash(structure) X=S (§ 1s a structure) hash(tstr,X,N,Lbl)
companson(Class,Kind) X<y jump (1ts, X, Y, Lbl)
(Class € {cq, lts, gts))
(Kind € (arith, unify, stand})
Type - var (X) test (eq, tvar, X, Lbl)
(Typc € AllTypes)
switch(Type) atom(X) switch(tatm, X,L1,L2,L3)
(Type € TagTypes — {var))

Table 4.11 lists the test sets currently recognized by the compiler. This includes unification goals, all
type checking predicates, and all arithmetic comparisons. For each test set it gives the name, a representa-
tive test in the test sct (only one is given, although usually there are several others), and the translation of
that test into a conditional branch of the BAM instruction set. For the test sets hash(atomic) and
hash(structure) the BAM code includes a hash table (not shown) i addition to the hash instruction. The

following dcfinitions simplify the wble:

TagTypes = {var, atom, structure, cons, negative, nonncgative, float), i.c. all types that
correspond to one tag in the VLSI-BAM architecture.

AllTypes = TagTypes U {atomic, integer, simple, compound}, i.c. it includes types that
correspond (0 more than one tag.

The goodness measure for a test set in a predicate is calculated using the following rule:
Goodness = 1000-D + G (G)

where D is the numbcer of dircctions of the test set that occur in the predicatc and G is the mw goodness
mecasure of the test set. This rule ensures that the number of usclul directions in the testset is most impor-
tant. The raw goodness is used only when the number of directions is the same. Tablc 4.12 gives the raw

goodness of all test sets in the VLS1-BAM architccture (34), with a bricf justification of the ranking. The

109
Tablc 4.12 - Raw goodness measurc of test scts in the VLSI-BAM
Test set Rank Comments

switch(cons) 131 | Switch is best because it is fast and it ts a three-way branch, so it

switch(structurce) gives the most information. Switch of compound terms is beuer
than other switches because it makes traversing a recussive term
(like a list or a tree) fast.

switch(negativc) 130 { Switch of atomic terms is worse because it penalizes the case of

switch(nonnecgatve) traversing a recursive term.

switch(atom)

switch(intcger) 129 | Switch of integer is worse because the VLSI-BAM has separate
ncgative and nonncgative (tpos and tneg) tags, requinng two
branches..

var 120 | These test sets are types that correspond directly to tags, and there

atom exist fast two-way branches on tags.

cons

structure

negauve

nonnegative

equal 85 | This test set requires two instructions—a compare and branch, and
also possibly loading its arguments into registers.

equal(atomic,_) 80 | These test sets each require two instructions—a compare and

comparison(_,_) branch.

integer 79 | These test sets are types that each comrespond to two tags, so they

atomic need two tag checks.

compound

equal(structure,) 60 { Equality comparison of a structure’s functor & arity needs a
memory reference.

simple 50 | This test set corresponds to a type that needs five tag checks (four
without floating point).

hash(atomic) 41 | Hashing is the slowest because it needs to calculate the hash ad-
dress.

hash(structurc) 40 | Hashing on a structure is slighty slower than hashing on an atomic
term becausc a2 memory load is needed w0 access the main functor
of the structurc, whercas the atomic term is direcdy available in
the register.

value of the rank is not imponant; only the relative order is important. Architectures rank the test sets
according to how efficiently they are implemented in the architecture. To compile for a different architec-
wre, only the ranking is changed in the compiler. The ranking is modified for other processors by a com-
piler option. For example, for the MIPS processor, the option mips changes the ranking to make the test
sct equal (atomic, [)) best, i.c. a comparison with the atom (] (nil), because it can be implemented
with a single-cyclc conditional branch instruction. The MIPS docs not have scparatc tags for ncgative and
nonnegative integers, so the 1est sets negative and nonncgative are ot implemented as cfficicatly as on the

VLSI-BAM. These two test scts have lower ranks.

Chapter S
Compiling Kernel Prolog to BAM Code

1. Introduction

The previous chapiers described the conversion of standard Prolog to kemel Prolog and the optimiz-
ing kemel transformations. This chapter shows how the optimized kemel Prolog is compiled 0 BAM
code. The compilation 10 BAM is performed in two steps for each predicate. In the first step, the control
instructions that make up the framework of the' predicate are compiled by the predicaie co;npilcr. This
includes compiling the deterministic case statements into conditional branches and the disjunctions with

choice point instructuons.

In the second step, the clauses that make up the body of the predicaie are compiled by the clause
compiler. The clause compiler uses two primitives, the goal compiler and the unification compiler, to com-
pile goals and explicit unifications. The clause compiler also does register allocation, entry specialization
(replacing buili-in predicates by faster entry points), and performs the write-once transformation (for fast
trailing), and the dereference chain transformation (to maintain consistency with the dataflow analysis).

These transformations are expldined in deail in the sections below.

2. The predicate compiler

In the keme! transformation stage (Cha;'ucr 4), determinism extraction atiecmptis (0 convert each
predicate into a series of nested case statements. This is not always successful; sometimes the case state-
ments still retain disjunctions (OR choices) that could not be converted into deterministic code. The predi-
cate compiler compiles both the case statements and the disjunctions into BAM code. The case statements
arc compiled into conditional branchcs. The disjunctions are compiled into choice point instructions. The
predicate compiler uses two primitives, the determinism compiler and the disjunction compiler, 0 compile

the predicate's casc statements and disjunctions.

110

11

2.1. The determinism compiler

Compiling a kerncl Prolog predicate into deterministic BAM code is done in two steps. First, the
determinism transformation (a kemel Prolog transformation, Chapter 4) converts a kemel Prolog predicate
into a senes of ncsted case statements. Then the determinism compiler compiles the nested case statements
into BAM code. A casc statement may contain any test sct, and each test sct is'mappcd 10 a condiuonal

branch. The test sets and their corresponding conditional branches are given in Table 4.11.

2.2. The disjunction compiler

A d§sjunc1ion {an OR formula) is a list of clauses that encapsulates a choice. The first clause is exe-
cuted the first.time the disjunction is encountcred. The remaining clauses are executed in order on
backuracking—ecach time backtracking retumns to the disjunction the next clause is tried. This is imple-
mented by code which generates choice points. A choice point encapsulates the state of the abstract
machinc at the time it is created. Backtracking restores machine state from a choice point 1o let execution

continue from the point at which the choice point was created.

Creating and restoring machine state in choice points is ime-consuming. To minimize the size of the
choice points (and hence the tin;e required to create them), the choice point management instructions in the
BAM are streamlined to perform the least amount of data movemen:. They save only those registers that
are necded in the clauses of the disjunction after the first, and for each clause of the disjunction they restore
only thosc registers that arc needed in that clausc. Argument registers arc restored in the clausc itself and
nof in the fail instruction. Therefore the size of the choice point does not have to be stored in the choice
point and decoded in the fail instruction. A disadvantage is a slighdy larger code size.t Consider the

following kemc) Prolog for a predicate P with a clauses:
Head :- (C; : C2: ... :; C, : fail).

A single choice point is created for each invocation of £. The set of registers saved in the choice point is

the set of all head arguments that are used in clauses after the first, i.c. C3 through C.. Arguments that

t This is less of 3 problom in the VLS)-BAM since the instruction reorderer merges pairs of single-word loads ino
double-word loads.

112

occur only in clause Cy do not have to be stored in the choice point The set of registers that is restored for
cach clausc is the sct of arguments used in that clause.

Before creating the choice point, the compiler d;:rcfcrcnccs those arguments that it can deduce will
be dereferenced later. This avoids dereferencing the same argument more than once. The set of arguments
1o be dereferenced is derived by checking the type formula corresponding 10 each goal in the body of the
predicate’s definition, and noting whether its arguments have 1o be dereferenced. For example, arithmeuc

operations and relational tests are goals that require their arguments to be dereferenced.

To illustratc the compilauon scheme, consider the following predicate:

-~

pP(A,B,C,D} :- (a(A)
. ;s ¢ {C)

; d(D)

fail

It is eompiled as:

procedure (p/4) .
choice(1/3,{2,3).1(p/4.2)). ; Save registers r(2) and r(3).
jump(a/l).

label(1(p/4,2)).
choice(2/3,(2,n0},1(p/4.3)). ; Restore only register r(2).
move (r(2),r(0)).
Jump (c/1) .

label (1(p/4,3)).
choice(3/3, [no, 3}, fail). ;> Resto:e only register r(3).

move (r(3),r(0)).

jump (d/1) .
The choice instructions do all the choicc point manipulation: choice(1/3,...) creates the choice
point, choice(2/3,...) modifies the address w retum 10 on backtracking, and
choice(3/3, ...) removes the choice point. Register r (0) is not saved in the choice point because

it is not needed in clauses beyond the first. The second and third clauses restore only the regisiers they

need. Register r (1) isnot saved because it is not needed at all.

Each choice instruction contains a list of the registers that it uscd. The length of the list is the same
for all choicc instructions in a predicate. For choices after the first, the aiom no is put in the positions of
registers that do not have 1o be restored. For examplc, the list [0, no, S) mcans that registers £ (0)

and r(5) arc reswored from the first and third locations in the choice point, and the sccond location is not

113

accesscd.

In this example a further optimization can be done by merging the move instructions with the choice

2

tnstructions, i.c.:

choice(3/3, [no, 3}, fail).
move (r(3;,r(0)).

becomes:
choice(3/3,[no, 0] ,fail}.

This is possible because the value Ioaded in a register is determined by its position in the list, not by its

-

number, and because register r (3) isonlyusedtoload r(0).

«

- clause
+ (ypc i
compile a single goal
YA ' in the clause body
specialization
write-once
clause body . transformation
compiler 1
dereference cham
varlist skeleton wransformation
BAM code
1 no
register nify goal
allocator P
yes . v
Y / passing
unification goal
compiler compiler
\ in-line
’4 expansion
BAM code
+ new type '

Figure 5.1 - Structure of the clause compiler

114

3. The clause compiler

The clause compiler converts a clausc from kemnel Prolog form (with type annotations) w BAM
codc. The suructure of the clausc compiler is given in. Figure 5.1. After compiling the goals in the body
there are (wo intermediate results: (1) BAM code in which variables have not yet been allocated to registers
(skeleton codc) and (2) a vaniable occurrence list (the varlise), that contains all unallocated variables in the

skclcton code. The final BAM code is obtained by passing the varlist to the register allocator.
Each goal in the clause body is compiied in four steps. First, three transformations are performed on
the goal: enuy specialization, the wrile-once transformation, and the dereference chain transformation.

-

Then the goal is compiled into BAM code by one of two routines, the unification compiler or the goal com-

piler, depending on whether the goal is a unification or not.

Thesc are ihic imporant blocks in the clause compiler:

(N . The goal compiler. Iis main task is to handle argument passing. Because of the interacuion between
the diffcrent kinds of unbound vaniables, initialized and uninitialized, this results in a case analysis.
In addition, the goal compiler compiles in-line some built-in predicates and the dummy predicates
that were created in the transformation to kemel Prolog.

(2) The unification compiler. Its task is, given a type, 10 compile an explicit unification into the sim-
plest possible code.

(3) The register aflocator. its task is 0 allocatc variablcs to registers in such a way that the number of
superfluous move instructions is minimized. It uses a data structure called the varlist which is gen-
erated by the clause body compiler.

(4) Entry specialization. This auempts to replace each goal in the clause by a faster enuy point,
dcpending on the types known at the call.

(5) Write-once transformation. This transformation is part of a technique for reducing the overhead of
trailing.

(6) Dereference chain transformation. This transformation is necessary to keep the dataflow analysis

and the clausc compiler consistent.

The following sectons give morc details about these each of these blocks. Furst, an example of a clause
compilation is given, with emphasis on the skeleton code, the varlist, and a specification of the register
allocator. This is followed by discussions of the goal éompilcr. the unification compiler, enuy spectaliza-

tion, the wrile-once transformation, and the derclerence chain transformauon.

3.1. Overview of clause compilation and register allocation

This section gives an examplc of how a clause is compiled. Consider the following clause with no types:

a{A.B) :- b(A,C), d(C,B).

Compilation of this clause proceeds in three steps: First the kernel Prolog is compiled to BAM code and a
variable occurrefice list, or varlist. In this example, most of the work in this step is done in the goal com-
piler. The resuliing BAM code is referred to as skeleton code since variables have not yet been allocated w
registers. The varlist is derived from the skeleton code and contains the list of variables and registers in it.
Second, the register allocator uses the varlist to allocate vaniables to registers. Third, after all predicates
and all clauses are compiled, the BAM optimizélion stage improves the code (Chapter 6). The skeleton

code for this clause is:

Create an environment (its size is still unknown).
Load the head arguments into variables A and B.

allocate (X).
move (r (0) ,A).
move (r (1),B).
move (tvar~“r(h},C). : Create an unbound variable and put it in C and D.
move (tvar~“r(h),D). ; C may exist beyond a call, D exists between calls.
pragma (push (variable)) .
push(D,r(h),1).
move (A, r(0)).
move (D, r(1)).
call(b/s2).

pragma (tag(C,tvar}}. ; C has an extra link, with a tvar tag.

move ({C).r(0)). ; Extra indirection to remove the extra link.
move (B, r(1)).
call(d/2).
deallocate(X).
return.

e

Load the parameters of the first call.

No last call optimization in the skeleton code.

The varlist for this clausc is:

116

{pref,r (0} A, : Corresponds to move(r(0),A).

pref,x(1),B,

C.pref.C,D,D, ; Corresponds to the unbound variable in C and D.
pref,A, r(0), :

pref,D, (1),

fence, ; Corresponds to call(b/2).

C,r(0},

pref,B,r(l),

fence] ; Corresponds to call(d/2).

3.1.1. Construction of the varlist

The varlist is coastructed to satisfy thesc conditions:

)

@

3.

@

&)

©

The only contents of the varlist are unbound variables, semporary registers, and the aloms fence
and pt?f. .

The order of variable occurrences is the same in the skeleton code and the varlist.

The atom fence is inseried as a marker at each point where 1emporary variables do not survive.
This corresponds 10 each call(..) instruction in the skelelon code.

Two variables that are preferably allocated 1o the same register are preceded by the aom pref and
called a pref pair. A prefl pair is created when allocating the variables to the same register allows an
instruction to be removed. For example, the move (A, r (0)) instruction can be removed if the
variable A is allocated to register x (0).

A variablc occurs cxactly once in the varlist if and only if it occurs exactly once in the skelcion code.
Such a variable is called a void variable. An instruction containing a void variable may be removed.
A variable occurs more than once in the varlis if and only if it occurs more than once in the skeleton

code.

3.1.2. The register allocator

The register allocator assigns a register (0 cach variabic in the varlist such that there arc no conflicts,

i.c. a single register never holds two values at the same time. The allocator also calculates the size of the

environment (the number of permanent registers) for the allocate and deallocate instructions.

The algorithm is defined in Figure 5.2. 1t assumes that variables are represented as logical variables, ic.

117

procedure register_allocator(VL : varlist);
var Vvo.d . "lln\p . \,pu[. Vp{m . set 0‘- Variablc;;

begin

Viea = { variablc Y | ¥ occurs exactly once in VL };
V X €V 04 do Allocatc cach X 10 xr (void);
Vperm = (vanablc Y | The scquence [Y, fence, ..., Y] occurs in VL };
V X € V,em do Allocate each X to a different p (1)
Environment size := number of clements in Vpem
Vimp := (vanable ¥ 'Y occurs more than once in VL };
Verer = preflec(VL),
while Viem, # @ do begin
while 3X €V, : X is allocatable to r (1) without conflict do begin

.

end;

Allocate X to its preferred register r (1);
Vpn] = vp'c/ - (x];

Viemp 1= Viemp — (X)

Vorey = prefer(VL)

if 3X € Viomp then begin

end
end
end;

Aliocate X to the lowest r (I) possible without conflict;
Vpn[= Voref — (X];

Viemp := Viemp = {X .

Vpres 1= prefer(VL)

function prefer(VL : varlist) : set of variable;

begin

return { variable’Y | The sequence [pref,Y,_Jor [pref,_, Y] occursin VL]

end;

Figure 5.2 — The register allocator

that allocating a variablc t0 a rcgister binds that variable in all sets that contain it It assumcs that there are

an infinitc number of 1emporary and pcrmanent registers. It uses the following correspondence between

variable lifetimes and registers:

)

@

3

A variable that occurs exacuy once is allocated to r (void).

A variable occurring on both sidcs of a fence marker (it crosses a fence) is allocawed w0 a per-

manent regisicr p(I) (alocation in the environment).

A variable that docs not cross a fence and that occurs more than oncc is allocated w a wemporary

regisier r(1).

The algorithm is indcpendent of the write-once ransformation and the dereference chain ransformation.

118

This is possible because the clause compiler is careful 10 feed the allocator a varlist that takes the two

transformations into account.

F)

In the example of the previous scction, the allocator assigns the following values to the variables:

r(0)
p(0)
p(1)
r(l)
2

xoOtwd»
L]

Since both B and C cross a fence, they are allocated 10 permanent registers. Both A and D are allocated to

their preferred registers. The number of permanent variables, X, is 2.

-~

3.1.3. The finalresult

The final BAM code output by the compiler after all ransformations and optimizations (including the .

BAM transformations of chapter 6) is:

allocate(2).
move (r(l),p(0))}.
move (tvar“r(h),r(l)). ; Create an unbound variable and put it in r(1l) and p(l).
move(r(1),.p(l)).

pragma (push(variable)) .

push(r{l),r(h), 1}~

call(b/2).

pragma (tag(p(l),tvar)).

move ({p(1)}.x(0)). ; Indirection due to dereference chain transformation.
move (p(0),r(1)).

deallocate(2).

jump (d/2) . ; Last call optimization converts ‘call’ to "jump’.

Allocate space for two permanent variables.

~

3.2. The goal compiler

Given a goal and type information about the goal, this module sets up the arguments to call the goal,
docs the call, and sets up the return arguments. The main task of the goal compiler is to handle the com-
plexitics that arise when supporting combinations of uninitialized and initialized parameters. The follow-
ing situations arc also handicd:

(1) Duplicate variables. An uninitialized vaniablc that occurs twice in a goal must be initialized before

callitig the goal.

0]

(3)

@)

119

Uninitialized register variables. Passing arguments as uninitialized regisicr vaniables requires
some carc. Thesc variables are not passed into a predicate, but are outputs returned in registers.

Dummy predicates. Several compiler transformations create new predicates as pant of the transfor-

maton. These predicates are only called once, so they are compiled in-line.

Built-in predicates. Somc built-in predicatcs arc translated into in-linc code (Table S.5).

function compilc_goal(G : goal; F : formula; V,; : set) : return (Code : list; Fou : formula; V,p oy : set);
var Voune o Via : set of vanable;
Initcode , Precode , Call, Postcode - list of instruction;
. A lerm;
g.r :{ini, mem reg);
{ : intcger;
begin -
/* Initialize all uninitialized variables that are duplicaicd */
Vininir = { X | F implies (uninit_mem(X) or uninit_reg(X)) }:
Vinie 1= ((vars(G) = V) U Vininis) M dups(G), /* Table 4.6 */
Initcode = listof (V X € V., : Code to initialize the variable X);

/* Pass arguments o the goal and clean up afierwards */
Precode ={),
Posicode =],
for i := 1 to arity(G) do begin
A :=(argument i of goal G);
8 = given_flag(A,F,V,). /* Table 5.1%/
r, :=require_flag(A, G). /* Table 5.2%/
Append precode| g; ,r; } to Precode; [* Tablc 5.3 %/
Append postcode] g; ,r;) to Posicode [* Table 5.4 %/
end,

/* Call the goal */
if (G can be cxpanded in-line) then
Cal! := (in-linc cxpansion of G) /* Tablc 5.5*/
else if (G is a dummy predicate) then
Call := (in-line compilation of G ’s definition)
else if (G does not alter temporary registers) then
Call :=(asimple_call instruction for G) /* Table 3.7%/
else
Call :=(acall instruction for G);
Code = append(Initcode , Precode , Call , Posicode)
end;
Figurc 5.3 -~ The goal compiler

The function compilc_goal(G , F, V,,) defines the goal compiler (Figurc 5.3). Its inputs arc the goal (G), a

type formula (£), and the sct of variables that have a valuc on input (V,;). Its outputs arc a list of BAM

instructions (Codc), the type formula truc on output (F,.,). and the sct of variablcs that have a valuc on

—~

120

output (Vss our).

Each goal has three type formulas associated wiu} it a Require typc, a Before type, and an Afier type.
Thesc types arc optionally given by programmer inpu.l and arc suppicmented by dataflow analysis. The
compiler maintins a table of these types for all predicat. s including buili-ins and intemals. The Require
type gives the types that the arguments being passed to the goal must have, i.c. the goal compiler 1s
required 1o make them truc in all cascs. The Before type gives the types that are true before the call. The
Afier type gives the types that are true after the call retums. No special action ts needed by the goal com-

piler 0 ensurc the validity of the Before and After types.

Compiling a goal is made more complex because the kind of argument needed by the goal may not
be the same as ghe one that is given to it. The goal's Given type (which is valid before the goal and given .
by F in Figure 5.3) must be reconciled with the goal’s Require type. The most common Require and
Given types are the three varietics of unbound variables: uninitialized memory and register vaniables and
initialized variables. This requires a case analysis’ with 3x3 cases for each argument of the goal 10 prop-

erly match the Require and Given types.

Table 5.1 — Calculating the Given flag of an argument
Condition on argument A gi
nonvar(A) ini
var(A) A (F implies uninit_mem(A)) mem
var(A) A ((A € V7)) v (F implies uninit_reg(A))) | reg
var(A) A (A € V,/) ini
Tablc 5.2 - Calculating the Requirce flag of an argumcent
_—— = e ———
Condition on argument A r
requirc(G) implies uninit_mem(A) mem
require{G) implies uninit_reg(A) reg
othcrwisc ini

Table 5.3 - Calculating the precode from the flags
8. r; precode{ g, .7,]
reg reg | [) :
mem req {]
ini reg {]
reg mem [move (tvar“r(h),B),adda{r(h),1,r(h)))
mem mem [[]
ini mem (move (tvar“r(h),B),adda(r(h),1,r(h)))
reg ini (move (tvar~r(h),B),push(B,r(h),1))
mem ini {move (A, [A]) ,move (A, B)]
ini ini | (]

Tablc 5.4 — Calculating the postcode from the Rags
8 r; posicode] g, ,r;)
reg reg [}
mem reg [move (B, [A)))
¢ ini reg unify(4, B)
‘ reg mem [move (B,A))
mem mem [1
ini mem unify(4, B)
reg ini {move (B,A)]
mem ini {]
ini ini {]

Requirc and Given flags r, and g; (with values in {ini, mem, reg}) are associated with each goal
argument for the Require and Given types. Tables 5.1 and 5.2 define how the Require and Given flags are
calculated. The function require{(G) in Table 5.2 is a defined predicate in the compiler that returns the
Require type for any goal. It knows all about built-in and intemal predicates and the results of dataflow
analysis.

Duplicate arguments (c.g. A in the call p(A, A)) are treated specially. An argument that is duplicate
cannot be uninitialized—it occurs in more than one place, so it is not unaliased any more. The goal com-

piler initializes these arguments before doing the case analysis.

Table 5.3 gives the precode, i.e. the code that is generated before the call to set up, and Tablc 5.4
gives the postcode, i.e. the code that cleans up afier the call. To enforce the Require type, in seven of the
nine cases a diffcrent argument B is passed 0 the call instead of the goal's original argument A. For
example, if the Given flag is mem and the Require type is reg, then the compiler must create 2 new vari-
able B of type uninit_rcg(8) to pass to the goal. After the goal rctums, the original argument A and the

returned argument 8 arc unified together. The new variable 8 is created for all combinations of Given and

122

Requirc flags cxcept (reg, reg)and (mem, mem). In these two cascs no precode or postcode is needed.

To simplify the presentation, Figure 5.3 only does pant of what the algorithm implemented in the
compiler docs. The definition of compile_goal in the .ﬁgurc only handles Require and Given types that are
all unintualized vaniables. The actual algonthm handles any types. The type formula £ and the variable
sct V,, arc updated continuously dunng the execution of compile_goal. A variable occurrence list is calcu-
lated for the register allocator. The actual algorithm handles 12 cases for parameter passing instead of 9—

" as an opumization, two vanetics of Given uninitialized register types arc recognized.

Table 5.5 - BAM expansion of intcrnal built-ins
Kemel Prolog BAM instruction
’Scut_load'()()~ move (r(b), X}
“‘Scut’ (X) cut (X)
K S$name_arity’' (X,’'.’,2) test (ne,tlst,X,fail)
‘$name_arity’ (X,Na,Ar) equal ({X]},tatm” (Na/Ar),fail)
‘$name_arity’ (X,Na,0) equal (X,tatm"Na, fail)
‘Stest’ (X, Types) (a sequence of test instructions)
: ' Sequal’ (X,Y) equal (X,Y, fail)
‘Sadd’ (A,B,C) add (A,B,C)
*Ssub’ (A,B,C) sub(A,B,C)
‘Smod’ (A,B,C) mod (A,B,C)
‘Smul’ (A,B,C) mul (A, B, C)
*$div’ (A,B,C) div(A,B,C)
*Sand’ (A,B,C) and(A,B,C)
*Sor’ (A,B,C) or (A,B,C)
*$xor’ (A,B,C) xor (A,B,C)
*S$s1l1l’ (A,B,C) sl1(a,B,C)
‘Ssra’ (A,B,C) sra(A,B,C)
‘Snot’ (A,C) not (A, C)

3.2.1. An example of goal compilation
This section gives a simple example of compilation to show how the goal compiler works in practice.
Consider the following predicate in standard Prolog:
a(X, Y) :- Y is X+1.
This is convenied o kemel Prolog:
a(X, Y) :- ‘Sadd’' (X, 1, Y).

To compilc the call 10 * $add’ /3 it is necessary to pass parametcrs in the right way. In particular, it is

necessary (0 pass the output of the addiuon into variable Y. The built-in * Sadd’ (A,B,C) has the

following types associated with it

Require = (deref (A) ,deref (B) ,uninit_reg(C)).
Afier = (integer (A), integer (B), integer(C), rderef (A), rderef (B), rderef (C)).

From the Require type, the first two arguments X and 1 of * Sadd’ /3 must be dercferenced and the third
argument Y must be an uniniualized register. The Given types of X and Y depend on the type formula for
a(X,Y). Assumc first thai no type is given for a (X, Y). From Tables 5.1 and 5.2, the Given flag for Y
is ini and thc Require flag for Y is reg. From Tables 5.3 and 5.4, the precodc in this case is empty and

the postcodc is a call to unify(4 , 8) to gencrate unification code. The compiled BAM code is:

procedure(a/2).

deref(r(0),x(0)). ; Dereference X.

agd(r(0),3,r(0)) . ; Perform the addition.

deref(r(l1),r(l)). ; Dereference Y.

unify (r(0),r(l).nonvar, ?,fail). ; Unify Y with the result of the addition.
return.

If a(X,Y) has a type then the code can often be simplified. For example, assume that its type is
(deref (X),uninit_mem(Y)), i.e. X is dereferenced and Y is an uninitialized memory variable.

Then the Given flag for Y is mem. The compiled BAM code is:

procedure(a/2).

add(r(0),1,x{0)). ; Perform the addition (X is dereferenced).
pragma (tag(r(l).tvar}).

move (r(0), [r(1)]). ; Bind Y to the result of the addition.
return.

33. The unification compiler

This section gives an overview of the compilation of unification, the optimizations that are done, and

several examples.

3.3.1. The unification algorithm

Given a unification goal and typc information about its arguments, this algorithm gencrates the sim-
plest possible code 10 implement the unification. In the general case, the algorithm builds a uree of instruc-
tions. Each node of the trec has three branches—onc each for read modce and write mode unification, and

onc for failure. The algorithm gencrates dereference instructions if necessary and wail instruciions 10 undo

124

variable bindings when backuracking. It does other optimizations including optimal write mode unification,
type propagation, and depth limiting.

Wrilc mode unification of a term gencrates a block of push instructions that builds the term on the
hecap. Read mode unification of a term is donc scquentially for each of the term's arguments. First it
checks the name and arity of the term. Then the arguments are unified. For arguments that are simple
terms this consists of a single move, equal,or unify instruction. For arguments that are compound

erms the unification algorithm is called recursively.
The function unify(X, Y, F, V) defines the unification algorithm (Figure 5.4 and 5.5). Its inputs
arc¢ the two terms to be unificd (X and Y), the type formala true on input (F), and the set of vaniables that

havc a valuc on input (V). Its outputs are a list of BAM instructions (Code), the type formula true on

output (F,,;), and the set of variables that have a value on output (Vs gur).

* Tlic algorithm does several tasks that are not shown in the figure since they would unnecessarily
complicaic the presentation. The instruction list, the type formula, and lhe> variable set are updated con-
tinuously during the compilation. Before using the value of a variable, it is dereferenced if necessary.
Before binding a valuc 10 a variable. it is trailed if necessary. A variable occurrence list (varlist) is calcu-

lated for the register allocator (Figure 5.2).

33.2. Optimizations

The actual implementation docs four optimizations not shown in Figure 5.4 and 5.5. It does optimal
writc mode unification. It keeps track of terms that are ground and recursively dereferenced 1o avoid com-
piling supcrfluous write modc unifications and dereferences. To reduce code size, it performs the last argu-

ment optimization and the depth limiting transformation.

33.2.1. Optimal write mode unification

The algorithm is modificd 10 build a compound term in writc mode with the lcast number of move
instructions. First the codc for building the main functor with cmpty slots for its arguments is generated.

This is followed by the code for building the arguments and filling in the slots with the comect heap offsets.

function umif{y(X .Y : term; F : formula; V,; : sct) return (Code : list; Fou, : formula; Vs ou : set);
begin :
Code =1].
if (var(X) and var(Y)) then begin
if (F implics (unbound(X } or unbound(Y))) then
Compile a storc insguction
else
Compilc a call to a genera) unification subrouting;
return
end else if (nonvar(X) and nonvar(Y)) then begin
Compile a check that X and Y have the same functor and anity a;
for i := 1 to a do begin
Append enify(X,, Y, F, V)10 Code
end;
return
end if (nonvar(X) and var(Y)) then Swap X and Y
eL}é if (var(X) and nonvar(Y)) then Do nothing;

if (X € V,/) then return unify_wnite(X , Y, F, V),
else begin /* At this point X € Vyy */
if (F implies nonvar(X)) then return unify_read(X,Y ,F,V,/)
else if (F implies var(X)) then return unify_wrie(X,Y,F V.)
else begin
Compile a threc-way conditional branch comparing the tagsof X and ¥;
Call unify_read and unify_wrnitc 10 compile the read and writc mode branches
end
end
end;
Figure 5.4 - The unification compiler: the main routine

This technique was proposed as an optimization over the WAM by André Marién (44]. The examples of

unification given later usc this technique. The justification of the BAM instructions needed for unification

was done with this iechnique (Chapter 3).

3.3.2.2. Last argument optimization

This is an important optimization that significandy reduces the code size. It can be performed when-
ever a compound term has a compound term in its last argument. Without this optimization, the tree gen-
eraicd by the algorithm has the same depth as the term that is compiled. For each level in the tree a new
block of writc mode codc is generated. For lists of n elements this results in O (n?) move instructions.
The optimization reduces the code size 10 O (n) by creating only a single write modc block, and letting all

dcpths of the wree jump into it This optimization was proposed by Mats Carlsson [14). The code for write

0-

126

function unify_write(X, Y: term; F : formula; V,, : sct) return (Code : list; F,. : formula; Vi ow : sct);
begin

/* At this point X is an unbound vanable */

Gencerate a block of instructions to create the term Y on the heap;

Bind X 10 this block (i.c. generate code to dereference X if necessary,

storc a pointer to this block in X, and rail X if necessary)
end;

function uni{y_read(X , Y: term; F : formula; V,; : sct) return (Code : list; £, : formula; Vs ou - SCU).
begin

/* At this point Y is a nonvariable and £ implics nonvar(X) */

Code =1,

Compile a check that X contains a structurc of same functor and arity as Y ;

for.i := 1 to arity(Y) do begin

Appcnd unify(X,- Y, F, V,j) o0 Code

end ‘
end; . .
Figure 5.5 - The unification compiler: read and write mode unification

mode unification of a nested temm s replaced by a single jump instruction to the wnite mode code block of

the outermost term. An example of unification given below uses this optimization.

33.2.3. Type propagation

There arc wwo ways in which propagating type information during the compilation of unification
improves the code. First, during the unification, the algorithm keeps track of the variables that arc ground,
uninitialized, and recursively dereferenced. This information is propagated into the arguments of com-
pound tcrms. The propagation of ground and recursively dereferenced types was added afier measure-
ments of the dawaflow analyzer showed that these types are numerous.

Second, when a new variable is encountered in a term, then the unification compiler has the choice
whether 10 create it as an initialized variable or as an uninitialized variable. It is not always best 10 create
new variables as uninitialized, since this often makes it impossiblic to apply last call opumization. To solve
this problem it is necessary (0 look ahcad in the clause. The variable is crcated as uninitialized only if there

is a goal later in the clause with this variable in an argument position that must be uninitialized.

3.3.2.4. Depth limiting

Because the unification compiler generates a separate read and write mode branch for each functor in
the term that is unified, deeply nested tenms result in a code size explosion. The last argument optimization
{sec abovce) reduces the code size when the nestung occurs in the iast argument. For other cascs, a different
tcchnique is necessary. The unification compiler replaces a deeply nested subterm by a variable, creates
the subterm with write mode unification and docs a general unificauon with the vanable. The depth umit is
set by the compiler option depth_limit (N}, and the default depth is N=2. For example, consider the

following unification where the complicated term z (. . .) is nested deeply:

X=s(t(u(...2(...)...)))

¢

It is replaced b.y a sequence of three unifications:

X=s(t(u(...A...))), B=z(...), A~B
The variable B docs not yet have a value, so the unification B=z (. . .) isexecuted in write mode. A gen-
eral unification is performed for A=B. Since the size of a writc mode unification is linear in the size of the
compound term, this considerably shoriens the code for deeply nested terms. Measurements were done ©
determine the effect of this transformation on execution time. In most cases it is insignificant, e.g. for the
nand benchmark (Chapter 7), a program that contains deeply nestied structures, the difference in execution
ume between depth limits of two and three is insignificam (i.e. only a few cycles out of several hundred

thousand).

33.3. Examples of unification

Consider the following sample clausc:

alA, s(A, [X1X))).

The WAM code for this clausc is (assuming the (wo arguments of the clausc arc in registers r (0) and

r()):

‘procedure a/2 H
get_structure s/2,r (1) ;
unify value r(0) o
unify_variable r(3) ’:
get _list r(3) :
unify variable 1 (2) :
unify valve r(2) ;
proceed H

LT Y

Ss se Np oA, we

128

the clause has two arguments.

unify r(l) with s{A, [XiX]).

unify the first argument with r(0).
load the second argument into r(3).
unify r(3) with [XIX].

load the first argqument into r(2).
unify the second argument with r(2).
return to caller.

Temporary valucs arc stored in registers r(2) and r(3). The exccution ume of this code averaged

over rcad and write mode is 63 cycles on the Xenologic X-1 processor {85], an implcmentation of the PLM

architecture [28). The BAM codce generated for'the same clause is (the pragmas have been left out for clar-

iy):

procedure(a/2).
deref (r(1),r(l)).

switch(tstr,r(l).1(a/2,3),1(a’2,

label (1(a/2,3)).
trail (r(l1)).
move (tstr-h, (r(1)]).
push(tatm” (s/2).h,1).
push(x{0).h,1).
push(tlst”(h+2).h,1).
pad(1l).

label(1(a/2,1)).
move(tvar~h,r(2}).
push(r(2).h,1).
push(r(2),h,I).
return.

label (1(a/2,4)).
equal ([r(l)),tatm" (s/2),fail).;
move ([r(1)+1},x(3)). H
deref(xr(3).r(3)).
deref (r(0),r(0)}.
unify(r(3),xr(0),?,?,£fail). :
move ({r{l1)+2].r¢(0)). H
deref (xr(0),r(0)).

Ss wp ag

s

; dereference r(l).
; three-way branch.

;s write mode for s (A, [X]X)).
conditionally push r(l) on trail stack.
bind s (A, [X1X]) to second argument.
create the term s (A, {X(X]}).

4),.fail).

o Se e

common code for last arg. opt.
create the two arguments of [XIX].

;: read mode for s(A, [XIX)).
check functor & arity of s/2.
load first argument into r(3).

unify first argument with r(0).
load second argument into r(0).

switch(tlst,r(0),1(a/2,6),.1(a/2,7),£f8il). ;; three-way branch.

label (1(a/2,6)).
trail (r(0)).
move (t1st~h, {r(0)]}).
jump(l(a/2,1)). :
label(l(a/2,7)).
move ([r(0)),r(2)).
move ({r(0)+1}),x(0)).
deref(r(0),r(0)).
deref (r(2).1(2)).
unify(r(0),r(2),?,2,fail). :
return.

;s write mode for [XI|X]).

jump to common code (last arg. opt.).
;: read mode for ([Xi|X]).

unify arguments of [XIX]).

Again, the two arguments of the clause are in registers r (0) and r (1) and iemporary vatucs are sored

in registers r (2) and r(3). To reduce the code size, the writc mode code for (X 1X] jumps into the

129

middic of the code for s (A, [X1X)). With this optimizaton the code is 29 BAM instrucuons long (after
transiation and instruction reordering, this is 264 bytes on the VLSI-BAM). The WAM code is only 7
instructions long (17 bytes on the PLM) becausc each i:nsuucu'on encapsulates a choicc. WAM instrucuons
for unification assume the cxistence of a read/wnitc mode bit in the implemenaation, which collapses the

cxecution trec onto itself.

The code size ratio VLSI-BAM/PLM is large for this example. It was hoped during development
that (1) codc cxpansion would be less for other kinds of Prolog code (c.g. calls, parameter passing, back-
tracking), and (2) dawaflow analysis would reduce the complexity of unifications. These intuitions have
been bome out (Chapier 7): the static code size in VLSI-BAM bytes measured for large programs is only
three times that of the PLM, a microcoded WAM with a byte-coded instruction set.

The execution time of the above code on the VLSI-BAM is 25 cycles (measured with a simulator
taking pipeline delays into account and averaged over read and write mode). This is about 40% of the
' c;}clcs nceded for the X-1. This time can be estmated by taking the average execution times of BAM
instructions when translated 1o the VLSI-BAM architecture: unify takes 5 cycles, equal takes 3
cycles, switch, deref, trail, and move from memory take 2 cycles each, push, adda, and all
other move instructions take l cycie each, and pad instructions take 0 cycles because they are collapsed
into the pushes. These estimates are only approximately correct because of instruction reordering optimi-
zauons performed on VLSI-BAM code.

Through programmer annotation or dataflow analysis it is sometimes possiblc to know the type of an
argument at compile-time. For example, sometimes it is known whether an argument is unbound or bound.

Consider the same sample clause again:

a(A, s(A, (XIX))).
Assume it is known that the second argumcent is an uniniualized memory variable. This is expressed with
the following type declaration:

:= mode ((a(A,B):- uninit_mem(B))).

With this type the clause’s codc is only 9 BAM instrucuons long (36 bytes on the VLSI-BAM):

-

procedure (a/2)
move (tstr-h, [x(1)]}).

push(tatm” (s/2).h,1).

push(r(0),h,1).

push(tlst” (h+2),h,1).

pad(l).

move (tvar~h,r(0)).
push(r(0).,h,1).
push(r(0).h,1).
return.

The execution time of this example is 11 cycles.

3.4. Entry specialization

130

: bind s(A,{X|X]) to second argqument.
; create the term s (A, [XIX]).

3

; create the two arguments of [X[|X].

; return to caller.

Fo} each goal in the clause, the clause compiler attempts to replace it with a faster entry point,

depending on the types existing at that point. For example, if it is known that the arguments N and A of the -

predicate functor (X, N, A) arc atomic then a faster version can be compiled.

* Enury specialization is done in both the clause compiler and the datafiow analysis. Doing it in both

places is complementary since the analysis only keeps track of a limited set of types: ground, nonvariable,

uninitialized, and recursively dereferenced. During clause compilation more information is known, for

example, if the goal X<Y occurs in a clause, then afterwards it is known that X<Y is true. Analysis does

not have a representation for this information, but it could be useful for entry specialization.

131
atomic (A)?
uninit (A)?
no yes
uninit (B) ? ‘$_name_<_*1" (A,B) uninit (B) ?
no yes no yes
name (A, B) 'S name_>_*2°' (A,B) *$_name_> 1°'(A,B) '$_name > 1 *2°'(A,B)

Figurc 5.6: Examplc of 2 modal entry tree for enury specialization

- Entry specialization can be done for any predicatc whose definition is not in the program. The sys-
tem has implemenicd this for the buili-in predicaies, but it can be used by the programmer for any library
predicate. For each predicate that has faster entry points, 2 modal_entry declaration is given, along
with type declarations for the fast entry points. These declaration are used in the dawaflow analysis and the
clausc compiler to replace an;r call (o the predicate with a faster enuy point. For example, here is the

modal eatry declaration for the name (A, B) built-in predicate:

:~ modal_entry(name(A,B),
mode (atomic (A),
mode (uninit (B),
entry(‘S name > 1 *2° (A,B)),
entry(’$S name > 1° (A,B))
|
mode (uninit (A},
entry('$ name < *1’(A.B)},
mode (uninit (B),
entry(’S name > *2°(A,B)),
entry(name (A, B))
)
m.

This declaration defines a binary trec, depicted in Figure 5.6. The nodes of the trec are decision points con-
taining a type. If the type is valid then the left suburee is chosen, otherwise the right subtree is chosen. The

leaves of the tree are the entry points. 1 nonc of the types are valid then the lefumost leaf is chosen, which

132

usually is the samc predicate as the original onc. Each of the four fast entry points also has a type declara-
tion:

:- mode (‘S name > 1’ (A,B), {deréf (A),deref (B)), atomic(A),
(list (B) ,ground(B)}), n}.

:- mode (‘S name < *1°(A,B), (uninit (R) ,deref (B)), true,
(atomic (A) ,deref (A),list (B),ground(B)}, n).

:~ mode (‘S name > *2‘ (A, B), (deref (A),uninit (B)), true,
(atomic (A),list (B) ,ground(B),rderef(B)), n).

:~ mode ('S name > 1 *2’' (A,B), (deref(A).,uninit(B)), atomic(A},
) '(list(B),g:ound(B),tderef(B)), n).

These declarations are writicn in a five-argument form that is more general than a standard type declaration

(Appendix A): it gives the entry types (both Requirc and Before) and the exit (Afier) types for the predi-

catc.

3.5. The write-once transformation

In the BAM all unbound variables are kept on the heap. This makes trail checking significantly fas-
ter. However, when combined with the ability to destructively modify the value of permanent variables
(e.g. 10 dereference them and save the dereferenced value in the permanent) it leads 10 several problems.

These problems are all ncady resolved by the write~once transformation.

Putting all unbound variables on the heap means that there are no pointers 10 the environment/choice
point stack; all pointers point to the heap. This reduces trail checking 10 a single comparison with the heap
backurack pointer r (hb) and a conditional push to the trail stack. It is not nccessary to do-another com-
parison to decide whether the variable is on the heap or in an environment. In addition, since all ynbound
variabies are created on the heap there are no ‘‘unsafe variables’ as in the WAM. An unsafe variable is an
unbound variable that is created on the environment and that must be moved w0 the heap (*‘globalized™")

before last call optimization dcallocatcs its memory.

Modifying the valuc of a permancnt variable (c.g. by dereferencing or binding it) cannot be done -
without a trail operation. Indeed, consider the casc where a permancnt dereferences to a nonvariable term.
If the dercferenced value overwrites the original value, then both the original value and its address have to

be trailed since backtracking has to restore the original value. This is expensive, since it has w be done

133

cvery time a permanent is bound or dercferenced.

Onc soluuon to this problem is never to store a dereferenced permancnt back in the environment.

This solves the problem but it is incfficient since a permancnt may have to be dereferenced several imes in
aclausc.

A better solution is to allocate a new permanent on the environment whenever the value of an old
onc needs to be changed. The new permanent gets the aew value and the old permanent is unchanged. As
a result, all permanent vaniables are oaly given values once, so they are called *“write-once™ permanents.
Because it is not changed, the old permanent does not have o be trailed. Al the cost of a slightly bigger
environm;:m. this completely elimiqau-,s the need 1o trail permancnt variables. This allocation scheme is
implemented in {hc clause compiler.

To summarizce:

(1) ° All unbound variables are created on the heap, and unbound permanent variables in an environment
always point to the heap.

(2) The wrail check is a single comparison with r (hb) and a conditional push 10 the trail stack (2 cycles
on the VLSI-BAM).

(3) Permanent variables arc only given a single value in a clause. Whenever a permanent would be
changed, a new one is allocated and given the modified valuc.

(4) Register allocation must allocate a differcnt permanent register for -each permanent variable in the

clause. It is not allowed 10 use the same register for two variables whose lifetimes do.not overlap.

This solution is implemented in the clause compiler by mapping a permanent variable onio a new variable
whenever its value would change. The register allocator treats the new variables just like any other, and
allocates them (0 temporary Or pcrmanceni registers.

The main disadvantage of this technique is that cavironments arc larger. For example, consider a

clause of the form:

e(A.E) :~ a(A,B), b(B,C), c(C,D), d(D.E).

where variables are chained from onc predicatc 10 the next In the WAM, it is allowed 10 allocatc

134

permancnt vaniables such that vaniables whosc lifetimes do not overlap are allocated 10 the same permanent
register. For the above cxample, this requires just two permanent registers, so the total environment size is
four words (it also includes rcgisters r (e) and ;:(cp)). Only two permanents are needed no matter
how long the chain of body goals is. This mctho& requires trailing of the permanent’s values, because
backtracking must scc the ongmnal values. This scheme is consistent with the oniginal implementation of
thec WAM, i.c. binding pcrmancmt vanables on the environment and globalizing unsafe variables to ensure

COrrccIness.

In contrast, thc number of permanent vanables nceded by the write-once technique increases linearly
with the length of the chain. For the above example, this requircs four permanent variables, so the total
environment sizc is six words. The total memory usage is increased by less than this amount because no

-

trailing of pcrmanents s needed.

This is an example of a wade-off between memory space and execution time. The extra memory
space needed is comparable 1o the increased size of the trail stack if there is no trail check for permanent
variables. Since this is small, 1 have opted to decrease execution time at the expense of larger environ-
ments. By kecping all unbound variables on the heap and by impiementing permanent variables as write-

once variables, pcrmancnt variables can be dereferenced and bound without trailing, and the cost of trailing

heap variables is reduced 1o a single comparison and conditional push.

3.6. The dereference chain transformation

This rransformation is needed to maintain consistency between the datafiow analysis and the clause
compiler. A ncw unbound variable (of either initialized type or uninitialized memory type) is created as a
pointer to a memory location. Binding the variable stores the new value in the location. However, the
regisicr(s) that originally containcd the unbound variable sull have pointers to the locaton. One level of

indircction is necded 1o access the valuc.

135

Just before the call 1o a(A)

argument A: | tvar o1 tvar 1 b
Just afier the call to a(A)
argumént A: | tvar ;] tstr —
% .
y .
Extra link

————

between A
and its value X
-
value boundwo A — \\
[\

Figure 5.7 - The necd for the dereference chain transformation

To scc why this is necessary and what it implics, consider the exccution of the clause main (Figure 5.7):

main :- (i) a(A), (i) write(A).

a(A) :- A=s(t{a),u(b).v(c)).
The relevant situation can be seen in the transition from (i) (ust before the call 10 a (A)) 1o (i) (just after
the call 10 a (A)). At(i)a new unbound variablc A is created on the heap. At (i) the variabic A has been
bound 10 a valuc. The imponant point is that A still hasa tvar tag, and that one indirection is needed W0
access the tstr pointer. The extra link exists because the creation of A and its binding arc done in

separatc sicps. This is true for both initialized unbound varniables and uninitialized memory variables.

[

136

This situation is not a problem unless dataflow analysis determines that A is returned as a derefcr-
enced value. In that casc there is a conflict between what the analysis deduces and what the clause com-
piler thinks is truc. Therce arc two ways 10 solve this p;oblcm: either weaken the analysis so that it will not
dcducc a dereference type in this case, or modify the cl.ause compiler 10 ensure that the vanable is derefer-
enced by doing an cxtra indirection whenever the variable is accessed afier it is bound. The compiler
implements the second solution since dereferencing is a time-consuming operation and it is important 10
derive as many dercference types as possible. The trade-off between doing an extra indirection for a value

that may not be accessed later and doing an extra dereference loop seemed 10 be a fair one.

The'compiler insens code to do this indirection whenever the variable is accessed after it is bound.
In addition 10 mainwaining consistency with the analysis, this spceds up later dereferencing. There is a
minor intcraction with the register allocator—for correctness, variables that get an extra indirection are not

allowed to be pref pairs.

Chapter 6

BAM Transformations

Pl

1. Introduction

After compiling the program from kemel Prolog into BAM code, a scries of optimizing transforma-
tions is performed. The wansformations performed are: (1) duplicatc code elimination, (2) dead code elim-
ination, (3) jump elimination, (4) label elimination, (5) synonym optimization, (6) peephole optimization,
and (7) determinism optimization. This chaplc} first gives two definitions and then presents the transforma-
tions.

€

2. Definitions

The following 1wo definitions are useful:

Definition DB: A disiant branch is a branch that always transfers control 10 an instruction
other than the next in the instruction siream.

According 10 this definition, there are exactly four distant branches in the BAM: fail, retumn, jump, and

switch. All other branches do not satisfy the definition since they can fall through to the next instruction.

Definition BB; A contiguous block is any sequence of instructions that terminates with a dis-
tant branch.

According to this definition, a contiguous block can start with any instruction and ¢an contain conditional
branches with a fall through case. Therefore the code contains a large number of overlapping contiguous
blocks. This is useful (0 get maximum optimization when looking for contiguous blocks that satisfy some
property. The individual transformations mentioned in this chapter will usually only look at contiguous

blocks satisfying centain constraints, for example, the contiguous blocks that begin with a label.

3. The transformations

Seven transformations (Figure 6.1) arc donc on the BAM code generated for each predicaie by the
kemnel to BAM compilation stage. A transitive closurc is performed on the sequence of seven transforma-

tions, i.e. thcy arc applied repeatedly until there are no more changes. Each transformation is carcfully

137

138

coded 10 result in code that is better (i.e. faster or shorier) than its input, so the closure operation ter-

minates.

BAM code

I_Duplicatc code elimination J

L Dead code elimination I

L Jump climination]

| Labelcliminaion |

L Synonym optimization]

L Pecphole optimization j

LDe(crminism optimization I

Optimized BAM code

Figurc 6.1 ~ BAM Transformations

3.1. Duplicate code elimination

All duplicate contiguous blocks except the last occurrence are replaced by a jump to the last one.
This optimization is also known as cross-jumping. It tightens up loose code generated by the type earich-
ment transformation (Chapter 4). Tt is implcm;n(ed by first creating an table indexed by all contiguous
blocks that (1) begin with a label, (2) do not contin any other labels (but they arc allowed to contain
branches), and (3) are not degenerate blocks that consist of only a single jump, return, or fail instruction

(but a single switch is allowed). The tablc conuains the label of the last occurrence of the block. All con-

139

tiguous blocks in the code, including those that do not begin with labels, are looked up in the wable and
replaced by jumps if they are not the last occurrence. The result of this optimization is to reduce code size

at the price of slightly slowing down execution.

3.2. Dead code elimination

All code that is not rcachable from the entry point of a predicate is removed. This is donc in two
steps: First, all the labels that are reachable through any number of branches are caiculated by doing a aran-
sitive closurc. Sccond, a linear traversal of the code is donc and the instructions following a distant branch

up 10 the next reachable label are eliminated.

33. Jump elimination

Rearrange contiguous blocks to minimize the number of jump, call, and remmn instrucuons. This
optit;\ization is a variant of the jump chaining oplimization. A transitive closure is done on the following
replacements:

(1) Replace a jump by the contiguous block it points to if the block is only pointed 0 by one branch or if
the block is shorter than a preset threshold. The threshold can be changed by a compiler directive.

The replacement is not done if the block is part of write mode unification or unification with an atom,

since these two cases are hurt by the transformation.

(2) Replace a call 10 a dummy predicate by the code for the predicate if it is straightline codc, i.e. its
code consists only of non-branches, call instructions, and branches all of whose destinations are

fail. The predicate’s code must be terminated by a returnor fail instruction.
(3) Replace a conditional branch to a conditional branch by a new conditional branch if possible. The
only case currently recognized is:

test (ne,tvar,V,L).

label (L) .
switch(Tag.V,fail,L2,L3).

which causes the st instruction (o be replaced by:

140

switch(Tag,V,L1,L2,L3).
label(L1).

(4) Replace a branch one of whose destinations is a jump or fail instruction by a new branch identical 10
the original onc except that the destination label is replaced by the destination label of the jump or by

{ail.

3.4. Label elimination

Remove all labels that are not jumped to by any branch in the code. This is done in two steps: First,
the sct of all destinations of all branch instructions is collected. Second, the labels not in this set are

removed from the code.

3.5. Synonym optimization

This wransformation is similar to suwength reduction. It docs a linear maversal of the code and
replaces every addressing mode by the cheapest addressing mode that contains the same value. For exam-
ple, if p(1) and r(0) conwin the samc value, then an occumrence of p (1) can be replaced by
r (0). The following cost order (from cheapest to most expensive) is used by default and is based on the

cost in the VLSI-BAM architecture:

Addressing modc ~ Reason for cost Overhead
(cycles)
r(b) Promotes creation of cut (r (b}) which is a no-op 0
(1) Usable without overhcad 0
Atom Requires 1di (load immediate) instruction i
Tag~X Tagged pointer creation needs lea (load effective address) instruction 1
p(I) Permanent variable needs Id (Joad) instruction 1
(r(n) Indirection needs Id (load) instruction 1
fr(I)+N) Offset indirect needs 1d (load) instruction 1
[p(1)) Indircct permanent needs 2 Id (load) instructions 2
{p (1) +N} Offset indircct permanent nceds 2 1d (load) instructions 2
r (void) Most cxpeasive because it must not be changed -~

The rcason given for the cost describes the instructions necessary to implement the addressing mode
for the VLSI-BAM. Morc informaton on the instruction sct of the VLSI-BAM is given in {34]. The
addressing mode r (void) is created by the register allocator. It coresponds 10 2 void variable, ic. a

variablc that occurs only once in a clause and whosc valuc thay thercfore be ignored. It is made the most

141

expensive because it must remain unchanged so that peephole optimization can remove the instruction con-
taining it.

The synonym optimization is implemented by maintaining a set of equivalence classes at all points of
the program, where cach cquivalence class is a set of addressing modes whose values are identical. Labels
in the code cause the sct of equivalence classes to be resct to empty. A future extension of this module

could climinate this resuriction by following the labels and performing a transitive closure, resufting in a

slight pcrformance gain.

3.6. Peephole optimization

A transitve closure is performed on a peephole transformation with a window of three instructions.
The set of paticms was determined empirically by looking at the compiler’s output and adding patterns 0
fix obvious incfficiencics. Each pattern is implecmented as a single clause in the optimizer. The pauemns

are onc, two, and three instructions long. However, the window is extended © arbigary size for one pat-

tern, a generalized lasi call optimization:

call (N/A).
deallocate(J). %.Arbitrary number of deallocate instructions.

deallocate{J).
return.

which is rransformed 10:

deallocate(l). % Same sequence as above.

deallocate(J).
Jump (N/A) .

3.7. Determinism optimization

A choice instruction is removed if it is followed by a sequence of instructions that cannot fail and a
cut instruction. This simplc-looking optimization significandy increascs determinism—many predicales
(c.g. Warren's quickson benchmark) containing a cut become deterministic that would otherwisc be com-

piled with a choice point.

A similar optimization is performed by the simplification ransformation of kemel Prolog (Chapicr
4). For example, it transforms (¢,p ; q) ino (!,p). The determinism opumization exiends
simplification—if the goal s compiles into insuuc&ons that cannot fail then it is able w0 successfully
optimize the BAM codc of (s, !,p : q) éven when simplification cannot delerminc that s always

succeceds.

Consider this predicate, which contains no cut:

:- mode{(max(A.B,C) :~ uninit(C))). % C is unbound and unaliased.
max(A, B, C) :- A<B, B=C. $ No cut here.
max(A, B, C) :~ A=C.

1t is compiled into the following BAM code (slightly simplified for readability):

procedure {max/3) .
deref (r(0),x(0)).
deref(r(l1),xr(l)).
jump(lts.x(O),t(l).l(max/B,l)). % Conditional branch A<B.
move (r(0). [r(2))). % A<B is false.
return.

label (1 (max/3,1)}).
choice (172, {0.2].1(max/3,4})). % A<B is true.
move(r(l),{r(2}]).
return.

label (1 (max/3,4)) .
choice(2/2,[0,2),fail).
move (r (0), (x(2)])) .
return.

When A<B is true, a choice point is created to try both clauses. If a cut is inseried into the first clause:

.~ mode ((max(A,B,C) :- uninit{C))). % C is unbound and unaliased.
max(A, B, C) :- A<B, !, B=C. % Cut is added here.

max(A, B, C) :- A=C.

then the code becomes deterministic:

143

procedure (max/3).
move (b, r(3)).
deref (r(0),r{0)).
deref(r(l),r(l)).
jump (1ts, r(0),r (1)}, 1(max/3 4)). Conditional branch A<B.
move (r{0),{r(2)]).
return.

label (1 (max/3,4}).
cut(r(3)).
move (r(1).[r(2)}).
return.

Measurcments done by Touati [70) justify this optimization. He finds that it makes about half of all choice

point operations avoidablc.

Chapter 7

Evaluation of the Aquarius system

i

1. Introduction

This chapter atempts 10 quantify some of the ideas that were introduced in previous chapters. The
evaluation process is as important as any other pant of the implementation of a large software sysiem. Dur-
ing the design phasc it guides the design decisions. After the design is complete, it shows what features of
the design contributed most 10 its effectiveness ‘and it gives a foundation for starting the next design. Quan-

titative measurements arc the most reliable guideposts one has during the design. For example, it is easy 0

imagine many possible compiler optimizations, but most of these have an insignificant effect on perfor-

mance. It is more difficult 10 discover optimizations that are widely applicable.
Five evaluations are performed in this chapter:
(1) The absolute performance of the system.
(2) The effectiveness of the dawaflow analysis.
(3) The effectiveness of the determinism transformation.
(4) A brief comparison with a high performance implementation of the C language.
(5) A bug analysis, summarizing the number and types of bugs encountered during development.
Table 7.1 describes the benchmarks used in this chapter and their size in lines of code (not including com-
ments). The benchmarks were chosen as examples of realistic programs doing computations representative
of Prolog. This includes benchmarks that spend much of their time executing bqiu-i'n predicaies because
this behavior is common in real-world programs. The benchmarks are divided into two classes, small and
large, depending on whether the compiled code with analysis is smaller or farger than 1000 words. The
benchmarks log10, ops8, times10, and divide10 arc grouped together and referved 10 as deriv becausc they

are closely relaicd. The benchmarks arc available by anonymous fip to arpa.berkeley.edu.

All VLSI-BAM numbers in this chapter were obtained from the VLSI-BAM instruction-level simu-

lator and include cache effects [17]). The simulaied system has 128 KB instruction and data caches. The

144

145

Table 7.1 - The benchmarks
Benchmark Lincs Description
arcverse 10 | Naivc reversc of a 30-element list
tak 15 [Recursive integer arithmetic.
gsort 19 |Quicksort of a 50-clement list.
logl0 27 | Symbolic differentiation.
ops8 27 | Symbolic differentiation.
tumesl0 27 | Symbolic differentiation.
divide10 27 | Symbolic differentiation.
senalisc 29 |Calculate serial numbers of a list.
quecens_8 31 |Solve the eight queens puzzle.
muy 33 | Prove a theorem of Hofstadter’s **mu-math."*
zebra 36 | A logical puzzle bascd on constraints.
sendmorc 43 | The SEND+MORE=MONEY puzzie.
fast_mu 54 | An optimized version of the mu-math prover.
query 68 | Query a static database (with integer arithmetic).
poly_I10 86 | Symbolically raise a polynomial 10 the tenth power.
<rypt 64 | Solve a simple cryptarithmetic puzzle.
meta_gsort 74 | A meta-interpreter running qsort.
prover 81 | A simple theorem prover.
browsc 92 | Build and query a database.
unify 125 { A compiler code generator for unification.
flaten 158 | Source transformation to remove disjunctions.
sdda 273 | A dataflow analyzer that represents aliasing.
reducer_nowrite| 298 | A graph reducer based on combinators.
reducer 301 | Same as above but wriles its answer.
boyer 377 | An extract from 2 Boyer-Moore theorem prover.
simplc_analyzer| 443 | A dawaflow analyzer analyzing qsort.
nand .| 493 | A logic synthcsis program based on heuristic search.
chai_parser 1138 | Parse a set of English sentences.
chat 4801 |Natural language query of a geographical database.

caches arc direct mapped and use a write-back policy. They are run in warm start: each benchmark is run
twice and the resulis of the first run arc ignored. The cache overhead is gl-ulst for tak compiled without
analysis, and for poly_10, simplc_analyzcr, chat, and boycr. For these programs it ranges from 9% 10 24%.
For meta_gsort, reducer, and chat_parser the overhead ranges from 2% 0 3%. For all other programs the

overhead is less than 0.5%.

2. Absolute performance

This section compares the periformance of Aquarius Prolog with Quintus Prolog. Tables 7.2 and 7.3
compare the performance of Quintus Prolog version 2.5 running on a Sun 4/65 (25 MHz SPARC) with that
of Aquarius Prolog running on the VLSI-BAM (30 MHz). The ‘‘Raw Speedup’’ column gives the ratio of

the speeds. The *‘Noemalized Specdup’’ column divides this ratio by 1.8. Our group is in the process of

146

porting the Aquarnius system to the MIPS, MC68020, and SPARC processors. It was not possible to get

numbers for thesc systems in time for the final version of this dissentation.

The normalization factor of 1.8 takes into accm:ml the Prolog-specific extensions of the VLSI-BAM
(a factor of 1.5) and the clock ratio (a factor of 30/25 = 1.2). The general-purpose base architecture of the
VLSI-BAM is very similar to the SPARC. The effect of the architectural extensions of the VLSI-BAM
{34] has been carefuily measured (o be about 1.5 for large programs. However, for the small programs the
compiler is ablc to remove many Prolog-specific features, so that the normalized speedup numbers in Table

7.2 arc an undcresumate.

Table 7.2 - Performance resulits for small programs (in ms)
Benchmark Size Quintus v2.5 Aquarius Nommalized Raw
' (lines) (Sun4/65) (VLSI-BAM) Speedup Speedup

deriv 1.143 0.0913 70 1 125

log10 27 0.153 0.0168

ops8 27 0.239 0.0189

times10 27 0.345 0.0257

divide10 27 0.406 0.0299
nreverse 10 1.62 0.136 6.6 119
qson 19 4820 0.173 155 278
serialise 29 3.10 0.447 39 69
query 68 23.7 3.57 3.7 6.6
mu 33 7.04 0.808 48 8.7
fasi_mu 54 9.08 0.932 5.4 9.7
queens_8 31 212 1.13 10.4 18.7
uak 15 1120. 254 24.5 4.1
poly_10 86 417. 35.5 6.5 1.7
sendmore 43 490. i 38.4 71 . 128
zcbra 36 423. 84.1 28 50
gecometric mean 6.7 12.1
standard deviation of mcan 1.9 33

For the small benchmarks, the normalized speedup is somewhere between 6.7 and 12.1 (Table 7.2).
The normalized speedup of the large benchmarks without built-in predicates is about 5.2 (Table 7.3).
Speedup is better for the small benchmarks because dataflow analysis is able to derive better types for
many of them. For somc of them (such as tak and nreverse) it derives essentially perfect types. The small
programs show a large variation in specdups. The tak benchmark docs well because it refies on integer
arithmetic, which is compiled efficiendy using uninitalized register types. The zebra benchmark docs
poorly for two reasons. First, it does a large amount of backtracking, which is inhcrendy limicd by

. Tncmory bandwidth. Second, it works by successively instantisting arguments of a compound dawa

147

Table 7.3 - Performance results for large programs (in ms)

Benchmark Size Quintus v2.5 Aquarius Normalized Raw
(lines) (Sun4/65) . (VLSI-BAM) Speedup Speedup
No built-ins
prover 81 867 [0.921 5.2 9.4
meta_gsort 74 49.6 471 5.8 10.5
nand 493 1733 13.7 70 12.7
reducer_nowrite 298 312. 37.2 46 84
chat_parscr 1138 1157. 129.5 5.0 89
browsc 92 5450. 741. 4.1 74
geometric mean 52 94
standard deviation of mean . 0.5 0.8
Including built-ins
unify 125 183 140 7.2 130
flatten 158 13.6 1.42 53 96
sdda 273 29.5 294 56 100
crypt . 64 217 400 30 54
simple_analyzer 443 180. 334 30 54
reducer 301 405. 49 50 9.0
chat 4801 3100. 699. 25 44
boyer n 4870. 1360. 20 36
geometric mean 38 69
| sandard deviationofmean 07 13 |
| geometric mean (all large programs) 44 79
Table 7.4 — Time spent in built-in predicates
Benchmark Time (%) Most used built-ins
prover B + T
meta_gsort o |-
chat_parser o |-
nand <] -
browse 1 |length2
rcducer 40 |write/1, compare/3, arg/3
unify 40 |arg/3, functor/3, compare/3
cnypt S0 |div/2,mod/2, *2
boyer 60 |arg/3, functoe/3
simple_analyzer| 70 |compare/3, sor/2, arg/3
sdda 70 jwrite/l, = /2, compare/3
flatten . 80 |write/1, sory2, compare/3, name/2, functoc/3, arg/3

structure. The analysis algorithm does not have a representation for this operation, so it cannot be optim-
ized.

The built-in predicates in Aquarius Prolog are not greatly faster than those in Quintus Prolog, since
many of the Quinus built-ins are not written in Prolog, but in hand-crafied assembly. The Aquarius system
shows betier speedup over Quintus built-ins written in Prolog (such as read/1 and write/1)and the

entry specialization transformation also speeds up the built-ins. Table 7.4 gives the percenage of time that

148

the benchmarks spend exccuting inside built-in predicates. This number does not take into account built-
ins that arc implemented as in-line code (arithmetic test, addition and subtraction, and type checking). The

table also gives the most ofien used buili-in predicates for each benchmark in decreasing order of usage.

Scveral benchmarks use built-in predicates significantly. The normalized specdup for these pro-
grams is 3.8, somewhat less than programs without built-ins (Table 7.3). The normalized speedup for all
large programs is 4.4 (the reducer benchmark is counted only once in this average). The boyer benchmark
docs poorly becausc it relies heavily on the arg/3 and functor/3 built-in predicates. The chat
benchmark uses these built-ins as well as others including setof/3, but it was not possible 10 measure
the fraction of execution time spent in them. The sdda and flatten benchmarks do well parily because the

write/1 built-in is much faster in Aquarius than in Quintus.

3. The effectiveness of the datafiow analysis

This section evaluates the effectiveness of the dawaflow analysis with three kinds of measurements.
Tables 7.5, 7.6, and 7.7 give the effect of the dataflow analyzer on performance and code size, and the
efficiency of the analyzer both in terms of its execution time and the fraction of arguments for which types
can be deduccd.

For a representative set of realistic Prolog programs of various sizes up to 1,100 lincs, the analyzer is
able 1o derive type information for 56% of all predicate arguments. It finds that on average 23% of all
predicaic arguments are uninitialized, 21% of arguments are ground, 10% of argumcnts are noavariables,
and 17% of arguments arc recursively dereferenced. The sum of these three numbers is greater than 56%
since it is possibic for an argument to have multiple types, e.g. it can be ground and recursively derefer-
enced at the same time. Doing analysis reduces execution time on the VLSI-BAM by 18% for programs

without built-ins and static code size by 43% for all programs.

Table 7.5 gives the cxccution time in microseconds of the benchmarks for the VLSI-BAM compiled
without analysis (No Modcs) and with analysis (Auto Modes). The last three columns give the rauos of the
auto modcs to the no modcs times. To give an idca how built-ins affect the results of analysis, Table 7.5

gives (wo performance ratios for the lasge benchmarks: the first for all programs, and the second for

Tablc 7.5 - The effect of dataflow analysis on performance
Benchmark No Modes (ps) Auto Modes (jis) Auto/No Modes
Time Deref Trail :Time Deref Trail Time Deref Trail
deriv 146 18.2 55 913 0.3 0.1{063 0.02 0.02
log10 259 23 07] ° 168 0 0
ops8 28.5 33 10 189 0.3 0.1
times 10 39.7 5.1 1.3 25.7 0 0
dividc10 51.7 1.5 25 299 0 0
arcverse 308 79.7 311 136 0 0 {044 000 000
gsort 378 109 25.1 173 (] 0 1046 000 0.00
senalisc 512 758 123 447 449 071087 0.59 0.05
mu 992 154 . 480 783 139 3471079 090 0.72
fast_mu 1120 148 38.0 932 644 791083 044 021
queens_§ 1700 271 679 1090 334 0 064 012 000
query 5180 560 174 3570 0 0 1069 000 0.00
tak 71700 13800 3180 | 25400 0 0 {035 0.00 0.00
poly_10 60400 6280 1740 35600 1080 209 059 0.17 0.12
zebra | 84600 11400 86| 84100 11400 84{099 1.00 0.98
average 066 029 0.19
prover 1070 110 294 820 51.2 591076 047 020
unify 1600 198 339 1400 138 19.3/ 088 0.69 0.57
flaucn 1460 149 99 1420 133 6.5{097 090 0.66
sdda 3180 368 369 2940 296 2131092 0.81 0.58
crypt 4090 319 104 4000 262 104 |098 082 100
meta_qsort 5330 674 182 4450 417 6301083 062 0.35
nand 18700 2290 542 13400 902 2291072 039 0.04
simple_analyzer] 35400 3880 316 31900 3080 762{090 0.79 0.24
reducer 48800 6680 1210 44900 5580 731 1092 084 061
chat_parser 151000 19400 6990 | 131000 11200 4360 }10.87 058 0.62
browse 820000 117000 28600 | 741000 96700 20400 {090 0.82 0.71
boyer 1410000 73900 6340 1360000 75000 6270 (097 102 0.99
averagc 089 0.73 055
average (no built-ins) 0.82 0.58 0.39

programs that do not use built-ins significantly (the first five of Tablc 7.4). Data iniualization times are
subtracted from dcriv. nreverse, qsort, serialise, and prover. The table also gives the time each benchmark

spends performing dercferencing (Deref) and trailing (Trail).

The time spent in dereferencing and wrailing, two of the most common Prolog-specific operations, is
significantly reduced by analysis. For the small benchmarks analysis reduces dereferencing from 17% to
5% of exccution ume, and trailing from 4% 10 0.6% of execution ume. This is because they arc simple
enough that analysis is ablc 10 deducc most rclcw;anl modcs. For the large benchmarks derefercncing is
reduced from 11% 10 9% and wrailing is reduced from 2.3% 10 1.3%. Thesc results are less extreme for two

rcasons: the large benchmarks usc built-ins, which arc unaffecicd by analysis, and the analyzer loses infor-

150

Table 7.6 - The effect of dataflow analysis on static code size
Benchmark NoModes Auto Modes Auto/No Modes
(instructions) (instructions)
tak 80 . 4 042
nreverse 287 139 048
queens_8 472 146 0.31
qsort 485 215 0.44
deriv 5891 1123 0.19
logl0 1464 2
ops8 1469 277
timesl10 1479 287
dividelQ 1479 287
query 1425 403 0.28
serialisc 860 520 0.60
mu 1169 731 0.63
fast_mu 1165 718 0.62
« | zebra 1271 814 0.64
. poly_10 3023 893 030
average 045
crypt 1239 1027 0.83
browse 1863 1150 062
prover 4395 1318 030
meta_gsort 2484 1424 0.57
flatten 4267 2335 0.55
unify 6326 4210 0.67
sdda 6526 5031 0.77
simple _analyzer 9057 5836 064
nand 23406 6654 0.28
reducer 11726 7682 0.66
boyer 24862 9136 037
chat_parscr 33557 20516 0.61
average 0.57

mation duc 10 its inability 1o handle aliasing and its limited typc domain.

Tablc 7.6 gives the static code size (in VLSI-BAM instructions) for the benchmarks compiled
without analysis (No Modes) and with analysis (Auto Modes). The effect of analysis on code size is
greater than the effect on performmance. This follows from the compiler's implementation of argument
selection: when no modes arc given, the compiler generates more code to handle arguments of different
types. M analysis derives the type then the code becomes much smaller. The code size compares favorably
with other symbolic processors, and is low enoug;n that there is no disadvantage to having a simple instruc-
tion set. With the analyzer, code size on the VLSI-BAM is similar 0 the KCM [6], about three times the

PLM, 2 micro-codcd WAM [28], and about one fourth the SPUR using macro-cxpanded WAM [8).

151

Table 7.7 - The efficiency of datafiow analysis l

Benchmark Args Preds Time Modes (fraction of arguments)
(scc) ° uninit ground nonvar rderef any

denv 12 8 119. 033 067 000 067 100
log10 3 2 29
ops8 3 2 30
umcesl0 3 2 30
dividetQ 3 2 29
tak 4 2 23 025 075 000 075 100
Nreverse S 3 22 040 060 000 060 1.00
gsort 7 3 34 043 057 000 057 100
qucery 7 5. 42 086 014 000 0.14 100
zcbra 10 6 35 010 000 050 000 060
serialise 16 7 42 038 0.19 006 0.19 063
queens_8 16 7 60 031 069 000 069 1.00
| mu 17 8 96 012 047 000 0.12 065
poly_10 27 1 16 033 067 000 067 100
- | fast_mu 35 7 2 029 055 005 055 089

average 035 048 006 045 089

mcta_qsorn 10 7T 1 030 000 0.10 0.00 040

. crypt 18 9 12 000 061 011 056 072
. prover 22 9 13 027 009 027 0.14 068

' browse 42 14 20 024 045 005 040 074
boyer 62 25 31 027 000 006 000 0.34

flaien 83 28 34 027 008 0.16 0.11 052

sdda 87 32 45 018 007 017 008 044

reducer 134 41 S0 013 010 005 012 029

unify Cf1ar 29 84 0.18 0.19 0.14 021 056

nand 180 43 5900 026 067 000 028 093

simple_analyzer|270 71 77 023 010 008 0.10 041
chat_parser 744 156 263 044 019 002 009 067

average 023 021 010 017 056

Table 7.7 presents data about the efficiency of the datafiow analyzer. For each benchmark it gives
the number of predicate arguments (Args) where a predicate of arity N is counted as N, thc number of
predicates (Preds), the analysis time (Time), the fraction of arguments that are uninitialized (uninit), ground
(ground), nonvariable (nonvar), or recursively dereferenced (rderef), and the fraction of arguments that
have any of thesc types (any). Analysis time is measured under Quintus release 2.0 on a Sun 3/60. Itis
roughly proportional 10 the number of arguments in the program, except for the nand benchmark. The sum
of the individual modcs columns is usually gtum than the any modcs column. This is because arguments
can have multiplc modcs—they can be both recursively desefesenced and ground or nonvariable. Unini-
tialized arguments arc present in great quantitics, even in Jarge programs such as chal_parscr and

simple_analyzer. Comparing the small and large benchmarks, the fraction of derived modes decreascs for

152

the large programs for each type except nonvariable. For both the small and large benchmarks the analyzer

transforms one third of the uninitialized modes into uninitialized register modes.

4. The effectiveness of the determinism transformation

To show what parns of the determinism transformation of Chapter 4 are the most effective, it is useful
10 definc a spectrum of determinism extraction algorithms ranging from purc WAM to the full mechanism
of the Aquarius compiler. To do this, the Aquarius mechanism for extracting determinism is divided into

three orthogonal axes:

(1) The kind of tests used to extract determinism. These tests are separated into three classes: expficit
unifications (e.g. X=a, X=s(Y)), arithmetic tests (e.g. X<Y, X>1), and type checks (e.g.
var(X), atomic (X)). Pure WAM uses only explicit unifications with nonvariables. Aquarius

uses all three kinds.

(2) Which argumcnt(s) are used to extract determinism. Pure WAM uses only the first argument of a
predicate. Aquarius uses any argument that it can determine is effective. It uses enrichment heuris-
tic 2 (Chapter 4 section 6.2).

(3) Whether the factoring .uansfonnation is performed (Chapter 4). Factoring significantly increases
determinism for predicates that contain many ideatical compound terms in the head. Pure WAM

does not assume factoring. Aquarius does factoring by default.

These three parameters deflinc a threc-dimensional space of detcrminism extraction algorithms. Each algo-
rithm is characterzed by a 3-tuple depending on its position on each of the axes (Table 7.8). This results in
3 x2x2 =12 data points. Pure WAM selection corresponds 10 the first element in each column, denoted
by the 3-wple (U, ONE, NF). The Aquarius compiler’s selection corresponds to the last element in each

column, denoted by the 3-tple (UAT, ANY, F).

For each of these 12 points three paramelcrs were measured: execution time, static code size, and compile
time. All programs are compiled with dataflow analysis and executed on the VLSI-BAM. All averages are
geometric means. It was only possible 10 do measurements for nine benchmarks: nreverse, qsort, query,

mu, fast_mu, queens_8, flatien, meta_gsont, and nand. Therefore the variance of the results is large and

153

Tablc 7.8 - Three dimensions of determinism extraction

Kind of test Which argument Factoring
Explicit unifications only (U). First argument only (ONE). No factoring (NF).
Explicit unifications and arithmetic | Any argument (ANY). Do factoring (F).

tests (UA).
Explicit unifications, arithmetic
wests, and type checks (UAT).

they can be relicd upon only to indicate wends. The benchmarks were written for the WAM., The meas-

urcments comparc only the relative powers of different kinds of determinism extraction in the BAM. They

do not compare the WAM and BAM direcily. ’

— — percent slowdown

Aquarius selection | UAT, ANY, F] 0= relative to Aquarius

e

_ —difference between
9 & two vertices

[UA ANY.E] 2

8 0 10 11
UA,ONE, F

1

WAM selection | U, ON'E. 16

13

Figure 7.1 - The effectiveness of dewerminism exwraction

Figurc 7.1 depicts the 12 points as a lattice. Each vertea denotes onc particular combination of deter-
minism extraction. The top clement corresponds o Aquarius sclection and the bottom clement corresponds

0 WAM sclection. Each cdge connccts two points that differ by one step in onc coordinatc. The vertices

154

arc marked with the percent stowdown compared to Aquarnius selection. The edges are marked with the

percent difference in exccution time between their two endpoints.

The mean speedup for the nine benchmarks when going from WAM selection (U, ONE, NF) ©0
Aquarius sclection (UAT, ANY, F) is 16%. There is no significant change in mean code size for any of the

twelve data points. The vanance of the compile time is 1o large o make any conclusions about it.

The mean specdup of factonng is 8%. However, factoring is the only ransformation that sometimes
slows down exccution, The factoring heuristic.should be refined to look inside compound arguments 1o see

whecther there is any potential determinism there. If there is none, it should not factor that argument.

Or;c way of finding a sct of effective extensions for determinism extraction is by traversing the lanice
from bottom to ‘top, and picking the edge with the greatest performance increase at each vercx. Starting at
WAM selection (U, ONE, NF), the first extension is the ability to use arithmetic tests in selection. This
speeds up execution by 3%. The second extension is the ability to select on any argument. This speeds up

exccution by another 3%. The third extension is the factoring transformation. This speeds up execution by
8%. At this point, the resulting performance is within 2% of Aquarius selection.

The resulting veriex (UA, ANY, F) seems to be 3 particularly good one, i.e. the ability to select on
arithmetic tests in any argument works well together with factoring. Leaving out any one of these three
extensions reduces performance by at least 8%. A plausible reason for this result is that the benchmarks do
many arithmetic ~ICSlS on the arguments of compound tcrms and it is only thc combination of the three

extensions that is ablc to compile this deterministically.

S. Prologand C

The performance of Aquarius Prolog is significantly better than previous Prolog systems. A question
one can pose is how the system comparces with an implementation of an imperative language. This section
presents 2 comparison of Prolog and the C language on several small programs. The comparison is not
exhaustive—therc arc so many factors involved that 1 do not attempt 10 address this issuc in its cnurety. |
intend only to dispel the notion that implementations of Prolog are inherendy slow because of its expres-

sive powcer. A scrious comparison of two Janguages rcquires answering the following questions:

)

(&)

3

@

155

How can implementations of different languages be compared fairly? This comparison concentraics
exclusively on the language and ignores features extemal to the language itself, such as user inter-
face, development time, and debugging abilities. One method is to pick probiems (o be solved, and
then to write the *‘best’” programs in each lan.guagc to solve the problems, choosing the algorithms
appropriate for each language. The disadvantages of this approach arc (a) different languages are
appropriate for different problems, (b) how docs onc decide when onc has writen the “*best”™ pro-

gram? To avoid thesc problems I have chosen to compare algorithms, not programs.

Which algorithms will bc implemented in both languages? Ideally one should sclect 2 range of algo-
rithms, from those most suited o imperative computations (e.g. array computations) 1o those most
suited to symbolic computation (c.g. large dynamic data objects, pattern martching). Prolog is at an
advantage at the symbolic end of the spectrum because to implement symbolic computatons in an
imperative language we effectively have to implement more and more of a Prolog-like system in that
language. The programmer does the work of a compiler. At the imperative end of the spectrum, the

efficiency of Prolog depends strongly on the ability of the compiler to simplify its general features.

What programming style will be used in coding the algorithms? I have made an artempt 10 program
in a style which is aéceptable for both languages. This includes choosing data 1ypes in both
languages that arc nawral for each language. For example, in Prolog dynamic data accessed by
pointcrs is easiest 10 express, whercas in C static arrays are easiest (0 express. It is possible to use

dynamic data in C, but it requires more effont and is uscd only for those asks that need it specifically.

How are architecwral features taken into account? For faimess both implementations should run on
the same machine. The measurements use the same processor, the MIPS, for both implementations.
However, a general-purpose architccture favors the execution of imperative languages, since it has
been designed to execute such languages well. This shows up for algorithms whose Prolog implc-
mentation makes hcavy usc of Prolog-specific features. To allow the reader 10 make an informed.
judgment, the wablc does not correct for thi§ facL It is imporant w bear in mind that by adding addi-
tional architectural fcawres comparsing 5% of the chip arca to the VLSI-BAM (a pipelined processor

similar in many ways (0 the MIPS), the performance increases by 50% for programs that usc

156

Prolog-specific featurcs (compiled with the current version of the Aquarius compiler). Architectural

studies donc by our rescarch group suggest that these features could be added to a future MIPS pro-

Cessor.
Table 7.9 compares the execution time of small algorithms coded in both C and Prolog on a 25 MHz MIPS
processor. Measurements are given for tak, fib, and hanoi, which are recursion-intensive integer functions;
and for quicksont, which sonts a 50 element list 10000 times. Prolog and C source code is available by
anonymous fip 10 arpa.berkeley.edu. In all'cases the user time 1s measured with the Unix “*time”” utility.
The C versions are compiled with the standard MIPS C compiler using both no optimization and the optim-
1zation fevel that produces the fastest code (usually level 4). The Prolog versions are compiled with
dauafiow anz\lysis and translated into MIPS assembly by a panial translator. The same algorithms were .

encoded for both Prolog and C, in a nawral style for each. The natural style in C is 10 use static data,

whercas in Prolog all data is allocated dynamically.

Table 7.9 ~ Comparing Prolog and C (in sec)
Benchmark Aquarius MIPS C
. Prolog Unoptimized _ Optimized
1ak(24,16.,8) 12 2.1 1.6
fib(30) 1.5 20 1.6
hanoi(20,1,2,3) 1.3 1.6 1.5
quicksort 28 3.3 14

Recursive functions arc fast in Prolog for three reasons: last call optimization converts recursion into
itcration, environments (stack frames) arc allocated per clause and not per procedure as in C, and outputs
are returned in registers (they arc of uninitialized register type). Lasi call opuimization allows functons
with a single recursive call 10 execute with constant stack space. This is essential for Prolog because recur-
sion is its only looping construct. The MIPS C compiler does not do last call optimization. C has con-
structs to denote iteration explicidy (e.g. **for’” and “‘while"" loops) so it does not need this optimization as
strongly. The timc for £ib(30), the only recursive integer function that is not ablc to usc last call
optimization in Prolog, is closcst to C.

The swo quicksort implcmentations are carcful 10 usc the same pivot elements. The C implemceata-
tion uscs an array of intcgers and docs in-place sorting. The Prolog implcmentation uses lists and creatcs a

ncw soried list. The list represcatation nceds two words to storc cach daa element. Coincidenmally, the

Prolog version is twice as slow as the C version, the same as the ratio of the data sizes.

157

Table 7.10 - Classification of bug types

Kind

Descripuon

Mistake

e Locai

e Global

A part of the compiler that is incorrect due 10 an oversight. Whea many mis-
takes occur related 10 onc particular area, then they become hotspot bugs.

A problcm that can be fixed by changing just a few predicates. For example, it
may be duc 10 a typographical error or a simple oversight in a predicaie
dcfinition.

A problem that can be fixed only with many changes throughout the compiler.
This kind of mistake is more fundamenual. For examplc, avoiding the gencra-
tion of BAM instruclions with doublc indireclions requires many small
changes.

39

a7

&)

Incomplete

A pan of the compiler whose first implementation is incomplete because of in-
complete understanding of its purpose. Later use stretches it beyond what it
was intended 10 do, so that it needs to be extended and/or cleaned up. For ex-
amplc, the updating of type formulas when new information is given.

19

Hotspot

.e Conceptual

o Physical

A critical area of the compiler that requires much thinking to get correct. Its
importance is much greater than its size would indicate. Such an area gets
morc than its share of mistakes.

A concept in the compiler design whose implementation is prone to many mis-
takes. For cxample, the concept of uninitialized variables.

A pant of the compiler’s text. For example, symbolic unification in the
dataflow analyzer and parameter passing in the clause compiler both resulted
in many bugs.

16

13)

(14)

Mixturc

An undesired interaction beiween separaie parts of the compiler. Despite
carcful design, oficn the separate transformations and optimizations are not
complciely orthogonal, but interact in some (usually limited) way. For exam-
plc, maintaining consistcncy between the datafiow analyzer and the clause
compiler. This leads to the dereference chain ransformation, which in its tum
leads 10 the problem of interaction between it and the preferred register alloca-
tion.

16

Improvement

A possiblc improvement in the compiler. This is not stricily 2 bug, but it may
point 10 an imporiant optimization that could be added 10 the compiier. For
exampie, a possible code optimization or reduction in compilation time.

Understanding

A problem due to the programmer misunderstanding the required input o the
compilcr. This is not stricdy a bug, but it may point to difficulties in the
compiler’s user interface ot in the language. For example, the difference
between the terms _is_ and _<_ in Prolog. The first is a variable and the
sccond is a structurc.

6. Bug analysis

This secuion gives an overview of the number and types of bugs encountered during compiler

devclopment. A bug in a program is a problem that leads 10 incorrect or undesired behavior of the pro-

gram. ln the compilcr, this means incorrect or slow compilation, or slow exccution of compiled code.

158

Table 7.10 classifics the bugs found during development [76). (The percentages do not add up w 100%
becausc bugs can be of morc than onc typc.)

The development of the compiler started early 1988 and proceeded until late 1990. An extensive
suite of test programs was maintained to validate vcn';ions of the compiler. The test suite was continually
extended with programs that resulted in bugs and with programs from extemnal sources. Records were kept
of all bugs reported by users of the compiler other than the developer. A otal of 79 bug reports were seat
from January 1989 to August 1990 by five users. The frequency of bug reports stayed constant neas four
per month. Staustical analysis is consistent \\;ilh the distribution being random with no time dependence,
i.e. the number of bug repors fluctuates, but there is no increasing or decreasing wrend. Therefore the
development imroduced bugs at about the same rate as they wérc reporied and fixed. This coincidence can
be explained by postulating that the time spent developing was limited by the necessity of having to spend
time debugging 0 maintain a minimum level of robustness in the compiler. This is consistent with my per- -

sonal experience during the development process.

Chapter 8

Concluding Remarks and Future Work

**So many things arc possible just as long
as you don’t know they'rc impossible.””
-- Norton Juster, The Phaniom Tollbooth

1. Introduction

In this chapter { recapitulate the main resul¢ of this disseqtation, distill some practical lessons lcamed

in the design process, talk about the caveats of language design, and give directions for future rescarch.

2. Mai‘n result

My tﬁesis is that logic programming can execute as fast as imperative programming. For this pur-
pose 1 have implemenied a new optimizing Prolog compiler, the Aquarius compiler. The driving force in
the compiler is to specialize the general mechanisms of Prolog (i.e. the logical vaniable, unification,
dynamic typing, and backwracking) as much as possible. The main idcas in the compiler alt. the develop-
ment of a new abstract machine that allows more optimization, a mechanism to generate efficient code for
deterministic predicates (converting backtracking w conditional branching), specialization of unification
(encoding each occurrence of unification in the simplest possible way), and the use of global dataflow
analysis to derive types.

The resulting sysicm is significantly faster than previous implementations and is competitive with C
on programs for which dataflow analysis is able 0 do sufficiently well. It is about five times faster than

Quintus Prolog, a popular commercial implementation.

3. Practical lessons

During the design of this compiler 1 have found four principles uscful.

(1) Simplicity is common. Most of thc timc, only simplc cascs of the general mechanisms o the
language arc used. For cxample, most uscs of unificatica arc memory loads and stores. Many of

these simple cases are casily detected at compile-time.

159

160

(2) Use the design time wisely. There are many possible optimizations that one can implement in a
compiler of this sort. To get the best results, rank them according to their estimated performance
gain relative to their implementation effort, and only impiement the best ones. Do not be distracted

by clever ideas unless you can prove that they are effecuve.

(3) Keep the design simple. For each optimization or ransformation, implement the simplest version
that will do the job. Do not auempt to implement a more general version unless it can be done
without any extra effort. It is easy to bccgmc entangled in the mechanics of implementing a complex
opumizatvon. Often a simple version of this optimization achicves most of the benefits in a fraction
of the time.

@ Document everything, including bugs. Documentation is an extension to one’s memory and it pays -
for itself quickly. The mental effont spent in writing down what one has done results in a beuer

. recollection of what happened. In this design, I have maintained two logs. The first is a file in chro-
nological order that documents each change and the reason for it. The second is a dircctory contain-

ing bug reports contributed by the users of the compiler and brief discussions of the fixes.

The first three of these principles are corollaries of what is sometimes called the **80-20 rule'': 80% of the
results are obtained with 20% of the effort. Using this principle consistently was very important for my

work and for the BAM project as a whole.

4. Language design

The Prolog language is only an approximation to the ideal of logic programming. During this
research, our group has grappled with some of the deficiencies of Prolog. There are deficiencies in the area
of logic: Prolog’s approximation to negation (i.c. negation-as-failure) is unsound (i.c. it gives incorrect
results) when used in the wrong way. Prolog's impiementation of unification can go inw infinitc loops
when creating circutar terms. The default control flow is o rigid for dawa-driven programming.

Therc are deficiencies in the arca of programming: The correspondence between a program and its
execution cfficiency is not always obvious. Unification is only ablc 10 access the surface of a complex data

structure, Because the clauses of a predicaic arc writien scparatcly, many conditions have w0 be repeated or

161

extra predicates have to be defined. There is a sense in which Prolog is a kind of assembly language.

All of the above problems have solutions, some of which have been implemented in existing systems
and in the Aquanus system. However, for three reasons [have resisted the impulse to change the language
more than just a litle. Furst, of all logic languagcs, the Prolog language has the largest and most vigorous
user community, and this is a resource | wanted to wap. There are many programs written in Prolog, in van-
ous styles, and I wanted to sec if this existing pool of ingenuity could be made to run faster. Second, it is
unwisc 10 change morc than one component of a system at the same time, especially if they can interact in
unpredictable ways. That is, onc should not design a new language and 1 compiler for it at the same time.
Third, 1 do not decm myself compeient yet to design a language. [belicve in the rule of bootstrapped com-
petence: Before writing a compiler, writc programs. Before designing a language, write compilers. Com-

petence in each task is limited by competence in its prerequisite.

The best languages are those which distill great power in a small sct of features. This makes such
languages uscful as tools for thought as well as for implementation. Practical aspects such as how efficient
it can be implemented are as important in a good language design as theoretical aspects. A good language
is theoretically clean (i.e. easily understood) as well as being efficientdy implementable. Examples of such
languages arc Pascal (many a;gorithms are specified in an Pascal-like pseudo-code), Scheme, and Prolog.
To create such a language, a person must have completely digested a set of ideas as well as have a large

amount of practical expericnce. This is a difficult combination—it is easy to gloss over the areas onc docs

not know well.

S. Future work

The goal of achicving parity with imperative languages has been achieved for the class of programs
for which dataflow analysis is ablc 10 provide sufficicnt information, and for which thc detcrminism is

accessibic through built-in predicates. To further improve performance these limits must be addressed.

To guide the removal of thesc limits it is important to build large applications and swdy the interac-
ton between programming style and the implementation. This is a problem of successiv.: refinement. A

morc sophisticated implcmentation catalyzes a new style of programming, which in its tum catalyzcs a new

162

implementation, and so {orth. The first step in this process was the development of the first Prolog com-
piler and the WAM. The Aquarius system is only the second siep. It is able to generate efficient code from
programs written in a more logical style than standard Prolog. However, the himits of this style are not yet
undersood as they are in the WAM. Further work ir; this area will lead 10 a successor 0 Prolog lhél is

closer to logic and also efficiently implementable.

5.1. Datafiow analysis

When writing a program, a programmer commonly has a definitc intention about the dawia’s type
(intending predicates to be called only in cenain ways) and about the daia’s lifetime (inending data 10 be
used only for a {imited period). Because of this consistency, I postulate that a datafiow analyzer should be

able to derive this information and a compiler should be able to take advantage of it

There has been much good theoretical work on global analysis for Prolog, bul few implementations,
and fewer still that are part of a compiler that takes advantage of the information. Measurements of the
Aquarius system show that a simple dataflow analysis scheme integrated into a compiler is already quite
useful. However, the implementation has been restricted in several ways to make it practical. As programs
become larger, these restrictions limit the quality of the results. | hope the success of this experiment

encourages others to relax thesc restrictions. For example, it would not be too difficult to:

. Extend the domain to represent common types such as integers, proper lists, and nesicd compound
terms. This is especially important for gencral-purposc processors.

° Extend the domain 10 represent variable aliasing exptlicitly. This avoids the loss of ir;fon‘nalion that
affects the analyzer.

. Extend the domain to represent data lifetimes. This is useful to replace copying of compound terms
by in-place desuructive assighment. In this way dynamically allocated data becomes static. The term
*‘compile-time garbage collection'” that has becn uscd (0 describe this process is a misnomer; what
ts desircd is not just memory recovery, but to preserve as much as possibic of the old value of the
compound term. Often a ncw compound term similar w the old once is crcawcd at the same timc the

old onc becomes inaccessible. Destructive assignment is uscd 10 modify only those parts that arc

163

changcd.

. Extend the domain 10 represent types for each invocation of a predicate. For exampie, the analyzer
could keep track not only of argument types for predicate definitions, but of argument types for.goals
insidc the dcfinitions. This is useful to implement multiple specialization, i.c. 0 make scparate
copics of a predicate called in several places with different types. For the chat_parser benchmark,
making a scparaic copy of the most-used predicate for each invocation results in a performance

improvement of 14%.

5.2, Determinism

The second arca in which significant improvement is possible is determinism extraction. The
Aquarius compiler only recognizes determinism in built-in predicates of three kinds (unification, arithmeuc
wsts, and type checking). Often this is not enough. In many programs, user-defined predicates are used w0

choose a clausc.

References

1. H. Ait-Kaci, The WAM: A (Real) Tutorial, DEC PRL Report Number S, January 1990. o
2. ALS Prolog. Version 1.0, Applicd Logic Systems, Inc, 1988.
3. M. Auslandcr and M. Hopkins, An Overview of thc PL.8 Compiler, SIGPLAN Notices '82 ®

Symposium on Compiler Construction Vol. 17, 6 (1982).
4. BIM Prolog\Version 2.5 ,BIM, Everberg Belgium, Feb. 1990.
5. 1. Beer, The Occur-Check Problem' Re.visixcd. Journal of Logic Programming Vol. 5,3 (Sept. 1988), o

PP- 243-261, North-Holland.
6. H. Benker, J. M. Beacco, S. Bescos, M. Dorochcvsky; T. Jeflrc, A. Pohimann, J. Noye, B. Polerit_:.

A. Sexton, J. C. Syre, O. Thibault and G. Watzlawik, KCM: A Knowledge Crunching Machine, 16th ®

International Symposium on Computer Architecture, May 1989, pp. 186-194.
7. W. Bledsoc and R. Hodges, A Survey of Automated Deduction, Exploring Ariificial Intelligence:

Survey Talks from the National Conferences on Artificial Inielligence, 1988, pp. 483-543. o
8. G. Borriello, A. Cherenson, P. Danzig and M. Nelson, RISCs vs. CISCs for Prolog: A Case Swdy,

2nd International Cor;/erence on Architeciural Support for Programming Languages and Operating

Systems (ASPLOS 1), Ocrober 1987, pp. 136-145. d
9. K. A Bowen, K. A. Buettner, 1. Cicekli and A. K. Turk, The Design and Implemenuation of a High-

Speed Incremental Ponable Prolog Compiler, 3rd International Conference on Logic Programming,

July 1986, pp. 650-656. ¢
10. M. Bruynooghe and G. Janssens, An Instance of Abstract Interpretation Integrating Type and Mode

Inferencing (Extended Abstract), Sth International Conference and Symposium, 1988, pp. 669-683. °
1. W.R, Bush, G. Cheng, P. C. McGeer and A. M. Despain, An Advanced Silicon Compiler in Prolog,

1987 IELLE International Conference on Computer Design: VLS! in Compuers and Processors,

October 1987, pp. 27-31. e
12. R.Carlson, The Bowom-Up Design of a Prolog Architecture, Report No. UCB/CSD 89/536, Master's

Report, UC Berkeley, Junc 1989.

L

164

M

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24,

25.

165

M. Carlsson, Freeze, Indexing, and Other Implementation Issues in the WAM, 4th International
Conference on Logic Programmu:.g Vol. I (May 1987), pp. 40-58, MIT Press.

A" Carlsson, Private Communication, Logic Programming *88, August 1988.

M. Carlsson, On the Efficiency of Optimising Shallow Backtracking in Compiled Prolog, 6:h
International Conference on Logic Programming, Junc 1989, pp. 3-16.

M. Carlton, B. Holmer and P. Van Roy, The Implementation of a Graph Reducer in VAX 8600
Microcode, CS255 Final Project, Prof. Y - Pau, UC Berkeley, December 1986.

M..Carllon, J. Pendleton, B. Sano, B. K. Holmer and A. M. Despain, Cache & Multiprocessor
Support i? thc BAM Microprocessor, 4th Annual Parallel Processing Conference, April 1990.

J. Chané and A. M. Despain, Semi-Intelligent Backtracking of Prolog Based on A Static Data ‘
Dependency Analysis, 2nd Symposium on Logic Programming, July 1985.

J. Chang, High Performance Execution of Prolog Programs Based on A Suatic Data Dependency
Analysis, Report UCB/CSD No. 86/263, Ph. D. Thesis, UC Berkeley, October 1985.

D. Chen and H. Nguyen, Prolog on SPUR: Upper Bound To Performance Of Macro-Expansion
Method, CS252 Final Prdject, UC Berkeley, May 1987.

W. V. Cirrin, Parallel Unification Scheduling in Prolog, Report UCB/CSD No. 88/415, Ph. D. Thesis,
UC Bcerkceley,; April 1988.

J. Cohen and T. J. Hickey, Parsing and Compiling Using Prolog, Transactions on Programming
Languages and Systems Vol. 9 (April 1987), pp. 125-163.

P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints, 4th ACM Symposium on Principles of
Programming Languages, January 1977, pp. 238-252.

S. K. Dcbray and D. S. Warren, Automatic Mode Inference for Prolog Programs, 3rd Symposium on
Logic Programming, Scptember 1986, pp. 78-87.

S. K. Dcbray, Static Analysis of Parallcl Logic Programs, 5tk International Conference on Logic

Programming, August 1988, pp. 711-732.

26.

27.

28

29.

30.

31

32,

33.

3s.

36.

37

8.

166

T. P. Dobry, Y. N. Patt and A. M. Dcspain, Design Decisions Influencing the Microarchitecture for a
Prolog Machine, Micro 17, Qctober 1984.

T. P. Dobry. A. M. Despain and Y. N. Pau, Performance Swudies of a Prolog Machine Architecture,

121h International Symposium on Computer Architecture, June 1985.
T. P. Dobry, A High Performance Architecture for Prolog, Kluwer Academic Publishers, 1990.

SEPIA (Standard ECRC Prolog Integrating Advanced Features) Version 3.0, ECRC (European
Computer-Industry Rescarch Centre), Munich Germany, 1990.
R. Haygood, A Prolog Benchmark Suitc for Aquarius, Report No. UCB/CSD 89/509, UC Berkeley,

April 1989.

<

R. Haygood, Aquarius Prolog User Manua!l and Aquarius Prolog Implementation Manual, UC
Berkeley, Spring 1991 (to appear).

B. K. Holmer, The Design of Instruction Set Architectures for High Performance Prolog Execution,
Thesis Proposal, October 4, 1988.

B. K. Holmer, Measurements of General Unification, Computer Science Division, UC Berkeley,
March 1989.

B. K. Holmer, B. Sano, M. Carlion, P. Van Roy, R. Haygood, J. M. Pendleton, T. Dobry, W, R.
Bush and A. M. Despain, Fast Prolog with an Extended General Purposc Architecture, 17th
International Symposium on Computer Architecture, May 1990, pp. 282-291.

B. K. Holmer, Automatic Design of Prolog Instruction Sets, PhD. Thesis (in preparation), Expecied
May 1991.

D. Jacobs and A. Langen, Accuraie and Efficient Approximation of Vanable Aliasing in Logic
Programs, North American Conference on Logic Programming ‘89, October 1989, pp. 154-165.

G. Kildall, A Unificd Approach to Global Program Optimization, ACM Symposium on Principles of
Programming Languages, January 1973, pp. 194-206.

F. Kluzniak, The *“Marscillc Interprewer’*—a personal perspective, /mplementations of Prolog, 1984,

pp. 65-70.

39.

40.

41.

42.

43.

45,

46.

47,

48.

49,

50.

51

167

H. Komatsu, N. Tamura, Y. Asakawa and T. Kurokawa, An Optimizing Prolog Compiler, Logic
Programming ‘86, June 1986, pp. 104-115.

R. Kowalski, Logic for Problem Solving, Elsevier North-Holland, 1979.

P. Kursawe, How to Invent a Prolog Machine, 3rd International Conference on Logic Programming,
July 1986, pp. 134-148.

J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1987.

D. Maier and D. S. Warren, Ce;mf)uling with Logic - Logic Programming with Prolog,
Benjamin/Cummings, 1988.

A. Marien, An Optimal Intermediate Code for Structure Creaiion in a WAM-based Prolog
Impleme.ma:ion, Katholicke Universiteit Leuven, May 1988. |
A. Marien and B. Democen, On the Management of Choicepoint and Environment Frames in the '

WAM, North American Conference on Logic Programming, October 1989, pp. 1030-1047.

A. Marien, G. Janssens, A. Mulkers and M. Bruynooghe, The Impact of Abstract Interpretation: an
Experiment in Code Generation, 6th International Conference on Logic Programming, June 1989,
pp. 33-47.

K. Marriou and H. Sondergaard, Bouom-Up Abstract Interpretation of Logic Programs, 5th
Internatignal Conference on Logic Programming, August 1988, pp. 733-748.

M. Mcicr, Compilation of Compound Terms in Prolog, North American Conference on Logic
Programming, October 1990, pp. 63-79.

C. S. Mellish, Awiomatic Generation of Mode Declaraiions for Prolog Programs (Drafi),

Department of Artificial Intelligence, University of Edinburgh, August 1981.

C. S. Mcllish, Some Global Optimizations for a Prolog Compiler, Journal of Logic Programming
Vol. 1 (1985), pp. 43-66, North-Holland.

H. Mulder and E. Tick, A Performance Comparison Beiween the PLM and an MC68020 Prolog
Processor, 4th International Conference on Logic Programming Vol.] (May 1987), pp. 59-73, MIT

Press.

52.

53.

54.

55.

56.

57,

S8.

59.

61.

62.

63.

65.

168

H. Nakashima and K. Nakajima, Hardware Architecture of the Sequential Inference Machine: PSI-Ii,
Symposium on Logic Programming, August 1987, pp. 104-113.

R. A. O'Keefe, Finite Fixed-Point Problems, 41k International Conference on Logic Programming
Vol. 2 (May 1987), pp. 729-743, MIT Press. .

Y. N. Patt and C. Chen, A Comparison Between the PLM and the MC68020 as Prolog Processors,
Repont UCB/CSD No. 87/397, UC Berkeley, January 1988.

F. C. N. Percira and D. H. D. Warren, Definite Clause Grammars for Language Analysis—A Survey

of the Formalism and a Comparison with Augmented Transition Networks, /aternational Journal of

Ar}{ﬁcial Intelligence Vol. 13, 3 (May 1980), pp. 231-278, North-Holland.

]

F. C. N: Pereira and S. M. Shieber, Prolog and Natural-Language Analysis, Center for the Study of -

Language and Informaton (CSLI), Lecwre Notes Number 10, 1987.

D. A. Plaisted, A Simplified Problem Reduction Format, Arificial Intelligence Vol. 18 (1982), pp.

227-261.

Quintus Prolog Version 25, Quintus Computer Sysicms, Inc, January 1990.

P. B. Reintjcs, A VLSI Design Environment in Prolog, Sth International Conference on Logic
Programming, August 1988, pp. 70-81.

V. P. Srini et al, VLSI Implemcniauon of a Prolog Processor, Stanford VLSI Conference, March
1987.

V. P. Srini er al, Design and Implementation of a CMOS Chip for Prolog, Report UCB/CSD No.
88/412, UC Berkeley, March 1988.

L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 1986.

Sicstus Prolog version 0.5, Swedish Institutc of Computer Science (SICS), August 1987,

K. Taki, Parallel Logic Programming dand Execution on thc Multi-PSI—A Progress Report of

Parallel Inference Systems and Parallel Processing (preseniation), 1COT, March 1990.

N. Tamura, Knowlcdge-Bascd Optimization in Prolog Compiler, ACM/IEEE Computer Society Fall

Joint Conference, Novembcer 1986.

66.

67.

68.

69.

70.

71.

72,

73.

74.

75.

76.

1.

78.

169

A. Taylor, Removal of Dercferencing and Trailing in Prolog Compilation, 6tk Iniernational
Conference on Logic Programming, Junc 1989, pp. 48-60.

A. Taylor, LIPS on a MIPS: Results from a Prolog Compiler for a RISC, 7th International
Conference on Logic Programming, Junc l990..

E. Tick and D. H. D. Warren, Towards a Pipclined Prolog Processor, Symposium on Logic
Programming, February 1984, pp. 29-40.

E. Tick, Studics in Prolog Architectarcs, Technical Report No. CSL-TR-87-329, Computer Systems
Laboratory, Stanford University, Junc 1987.

H.a Touai and A. Despain, An Empirical Study of thc Warren Abstract Machine, Symposium on
Logic Pn')gramming. August 1987, pp. 114-124.

H. Touati, A Report on FGCS'88, UC Berkeley, January 1989.

A. K. Turk, Compiler Optimizations for the WAM, 3rd International Conference on Logic
Programming, July 1986, pp. 657-662.

P. Van Roy, A Prolog Compiler for the PLM, Report UCB/CSD No. 84/203, Master's Report, UC

Berkelcy, November 1984,

P. Van Roy, B. Demoen and Y. D. Willems, Improving thc Execution Speed of Compiled Prolog
with Modes, Clausc Selection, and Determinism, TAPSOFT "87 — Springer-Verlag Lecture Notes on
Computcer Science Vol. 250, March 1987, pp. 111-125.

P. Van Roy, An Intermediate Language to Support Prolog’s Unification, North American
Conference on Logic Programming *89, Ocwber 1989, pp. 1148-1164.

P. Van Roy, Can Logic Programming Execute as Fast as Imperative Programming?, Ph.D. Thesis,
Expected December 1990.

P. Van Roy. Detailed Chronological Log of Bugs, Fixes. and Improvemenis in the Aquarius
Compiler, UC Berkeley, 1990.

P. Van Roy and A. M. Despain, The Benefits of Global Dauflow Analysis for an Opumizing Prolog

Compiler, North American Conference on Logic Programming “90. October 1990.

79.

80.

81.

82.

83.

84.

85.

170

P. Voda, Trilogy version 1.0, Complete Logic Systems, Inc, Scpiember 1987.

D. H. D. Warren, Applied Logic ~ Its Use and Implemeniation as a Programming Tool, Ph.D. Thesis,
University of Edinburgh, also SRI Technical Report 290, 1977.

D. H. D. Warren and F. C. N. Percira, An Efficient Easily Adaptable System for Interpreting Nawral
Language Queries, American Jouwrnal of Computational Linguistics Vol. 8, 34 (July-December
1982). pp. 110-122.

D. H. D. Warren, An Abstract Piolog lnstruction Set, Technical Note 309, SRI International
Anificial Intclligence Center, October 1983.

D.‘ S. Warren, S. Dietich and F. Pereira, The SB-Prolog. System, Version 2.2, SUNY at Stony Brook
(presenily contact S. K. Debray, University of Arizona, Dept. of Computer Science), March 1987.

R. Warren, M. Hermenegildo and S. K. Debray, On the Pracucality of Global Flow Analysis of
Logic Programs, 5th Internationat Conference and Symposium on Logic Programming, August 1988,
pp. 684-699.

Xenologic Reasoning System Manual, Xenologic, Inc., 1988.

171

Appendix A

User manual for the Aquarius Prolog compiler

1. Introduction

The Aquarius Prolog compiler reads clauses and directives from stdin and outputs Prolog-readable
compiled code to sidout as one fact per instruction. The output is assembly code for the Berkeley Abstract
Machine (BAM). Dircctives hold starting from the next predicate that is input. Clauses do not have to be
contiguous in the input stream, however, the whole stream is read before compilation starts.

This manual is organized into ten sections. Section 2 documents the compiler’s directives. Section 3
gives the compiler’s options. Section 4 gives a short overview of the dataflow analysis done by the com-
piler. Section 5 gives the type declarations accepted by the compiler. Section 6 summarizes the differ-
ences between Aquarius Prolog and the Edinburgh standard. Section 7 gives an example showing how t0
use the compiler. Section 8 describes the method used w compile specialized entry points 10 increase the
efficiency of buili-ins. Section 9 describes the assembly language interface. Section 10 describes how 10
define BAM assembly macros.

2. Directives
The directives recognized by the Aquarius compiler are given in Table 1.

3. Options

The Aquarius compiler’s options are given in three categories: high-level (these options conurol
actions of the compiler at the Prolog level), architecture-dependent (these options are constant for a partic-
ular architecture), and low-leve! (mainly useful for debugging purposes). The default options are se1 for
the VLSI-BAM processor. The options are given in Tables 2, 3, and 4.

4. Dataflow analysis

Dauwaflow analysis is enabled with the analyze option. It generaies ground, nonvar, recursively
dercferenced and uninitialized variable types which are merged with the programmer's types. Both unini-
tialized memory and uninitialized register types are gencraicd. Entry declarations (given by entry
directives) are used 10 drive the analysis. Predicates of arity zero are always used as entry declarations.
The quality of the generated types is such that compilation time, execution time, and code size are all
significandy reduced. Therefore it is reccommended always to compile with analysis. The whole program
is kept in memory during the analysis.

All mode, entry,and op directives are executed before the analysis starts. Other directives are
executed after the analysis and before compilation. The directives default and clear interfere with
dawaflow analysis, so they should be given only when the analyze option is disabled.

4.1. Dataflow analysis and dynamic code

The compiler makes the distinction between static and dynamic code. Static code is complctely
known at compilc-timc and is subject 10 analysis. Dynamic codc is created at run-time by the buili-in
predicates assert/1, retract/1, and their cousins. It is not analyzcd. There arc two cascs 0 con-
sider:

(1) A dynamic predicaic calls 3 static predicate. In this case, there must be an entry declarauon giving
the worst-case type of the call for each static predicate that might be calied by a dynamic predicate.

172

Leaving out this declaration may result in incorrect compilation.
(2) A suatic predicate calls a dynamic predicate. The analyzer will assume worst-case types for the
dynamic predicate unless it has a type declaration.

The most common uses of dynamic code arc as databases of facts, or as rules that only call a limited set of
static predicates. For these uses, there is no problem in integrating analyzed stauc code with dynamic code.

4.2. Dataflow analysis and the call/1 built-in
The call/1 built-in predicate can call any predicate in the program with any modes, and it is not

possible in general 1o determine these predicates and their modes at compile-time. However, most pro-

grams that usc call/1 will call one of a known sct of predicates or will call a dynamic predicatc. There
arc three cases to consider:

(1) If the set of predicates that may be arguments of call/1 is known by the programmer, then these
predicates should be given entry declarations with worst-case modes. (This case can be writen more
efficienty by writing a new predicate that directly calls one of the set, and avoids calling call/1.)

(2) If the predicates that may bc arguments of call/1 are dynamic, then analysis is correct without
entry declarations. This is true because dynamic predicates are not analyzed.

(3) If any predicate in the program may be an argument of call/1 and nothing is known about the
modes then analysis is useless and it should not be done.

5. Types

The Aquarius compiler accepts type declarations for a predicate. Using types results in a significant
improvement in code quality. Types are represented as (Head:-Formula) wherc Head contains
only variables and Formula is a logical conjunctuion. Almost any Prolog test can be used in a type for-
mula. Possiblc type formulas are given in Table 5. This representation for types is simple, yet powerful
enough 10 represent much important information in a compact way. The representation generalizes the
declarations of Dec-10 Prolog. For example, the Dec-10 declaration:

:~ mode (concat (+,+,-))
is expressed here as:

:= mode((concat (A,B,C) :-nonvar(A) ,nonvar(B),var(C)}).

6. Differences with Edinburgh Prolog

Aquarius Prolog recognizcs new type-checking built-ins which arc not pan of the Edinburgh Prolog
standard as embodied by C-Prolog. The new built-ins and their definitions in standard Prolog arc given in
Tablc 6. :

7. An example of the compiler’s use
The following example shows how the compiler is used:

173

% /hprg2/Bam/Compiler/compiler % Run the compiler.

% Code is entered directly.
:—-mode ((a (A) :-nonvar(A))). % Enter the type.
a(a). % Enter a simple two-fact predicate.
a(b).
°D % End-of-file.

% The output follows:
% Cputime between start and finish is 1.383

procedure(a/l).
deref (r(0),r(0)).
hash (atomic,r(0),2,1(a/1,1)).
fail.
label(l(a/1,1)).
pragma (hash_length(2)).
pair(a,l(a/1,3)).
pair(b,1(a/1,4)).
label(1l(a/1,3)).
label(l(a/1,4)).
return.

8. Entry specialization for more efficient built-ins

The directive modal_entry(Head,EntryTree) adds a discrimination tree of entry points for
the predicatc Head. This directive is used by the system to implement more efficient built-ins. It is not
normally needed by programmers, although they can take advantage of it for other predicaies. The com-
piler uses the discrimination tree 10 choose the most efficient entry point for each call of a predicate
depending on the type formula that is true at the predicate’s call. The syntax of the discrimination tree in
modal_enuy is:

tree (entry(EntryHead)).
tree (mode (Formula, TrueTree,FalseTree)) :-
tree (TrueTree), tree(FalseTree).

EntryHead is the entry point that replaces Head and Formula is a type formula. Compilation of a
the predicaic Head proceeds by following a path down the discrimination tee. If the formula valid when
Head is called implies Formula thenthe TrueTree is foliowed. Otherwise the FalseTree is fol-
lowed. Tree traversal stops when an cntry point entry (EntryHead) isencountered. At that point the
original call is replaced by EntryHead.

9. Interfacing with BAM assembly language routines

Prolog predicates can efficiently call routines written in BAM assembly code (the compiler’s output)
or in the target machine's asscmbly language (for example, VLSI-BAM, MIPS, or MC68020 assembly
code). The interface with both low-level languages is provided through the five-argument type declaration.
This declaration has the following form:

:=- mode (Head, Require, Before, After, Survive).

Head is the head of the predicatc. Require is the required type formula, i.c. the formula made wue by
the compiler. All uninitialized variable types (both uniniualized memory and uninitialized register) must
be part of the requircd formula. Before is the typc formula known to be valid before the call.
After is the type formula known to be valid after the call. Survive is the register survive flag. If the
flag is y then the predicaic must not alier the valucs of any argument registers {except those uscd to return
a result). It must save and restore any argument registers it needs. The predicate is calicd with a
simple_call instrucuon and must rctum with 2 simple_return instruction (Or ils equivalent in

174

VLSI-BAM processor asscmbly). A simple call may not be nested. 1t is more efficient than a standard call
becausc it does not need an environment frame around it in the calling routine.

If the survive flag is n then the predicate is assumed to invalidate all argument regisicr values. In
this casc the argument registers arc available as scraich registers and the calling routine will create an
cavironment {ramc.

Efficicnt parameter passing is implemented by dsing uninitialized variables. These are of two kinds:
uninitialized memory and uninitahized register vanables. An uninitialized memory vanable is a pointer o
an empty memory cell. Binding to it is a storc to memory. An uninitialized register variable is an empty
register. Binding o it is 2 move to the register. No trailing or dereferencing is needed in either case.

Declasing an argument to have a uninitialized register type means that the output of the routinc is
storcd 1n the corresponding argument register. Similarly, an uninitualized memory type requires the output
10 be stored 1o the location pointed to by the argumcm register. Inputs and outputs must be put in scparalc
registers.

10. Defining BAM assembly language macros

It is possible to definc macros in the Prolog source that are expanded into BAM assembly instruc-
uons. The advantages of macros are that thcy do not have cali-retumn overhead, that unnecessary shuffling
of daia between registers is avoided, and that the full range of low-level compiler opumizations is per-
formed on them. A macro definition has the following form:

:- macro((Head :- Body)).

where Head is the head of the predicate that will be expanded and Body is a serics of BAM instruc-
tions. For example:

:- mode (quad(A,B), uninit_reg(B), true, deref(B), y).
:~ macro{(quad(A,B) :- add(A,A,X), add(X,X,B))).

The macro definition is preceded by a mode declaration telling that the second argument is the output.

Macro definitions must obey the following rules:

(1) All legal BAM instructions and addressing modes are allowed in the macro definition including user
instructions, except as noted below. User instructions are never generated by the compiler, but they
are recognized and optimized in macro definitions. Labels are given as ground terms or as Prolog
variables. The latter are given unique ground valucs by the compiler. Registers are given as user
registers (c.g. r(h) and r(t2)) or as Prolog variables (e.g. X and Y). Thc laiter arc allocated
by the compiler. Do not use numbered registers (r (0), r(1),..).

(2) Thc macro definition must be preceded by a mode declaration. The exit modes must be valid upon
exiting the macro. All head arguments that return results must be of uniniualized rcgister type.

(3) The macro may not alter any of the head arguments except those returning a resulL

(4) The second argument of the deref (X, Y) instuction must be a new variable, i.c. it must not have
a value upon entering the macro. Failing to0 obey this constraint will lead 10 incorrect behavior on
backtracking.

(5) Itis not recommended to create choice points inside macros since it is not known how many registers
arc live.

175

Table 1 - Compiler directives

Dircctive

Action

help.
default.

mips.

vlisi_plm.

qlear.
option (Options).

nctoption(Options).

printoption.
mode ((Head: -Formula)) .

entry((Head:-Formula)).

mode (H, R,B,A, S) ¢

entry(H,R,B,A,S).

modal_entry(H,T).

macro((Head:~-Body)).
include (FileName) .
pass (Anything) .

version.
op(A4,B,C).

Print a summary of thesc directives.

Set the default options for the VLSI-BAM processor and clear all
type declarations and modal entries.

Ensure compatibility with the MIPS processor. This directive
should occur only once in a file. It sets the opuon align(1), dis-
ables the option split_intcger, and sets all other options to their
default values. It clears all type declarations and modal entries.
Ensure compatibility with the re-microcoded VLSI-PLM. This
directive should occur only once in a file. It sets the options
high_reg(6) and align(1), disables the opuon split_integer, and
sets all other options to their default values. It clears all type de-
clarations and modal entries. Trail checks and shifts are com-
piled differeny.

Clear all type declarations and modal entries.

Add the options in Options to the cument options. Op-
tions may be a singie option or a list of options.

Remove the options in Options from the current options.
Options may be a single option or a list of options.

Print a list of the currendly active options. A
Type declaration for a predicate. The type information is
remembered until new types are given for that predicate or until
all type information is cleared. This declaration is not used as a
starting point for dataflow analysis. However, the types generat-
ed by dataflow analysis are used to supplement the declaration,
and an error message is given if there is a contradiction.

Type declaration for a predicate—same as above. This declara-
tion is also used as a starting point in daafiow analysis.

Deuailed typc declaration for a predicate. This declaration is use-
ful for interfacing with assembly language. H is the head, R is
the required type formula (made true by the compiler before each
call), B is the before type formula (assumed true before each
call), A is the after type formula (assumed true after each call), S
is the survive flag (y/n depending on whether the call lets regis-
ters survive). The after type formula is used by dataflow analysis
10 improvc the generated types.

Detailed type declaration for a predicate—same as above. This
declaration is also used as a starting point in dataflow analysis.
Optional discrimination tree of efficient entry points for the
predicate H. The tree T contains type formulas used to replace
each call of the predicate by a more efficient entry point

Macro definition. The head is expanded into a sequence of BAM
assembly instructions.

Insent the text of the file FileName. This directive may be
nested up to the system limit of simultancous open filcs.

Pass the input *“ : - pass (Anything) .’ unalicred to the out-
put in Prolog-rcadable form.

Print the creation date of this version of the compiler.

Declarc an operator in Prolog. Pass the input *“:-
op(A,B,C) . " unalicred 10 the output in Prolog-readabic form.

176

Table 2 - High-level compiler options

Opuon

Default

Description

select_limit (L) .

analyze

compile

factor

.

comment |

L=l

off

on

on

Perform selection for up 10 L arguments. Sclection is done
according 0 the enrichment heuristic. See Chapter 4 section
6.2

Perform dataflow analysis for all predicates tn the input
strcam. This option enables analysis of the entirc input
stream, no matter where it occurs in the stream. The starting
points for analysis are the eatry declarations and all predi-
cates of arity zero. The types obtained from the analysis are
merged with the programmer’s types. The predicates arc
then compiled with the merged types.

| Compile the input. When this option is disabled, the entry

types generated by the dawaflow analyzer for the source predi-
cates are output as valid Prolog-readable type declarations.
Do factoring source transformation. With this transformation
similar compound terms in adjacent heads are only unificd
once. Often this gives faster code.

Give information about what the compiler is doing.

same_number_solutions

same_order_solutions

depth_limit (D)

short_block (S)

on

on

S=6

Keep the same number of solutions on backtracking as stan-
dard Prolog. Relaxing the semantics by removing this option
results in better code in some cases.

Keep the same order of solutions on backtracking as standard
Prolog. Relaxing the semantics by removing this option
results in better code in some cases.

Nesting depth limit on unification goals. Unifications deeper
than this limit are transformed to remain within this limit.
This transformation is used because compilation time and
code size for deeply nested unifications would otherwise in-
crease as the square of the size of the unification.

Threshold on basic block length for shuffie optimization.

Table 3 - Architecture-dependent compiler options

Option Default Description

low_reg(L) L=0 Lowest numbercd machine registcr.

high_reg (H) H=100 | Highest numbered machine registcr. In the VLSI-BAM pro-
cessor, registers higher than r (15) are mapped into
mernory.

low_perm(P) P=0 Lowest numbered permanent vaniable.

hash_size (H) =5 Minimum size of a hash wable.

align(K) K= Align all compound tcrms (0 start on a multiple of K.

uni on Generate unify_atomic instruction to unify with an atomic
term.

split_integer on Use separate tags for negative and nonncgative integers.

177

Table 4 — Low-level compiler options

Opton Dcfault Description

system(X; quintus | The system running the compiler (other value: ¢cprolog).

write on Write the object code when compilation is complete.

peep on Do peephole opumization.

stats(S) off{ Print uming statistics during compilation. S is one of the fol-
lowing atoms, or a list of them: t (top level of compilation),
c (compilaton of a single procedure), p (pcephole opumi-
zatvon), s (selecton algorithm—extraction of determinism),
d (determinisuc code generauon).

debug off Print debugging messages during compilation.

Table 5 - Type formulas
Typc Meaning
nonvar (A’ A 1s a nonvanable term, i.e. its main funcior is instanuated. Nothing is implied
about its arguments.

ground (A), A is a ground term, i.e. it contains no unbound variables.

var (A) A is an unbound vaniable.

uninit (A) A 1s an uninitialized memory variable. At the Prolog level, this means that A is an

uninit_reg(A)

deref (A)
rderef (A)

unbound variable known not to be aliased 10 another variabic. In the implementa:
tion, A is a pointer 10 an empty memory cell. Binding to this variable is a simple
store, without dereferencing or trailing.

A is an uninitialized register variable. At the Prolog level, this has the same mean-
ing as an uninitialized memory variable. In the implemenuation, A is an empty
machine register. This type increases the efficiency of parameter passing by re-
tuming a value direcly in a register. It is useful for interfacing with assembly
language.

A is dereferenced.

A is.recursively dereferenced, i.e. A is dereferenced and all subterms of A are re-
cursively dereferenced.

structure (A)
list (&)

cons (A)
compound (A)
functor (A,F,N)

A is a structure.

Aisalist, i.e. a cons cell ornil.
A is acons cell, i.c. a non-nil list.
A is a suructure or a cons cell.

A is the structure F with arity N,

atom(A)

atomic (A)
simple (A)
integer (2)
float (A)
number (A)
negative (A)
nonnegative (A)
A>0

A is an atom.

A is atomic, i.c. a number or an atom.
A is atomic or an unbound varnable.
A is an integer.

A is a floating point number.

A is an integer or a float.

A is a negauve integer.

A is a nonncgative integer.

A is a positive integer.

A==y A is the atom x. .

true Nothing 1s known about the type.

fail This means *‘execution can never reach this point.”

(F1,F2) This means “‘F1 and F2,"” wherc F1 and F2 are type formulas.
(F1;F2) This mcans “‘F1 or F2,"* wherc F1 and F2 arc type formulas.
not (F) This means *‘not F,”* where F is a type (ormula,

178

Table 6 - New type-checking predicates in Aquarius Prolog

Predicate Prolog Definition
nil (A) := nonvar (A}, a={].
cons (A) :- nonvar(d), A=[_1_].
list (A) :- nonvar(A), (A={} ; A={_i_1).
compound (A) :- nonvar (A), \+atomic(A).
structure (A) :- aonvar (A), \+atomic(A), \+A=[_I_].
ground (A) :- nonvar(A), functor(A, _, N}, ground{(N, A).
simple (A) :- (var(A) ; atomic(A)).
negative (a) :~ integer(A), A<O0.
nonnegative (A) :- integer(A), A>=0.
is_list(A) i~ {var(A), ! ; A=[) ; A=[_IB), is_list(B)).
is_partial list(A) :-"(var(A), ! ; A=[_|B), is_partial_list(B)).
is_proper_list (A) :- (var(p),!,fail;A={);A=(_IB},is_proper_list(B)).

The following clauscs are part of the definition:

ground(N,) :- N=:=0.
ground(N, &) :- N=\=0, arg(N, A, X), ground(X), Nl is N-1, ground(N1l, a).

)

179

Appendix B

Formal specification of the Berkeley Abstract Machine syntax

SHEERLLLRLLLLELLRLLLTLBALLLALLULTLLLLLRALLLALVLLRAIVLLLLULLVRLLLHLLUULLIERLLG4L

Formal specification of the Berkeley Abstract Machine (BAM) syntax _
Copyright (C) 1989 Peter Van Roy and Regents of the University of California
May be used and modified for non-commercial purposes if this notice is kept.
Written by Peter Van Roy.

@ d° oP P

This file is an executable Prolog program that checks the syntactic
correctness of BAM instructions. The predicate instr(I) is true if I is

a legal BAM instruction. In addition to instructions output by the Aquarius
compiler, this predicate also accepts the user instructions of the BAM,
which allow the run-time system to be written completely in BAM assembly.

o0 9P JO IR P

SEELLLTLALLTLLLLLLALTHILLLLLLTALLLLLBALUTLTLHTLOLLTLACLLBLTRLRLUBLLLHLHTLLLLLNS
% *** Check correctness of a sequence of BAM instructions **»

% Create saved state:

% Note: In C-Prolog this must be started up in a system

% equal to in size or larger than the one which created it.

main ;- save(check, 1), prompt(_, ‘), read(Instr), pipe(Instr, 0, 0}, halt.
main :- halt.

$ Pipe working loop:
pipe (end_of_file, M, N) -:- !,
T is M+N, L
write(’*** Checked ’'),write(T),write(’ instructions: ‘),
write(M),write(’ correct and ‘),write(N),vwrite(’ incorrect.’),nl.
pipe(Instr, M, N) :-
(instr (Instr)
-> Ml is M+1, Nl1=N
; Ml=M, N1 is N+1,
write(’*** Incorrect: ’),write(Instr),nl
),
!, read(NewlInstr), pipe(Newlnstr, Ml, Nl).

SHELLLRRLLLHALEELRLLLILRAARLLTLLLHLSALNLLLLLLLHLLLRLLLLATLLANTLLLZLLLLTLSTL4EL60%
§ *** BAM Instructions ***

% 1. Unification support instructions:

instr(deref (V,W)) :- var_i(V), var_i(W).

instr(equal (EA,A,L)) :- ea_e(EA), arg_i(A), 1bl(L}).
instr(unify(V,W,F,G,L)) :- var_i{(V), var_i(W), nv_flag(F),nv_£flag(G),1bl(L).
instr(trail(v)) - var_i{v).

instr (move (EA,VI)) :- ea_m(EA), var_i(VI).
instr(push(EA,R,N)) :~ e2_p(EA), hreg(R), pos(N).
instr(adda(R,S,T)) :- numreg(R), numreg(S)., hreg(T).

180

instr(pad(N)) - pos(N}).
instr(unify atomic(V,I,L)) :- var_i(V}, an_atomic(I), 1lbl(L).
instr{fail).

§ 2. Conditional control flow instructions:

instr(switch(T,V,A,B,C)) :- a_tag(T), wvar_i(V), 1lbl{(a), 1lbl(B), 1lbl(C).
instr{(choice(I/N,Rs,L))} - pos{I), pos(N), I=<N, 1lbl(L), regs(Rs).
instr(test(Eq,T,V,L)) :- eq_ne(Eq), var_i(V), a_tag(T), 1lbl(L).
instr(jump(C,A,B,L)) :- cond(C), numarg_i(A), numarg i(B), 1lbl(L).
instr(move (CH,V)) := a_var(V}), choice_ptr (CH).

instr(cut (V)) - a_var (V).

instr(hash(T,R,N,L)) :- hash_type(T), reg(R), pos(N), 1bl(L}).
instr(pair(E,L)) :- an_atomic(E), 1lbl(L).

% 3. Arithmetic instructions:

instr(add(A,B,V)) := numarg_i{(A), numarg_i(B), a_var(V).
instr(sub(A,B,V)) :- numarg_i(A), numarg i(B), a_var(V).
instr(mul (A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
instr(div(a,B,V)) :- numarg_i(A), numarg_i(B), a_var(Vv).

instr (mod (A,B,V)} :- numarg_i(A), numarg_i(B), a_var(V).
instr(and(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).

instrx(or(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(Vv).
instr(xor(A,B,V)) := numarg_i(A}, numarg_i(B), a_var(V).
instr(not (A,V)) := numarg_i(A), a_var(v).
instr(sll(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(v).
instr(sra(aA,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).

instr(sll). /* vlsi_plm only */
instr(sra). /* vlsi_plm only */

% 4. Procedural instructions:

instr (procedure(N/3)) . :- atom(N), natural(A).
instr(call(N/A)) := atom(N), natural(Ah).
instr(return).

instr(simple_call(N/A}) := atom(N), natural(a).
instr(simple_return).

instr(label (L)) := 1lbl(L).

instr (jump{L)) :- 1lbli(L).
instr(allocate (Perms)) :- natural (Perms) .
instr(deallocate (Perms)) :=- natural (Perms) .

instr(nop).

% 5. Pragma information for translator and reorderer:
instr(pragma(P)) :- pragma(P).

% 6. Additions to BAM for the assembly language programmer:
instr(I) :- user_instr(I).

SALUARLLALATALLACLALCHLCHLERELLHACALLLALBLRALAATLALLLERLLLLALHLALLLLSLLLARLERRESS
% *** Additions to BAM for the assembly language programmer **=
% This section describes the parts of the BAM language that are never output

% by the compiler, but only used by the BAM assembly programmer. This is used
% to write the run-time system in BAM code, so that it is as portable as

181

% possible. Additional instructions are jump to register address, convert
% tagged atom or integer to untagged integer (ord), its inverse (val), and
% non-trapping full-word unsigned comparison, non-trapping full-word
% arithmetic, and trailing for backtrackable destructive assignment.

user_instr(jump _reg(R)) :~- reg(R).
user_instr(jump_nt(C,A,B,L)) :- cond(C), numarg_i{(A), numarg_i(B), 1lbl(L).
user_instr(ord(A,B}) :- arg(A), a_var(B).
user_instr(val(T,A,V)) :- a_tag(T}, numarg_i(A), a_var(V).
user_instr(add_nt (A,B,V)) :- numarg_i(A), numarg_ i(B}, a_var(V).
user_instr{sub_nt (A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(and nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(or_nt{A,B,V)) :- numarg_i{(A), numarg_i(B), a_var(V).
user_instr(xor_nt (A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(not_nt (A,V)) :- numarg_i(a), a_var (V).
user_instr(sll _nt(A,B,V)) := numarg_i(A), numarg_i(B), a_var(V).
user_instr.(sra_nt (A,B,V}) :- numarg_i(A), numarg i(B), a_var(Vv).
user_instr(trail_ bda (X)) 1= a_var({X).

% Additional registers:
$ See Implementation Manual for list of existing registers.
user_reg(r(A)) :- atom(a).

SELELLTLTLLLLLLIBLLLLALILELRRLTLUBISTITLILTLARLTLBLLLILATLLIGLLVRATRLLRLLLETEL%S
% L & & 4 pragmas xR

% A variable is a multiple of N.
% Inserted just before loads in readmode unification.
pragma(align(V,N)) 1= a_var(V), pos(N).

% Inserted just before a sequence of pushes in writemode unification.
% (The pushes may be interleaved with non-memory moves.)

pragma (push (term(Size))) :~ pos(Size).

pragma (push(cons)).

pragma (push (structure(a))) :- pos(A).

pragma (push(variable)).

% Specify the tag of a variable.
% (This is useful for processors without explicit tag support.)
pragma(tag(v,T)) = a_var(V), a_tag(T).

$ Length of a hash table.
pragma (hash_length(Len)) := pos(len).

FEHLTLLLTLLALLLALALAGHLALRALLLLLLCUNBLLLLLHLCLILLLLLLLTLTLLLLL2PLLLLELRBHLR48S
§ ren Tags LR B3

a_tag(tatm). /* atom */

a_tag(tint). /* integer */
a_tag(tneg). /* negative integer */
a_tag(tpos). /* nonnegative integer */
a_tag(tstr). /* structurxe */

a_tag(tlst). /* cons cell */
a_tag(tvar). /* variable */

atom_tag(tatm).

pointer_tag(tstr}.
pointer_tag(tlst).
pointer_tag(tvar}.

SEETHTHHLLLLLALLLLLTILLAVLRLLLLLLLALLLLLLLLLLLLLLLRLLLLALLLITLLLLLRALLRLLTN0NY

% *** Addressing modes ***

heap ptr(r(h}).
choice_ptr(r(b)).

reg(r(1))-
reg(U)

hreg(R)
hreg (R)

perm(p(I))
an_atomic (1)
an_atomic (T A)

an_atomic(T" (F/N))

a_var (Req)
a_var(Perm)

arg (Arg)
arg(Arg)

var_i(var)
var_i({var))

arg_i(Arqg)
arg_i(Arg)

numreg (Arg)
numreq (Arg)

numarg_i (Arg)
numarg_i(Arg)

var_off({Var]))
var_off ({Var+1])

int (1).
user_reg(U).

reg (R) .
heap_ptr(R).

natural(I).

int (I).

atom(A), atom_tag(T).
atom(F), pos(N), atom tag(T).

reg(Reg).
perm(Perm) .

a_var(Arqg).
an_atomic (Arg) .

a_var(Var).
a_var(Var).

var_i (Arg).
an_atomic (Arg) .

reg (Arg) .
int (Axg) .

var_i(Arg).
int (Arg).

a_var{var).
a_var(vVar), posi(I).

% Effective address for equal:

ea_e (Var)
ea_e(VarOff)

:~- a_var(Var).
:- var_off (Varoff).

t Effective address for move:

183

ea m(Arg) :- arg(Arg).
ea_m(VarOff) :- var_off (VaroOff).
ea_m(Tag~H) :- pointer_tag(Tag), heap_ptr(H).

% Effective address for push:

ea_p(Arq) :- arg_i(Arg).
ea_p(Tag™H) :- pointer_tag(Tag), heap ptr(H).
ea_p(Tag~ (H+D)) :- pointer_tag(Tag), pos(D), heap_ptr(H}.

FTHELHLLLLLTLLLLLHLLLLLHALLBRLLLLLLHLLLALLLLLLHALLSLBLOUTLHLVLLUULLLLHHLRHEHTLLY
§ *** Miscellaneous ***

eq_ne{eq). /* Equal */
eq_ne(ne). /* Not equal */

cond(1lts).. /* Signed less than */

cond(les). /* Signed less than or equal */
cond{gts). /* Signed greater than */
cond(ges). /* ‘Signed greater than or equal */
cond(eq). /* Equal */

cond(ne). /* Not equal */

hash_type(atomic) .
hash_type(structure).

1bl (fail).
1bl (N/A) :-~ atom(N), natural(A).
1bl(1(N/A,I)) :- atom(N), natural(A), natural(l).

nv_flag(nonvar).

nv_flag(var).

nv_flag(’2).

$ A list of register numbers:

% (May contain the value ‘no’ as well)

regs({]).

regs([R{Set}) :- (int(R); R=no), regs(Set).
SHELILBAALPLLALLHLLLLLLAFLLLLLLLLLLALLLLAHLLTLTLLLHALLLLHLLLLLARRLLEARLR8880S

§ *** Utilities ***

ground (X) :- nonvar(X), functor(X, _, N), ground(N, X).

ground(N,) :- N=:=0,

ground (N, X) :- N=\=0, arg(N, X, A), ground(A), Nl is N-1, ground(Nl, X).
int (N) :- integer (N).

natural(N) :- integer(N), N>=0.

pos (N) :- integer(N), N>O.

SALRERLAAAARALLALLLARALLARALLLLALTALLALAALLALALATLLLLLLLLLTTLRIRAGAALRQLRLLALLS

184

Appendix C

Formal specification of the Berkeley Abstract Machine semantics

TARELLLLRILLLTLLLTRULUALRLALLBTTLILLLLULAGUURLLDLLLLEILLBTLALLLALLLALBLLLLLS

g0 ogP g0 oo

or o

L

%

Formal specification of the Berkeley Abstract Machine (BAM) semantics
Copyright (C) 1990 Peter Van Roy and Regents of the University of California
May be used and modified for non-commercial purposes if this notice is kept.
Written by Peter Van Roy.

The specification is a Prolog program that defines the meaning of BAM in
terms of its execution in a simple memory model. It runs BAM code directly

from the output of the Aquarius compiler.

The specification does not include the user instructions of the BAM since
their behavipr depends on the target machine.

The specification is written in the Extended DCG notation.

SELLALTLLLBLALLLLTLLLLLPLLVLTALLTLLLLTFIVLLTLALLRLTVULLITALLLTLLILLLITLLLLLTL02%%

9P dP dP dP IP OP P PP N IO 9P o

P P OP P IO P P P I P IR P

”» P o »

Meaning of registers:

r (b) Index to most recent choice point.

r(e) Index to current environment.

r.tr) Top of trail stack.

r (h) Top of heap stack.

r (hb) Value of r(h) at last choice point creation.
r{pc) Code address.

r(cp) Continuation pointer for code.

r(tmp_cp) Temporary continuation pointer for code, used only in simple_call.
r{retry) Retry address for backtracking, only exists inside choice points.
r{l) Argument and temporary register.
ptl) Location on current environment.

Types stored in registers:

r(e) Contains values of registers {(r(e),r(cp)) U {p(0), ..., p(N-1})},
where N is the size of the environment.

r(b) Contains values of registers {(r(e),r(cp),r(tr),x(b),r(h),r(retry)} U RS,
where RS is a subset of (r(0), r(1), ...}.

r(tr) Contains a natural number.

r(h), r(hb) Contain words with a pointer tag.

r{pc), r(cp) Contain natural numbers or symbolic labels.

r(tmp_cp) Contains a symbolic label.
r{retry) Contains a symbolic label.
() Contains a word. .
p(I) Contains a word.

Comments:

A word is either an integer or a structure of the form Tag~Value where Value
is a natural number except if Tag=tatm, in which case Value is an atom or a
structure (F/N) where F is an atom and N is a natural number.

185

% A symbolic label is either the atom 'fail’, or the structure F/N, or the

P I db IP de P

structure 1(F/N,I),

r(tmp_cp)

where F is an atom and N and I are natural numbers.
r(cp) is stored in environments, allowing nested calls.

is not stored in environments, allowing only one level of call.
However, no environment is needed in a predicate containing a simple_call.
There are no explicit stacks for environments or choice points; registers
r(e) and r(b) each contain a set of register values.

TALHULALLTLHLTLLLIBHLTALALLLVLALLLULLLABILALBTLLLLLRELLSLLLALLLLULLRLLRBLRLRLS

% Accumulator declarations:

$ Accumulators:

acc_info (code,

T, In, Out,

acc_info(lblmap, T, In, Out,

acc_info(regs,

acc_info(trail,
acc_info (heap,
acc_info(count,

T, In, Out,
T, In, Out,
T, In, Out,
T, In, Out,

% Predicate declarations:

% Top level:

pred_info(
pred_info(
pred_info(
pred_info(
pred_infol

execute, 0,
instr_loop, 0,
instr_loop_end, 1,
instr, 1,
numeric_pc, 2,

% Addressing modes:

pred_info (
pred_info(
pred_info (
pred_info(
pred_info (
pred_info(
pred_info (
pred_info(
pred_info (
pred_info (
pred_info (
pred_info (
pred_info(
pred_info(

heap, 3, |
reg, 3,

.

table_command(T, In,QOut)).
table_command (T, In,Out)).
table_command(T, In,Out)).
table_command (T, In,Out)).
heap table_command(T,In,Out)).
(OQut is T+In)).

{regs,heap,trail, code,1lblmap,count]).
[regs,heap,trail, code, lblmap,count}).
[regs,heap,trail,code, lblmap,count]}).
{regs, heap,trail,code, lblmap]}).
[{1blmap])) .

heapl) .
[regs).

perm, 3, (regs N.

a_var, 3,
var_i, 3,
arg, 2,
arg_i, 2,
numreg, 2,
numarg, 2,
var_off, 2,
imm tag, 2,

{regs 1).
{regs,heapl}).
[regs 1).
[regs,heap]).
{regs 1).
{regs, heap]).
(regs,heapl}).
[regs .

ea_e, 2, [regs,heap]).

ea_m, 2,
ea_p, 2,

% Instruction utilities:

pred_info (
pred_info(
pred_info (
pred_infol(
pred_info(
pred_info(
pred_infol(

deref_rtn, 2,
deref_ rtn_cont, 3,
equal_rtn, 3,
switch_rtn, 5,
test_rtn, 4,
jump_cond_rtn, 4,
hash_lookup, 3,

{regs,heap]).
{regs,heapl}.

{regs,heap,traill).
[regs, heap,trail)).
{regs, heap,trail}).
[regs,heap,traill).
({regs, heap,traill).
{regs,heap,traill).
(regs,heap,trail, lbimap,codel}.

pred_infol
pred_info(
pred_info (

hash_lookup_2,
hash_indirect,
save_choice_regs,

pred_info(restore_choice_regs,

pred_info(
pred_info(
pred_info(
pred_info
pred_info(
pred_info(
pred_info(
pred_info (
pred_info(
pred_info(
pred_info(
pred_info(

pred_info(

pred_info (
pred_info(
pred_info(
pred_info(

detrail_rtn,
trail_rtn,
cmp_trail,

unify rtn,

unify rtn_2,
unify rtn_2,
unify rtn_args_2,
unify rtn_args_3,
unify_atm,
unify_end,

unify varvar,
get_size,

arith,

. write_rtn,
write_rtn,
write_arg,

write_args,

3,
3,
2,
2,
2,
1,
2,
3,
3,
S,
6,
7,
3,
2,
2,
3,
4,

0,
1,
2,
3,

{regs, heap,trail, lblmap,code])).

{ heap n.
[regs,heap,trail}).
[regs, heap,trail]).
[regs,heap,traill}).
{(regs, heap,trail}j.
[regs,heap,traill).
(regs,heap,traill).
[regs,heap,traill}).
(regs,heap,trail}).
[regs, heap,trail]).
[regs,heap,trail)).
{regs,heap,trail}}.
[zegs,heap,traill).
{regs,heap, trail)).
{ heap .
[regs,.heap .

[regs,heap,trail]).
{regs,heap,traill}).
[regs,heap,trail]).
{regs,heap,traill).

% Implement the accumuletor commands:

table_command(ins(I,val), In, In) :- ins(In, I, Val).
table_command(get (I,Val), In, 1In) :- get(In, I, Val).
table_command(set(I,Val}, In, Out) :- set(ln, I, Val, Out).

% Mask off tag before looking up heap entry:

heap_table command(ins(_"I,Val), In, In) :- ins(In, I, Val).
heap_table_ command(get(_°-I,Val), In, 1In) :- get(In, I, Val).
heap table command(set(_"I,Val), In, Out) :- set(In, I, Val, Out).

SLLELTREERERALALLLEALAFELLLLTAVLVLOUITLLELLLTLLLHLLPLULTLLLLLTLLTLLLLLLLLLLRLSL
§ **+* Initialization and runtime options ***
:- dynamic (bamspec_option/1).

main :-
save (bamspec,
prompt(_, "),
{ copyright,

execute

; error(['Sorry, the executable BAM specification has failed.’])
).
halt.

main :-
hale.

L,

copyright :-
write (‘Berkeley Abstract Machine (BAM) Executable Specification’), nl,
write (‘Copyright (C) 1990 Peter Van Roy and ‘),
write(‘Regents of the University of California‘’}), nl, nl.

187

flag print{I) :- bamspec_option(print), !, write(’Executing ‘), write(I), nl.
flag_print (_}).

$ Look up symbolic label to get a numeric PC:
numeric_pc(PC, PC) -->> (integer(PC)}, ..
numeric_pc (PC, NFC) -->> [get (PC,NPC)]):lbimap.

% Read in the instructions and create the code array and label map:
% The code array gives the instruction corresponding to each PC value.
% The label map gives the PC value corresponding to each symbolic label.
read_code (Code, LblMap) :-
read(Instr),
read_code (Instx, 0, Code, LblMap).

read code(end_of_file, _, Code, LblMap) :~ !, seal(Code), seal(LblMap).
read_code((:-Option), PC, Code, LblMap) :- !,

asserta(bamspec_option(Option)),

read (NextInstr),

read_code (NextInstr, PC, Code, LblMap).
read_code(Instr, PC, Code, LblMap) :~-

ins (Code, PC, Instr),

insert_lblmap(Instr, LlblMap, PC),

PCl is PC+1,

read (NextInstr),

read_code (NextInstr, PCl, Code, LblMap).

% Add an entry to the label map:

insert_lblmap(label(L), LblMap, PC) :- !, ins(LblMap, L, PC).
insert_lblmap(procedure(P), LblMap, PC) :- !, ins(LblMap, P, PC).
insert_lblmap(_, _. _). -

SHELLLRLILLELLLHILLLLLLLLTILLTHLALLLLLLLLBLLLPTLALLLLLLLLRLSLLLLLRHLLLLLRRL%0%
$ *** Top level execution ***

execute :-
write (Reading BAM code’), nl,
read code (Code, LblMap),
write(’Starting execution’), nl,
execute (leaf, Regs, leaf, _, leaf, _, Code, _, LblMap, _, 0, N),
write(’Executed ‘), write(N),’write(' instructions.’), nl,
print_array(Regs).

erecute(File) :-
seeing (0Ol1dFile),
see(File),
read_code (Code, LblMap),
seen,
see (OldFile),
execute(leaf, Regs, leaf, _, leaf, _, Code, _, LblMap, _, 0, N),
write (‘Erecuted ‘), write(N), write(’ instructions.’), nl,
print_array(Regs).

188

' execute -=->>

[set(r(e),leaf)]) :regs,

{set (r(b),leaf)) :regs,

I[set (r(h),tvaxr~0)] :regs,
[set(r(tr),0)):regs,

{set (xr(pc),0)]):regs,

[set (r{cp),global_success/0)]):regs,
instr{choice(1/2, {},global_failure/0)),
instr_loop.

% Instruction execution loop:
instr_loop -->>
fget (r(pc),PC)}: regs,
[
b]
instr_loop_end(PC}.
instr_loop -->>
error ((’Attempt to execute beyond existing cude.’]).

instr_loop_end{write/1l) -->> !, write rtn, instr(return), instr_loop.
instr_loop_end(nl/0) -~>> !, nl, instr(return), instr_loop.
instr_loop_end(global_success/0) -->> !,

write(’*** Global success ***’), nl.
instr_loop_end(global_failure/0) -=->> !,

write(‘ *** Global failure ***'}), nl.
instr_loop_end(fail) -->>

instr(fail),

e

instr_loop.
instr_loop_end(PC) -->>

numeric_pc (PC, NPC),

% Fetch: .

[get (NPC, Instr)) :code,

NPCl is NPC+1,

{set (x (pc) ,NPCl)] :regs,

% Execute:

{1) :count,

flag_print(Instr),

instr(Instrj,

Lo

instr_loop.
instr_loop_end (PC) -->>

error(|'Program counter is ‘,PCl).

\%%&%%%%%%%%%t%%%%%%%%%&%%%%%%%%%%%%%%%%

% ***» BAM Instructions ***

% 1. Unification support instructions:.
instr{deref (V,W}}) -->> -
var_if(get, V, X),
deref_rtn(X, Y},
var_i(set, W, Y).
instr(equal (EA,A,L)) ~->>
ea_e(EA, X),

189

arg__i (A, Y),

{1b1 (L) },

equal_rtn(X, Y, L).
instr(unify(v,w,F,G,L)) -->>

var_i(get, V., X).

var_il(get, W, Y).

(nv__flag(?) },

{nv_£lag(G)},

{i1bl (L)},

unify ren(X, ¥, Ly.
instr{unify atomic(V,I,L)) =-=>>

var_i(get, V, X).

{an_atomic(I)},

11bl (L)}, ,
unify reniX, I, L}.
instr({trail(v)) -->>

Var_i(gﬁt, v, X),

trail rtn(X).
instr (move (EA,VI)) =->>

ea_m(EA, X).

var_i(set, VI, X}, '.
instx (push(EAR,R,N)) =-=>>

ea_p(EA, X).

{hreg(R) },

[get (R,Y)) :regs,

fset {Y,X)) :heap,

{pos(N)),

add_word(Y, N, ¥N),

[set (R, ¥YN)) :regs.
instr(adda(R,S,T)) -->>

{hreg(R) |,

{get (R, X)] :regs,

numreg (S, Off),

add_word (X, Off, NX),

{hreg(T) },

{set (T,NX)]:regs.
instr(pad(N)) ~->>

{get (x (h),H)):regs,

{POS(N))'

add_word(H, N, NewH) ,

{set {r(h),NewH)):regs.

% 2. Conditional control flow instructions:)
instr(choice (1/N,Rs,L)) -=->> {pos(N), N>1, regs{Rs), 1lbl{L)Y}, !,
save_choice_regs(Rs, NewB),
{ins (NewB, r(retryl, L)},
(get (x (tr),TR)] :regs, {ins(NewB, r(tr), TRI},
{get (r(e), E}]:regs, (ins(NewB, r(el). E)),
(get (r (cp) ,CP}] : regs, {ins (NewB, r(cp). CP)),
{(get (xr(b), B)]):regs, {ins (NewB, r(b). B) 1},
{get (x(h), H)):regs, {ins (NewB, r(h}, H) 1,
{seal{NewB)),
[set (r{hb), H)):regs,
{set (r(b),NewB)] :regs.

instr(choice (I/N,Rs,L1} ==>> (pos(N). pos (I}, 1<I, I<N, regs(Rs]},

{get (r(b) ,B)]:regs,

restore_choicevregs(Rs. B),

{set (B, r(retry),L,NewB)],

(set (r(b),NewB)]:regs.
instr(choice(N/N.Rs,L}) =-=>> {pos (N), regs(Rs), 1lbl(L)}.,

[get (r(b),B)] :regs,

restore_choice_regs(Rs, B),

{get (B, r (b) ,NewB) },

{set (r(b) NewB)] :reos,

{get (NewB, r (h) ,H) },

[set (r{hb) ,H)]:regs.
instr(fail) -->>

{get (r(b},B)]:regs,

{get (B, r(h),H)},

(set (xr(h) ,H)]:regs,

{get (B, xr (e},E)},

{set (r(e) ,E)]:regs,

(get(B.r(cpl,CP)),

{set (r{cp) ,CP)]:xegs,

[get(r(tr),CurTR)]:regs.

(get(B.r(tr),OldTR)),

detrail_rtn(CurTR, 01d47TR),

{get (B, r (retry), L)},

{set (r(pc),L)]):regs.
instr{(switch(T,V,A,8,C)}) -~>>

ta_tag(T)).,

var_i(get, V., X},

extract_tag(X, TX),

{1bl(A), 1bl(B), 1bl(C)}.

switch_rtn(T, TX, A, B, C}.
instr(test(Eq,T,V,L}} —-—>>

ta_tagiT)),

var_i(get, V., X},

extract_tag(X, TX),

{eq_ne(EqQ)},

{1bl (L} 1,

test_rtn(Eq, T, X, L).
instr(jump{C.A,B,L)) ~-->>

{cond(C) |,
numarg (A, XA), {extract_value(XA, VA), check_int (XA)),

numarg(B, XB), (extract_value(XB, VB). check_int (XB) },
{1bl (L} },
jump_cond_xtn(C, VA, VB, L).
instr (move(r(b),V)) -->>
{get (r(b),B)]):regs,
a_var(set, V, B).
instr(cut (V)) -->>
a_variget, V, X,
fsettr{b),X)):regs,
{get (X, x(h),H) },
{set (r(hb), H)]):regs.
instr(hash(T,R,N,L)) -->> hash_type(T), pos(Ni, 1bl{L),
reg(get, R, X},

]

x4

1bi (L} },

190

4

-

hash_indirect(T, X,
{get (L,PC)}:1blmap,

Y),

hash_ lookup{(PC, Y, N).

instr(pair(_,_)) -->>

{error([‘Attempt to execute inside a hash table.’))}.

% 3. Arithmetic instructions:

instr(add(p,B,V)}) -->>

- instr(sub(A,B,V)) =->>

instr(mul(A,B,V)) =->>
instr(div(A,B,V)) =-->>
instr{mod(A,B,V)) -->>
instr(and(A,B,V)) -->>
instr(or(A,B,V})) -->>
instr(xor(A,B,V)) -->>
instr(not (A,V)) -=>>
instr(sll(A,B,V)) =-2>>
instr(sra(A,B,V)) ==>>

arith(add,
arith(sub,
arith(mul,
arith(div,
arith(mod,
arith(and,
arith(or,
arith(xor,
arith{(not,
arith(sll,
arith(sra,

A,
A,
A,
A,
A,

A,
A,

A,
A,
A,
A,

B,
B,
B,
B,
B,
B,
B,
B,
o,
B,
B,

% 4. Procedural instructions:

vy .
V).
v).
V).
vy.
v).
v).
V).
.
v).
V).

instr (procedure (N/A)) -->> {atom{N), natural{(A)}.

instr(call(N/A)) -->> {atom(N).,

{get (r(pc) ,PC)):regs,
{set (r(cp),PC)]):regs,
[set (r{pc),N/A)]:regs.
instr (return) -->>
{get (r(cp) ,PC)]:regs,
{set (xr(pc),PC)]):regs.
instr(simple_call(N/A)) =-->>
lget(r(pc),PC)]:regs,
(set (r(tmp_cp),PC)]:xegs,
{set (x(pc) N/R)] :regs.
instr(simple_return) -=>>
(get (r(tmp_cp) PC)] :regs,
{set (r(pc),PC)]:regs.

{atom(N),

instr(label(L)) =-->> {1lbl(L)}}.

instr(jump(L)) -=->> {1bl(L}1},
{set (r(pc),L)}:regs.
instr{allocate(N})) =-->>
{natural (M)},
[get (r(e),E)]):regs,
{ins (NewE, r(e), E)]),
(get (r (cp) ,CP)) : regs,
{ins (NewE, x(cp). CP}]),
{seal (NewE)],
{set (r (e) ,NewE)] :regs.
instr{deallocate(N}} =-->>
{natural(N)),
{get (r(e),E)] :regs,
(get(E.t(e)oNewE)l:
{get (E, r (cp) ,NewCP) },
{set (r (e) ,NewE)] :regs,
{set (r{cp),NewCP)] :xregs.
instr(nop) -->> [].

natural (A)).

natural(ad)}.

191

192

$ S. Pragma information for translator and reorderer:
% Pragmas are no-ops in the execution.
instr{pragma(P)) -->> {pragma{(P)}, !.

% 6. Additions to BAM for the assembly language programmer:

% The meaning of these instructions depends on the underlying architecture,
% so they are not included in this specification. See the Implementation
$ Manual for a discussion of their use.

FTEEELLLELELLLLLLLLLUTITLLLLLLTLLRURATLLLLLLLATLLAVLLLLULLLRBIREULLLIETHER288084%
% *** Pragmas ***

% A variable is a multiple of N.

% Inserted just before loads in readmode unification.

pragma(align(V,N)) :- a_var(V), pos(N).

% Inserted just before a sequence of pushes in writemode unification.
% (The pushes-may be interleaved with non-memory moves.)

pragma (push(term(Size})) :- pos{(Size).
pragma (push(cons)) .
pragma (push(structure(A))) :- pos(A).

pragma (push(variable)) .

% Speciiy the tag of a variable.
% (This is useful for processors without explicit tag support.)
pragma (tag(Vv,T)) := a_var(V), a_tag(T).

% Length of a hash table.
pragma (hash_length(Len)). :~ pos{(Len).

FEERHLLTLLLLLLLLLULBLTLLLLLLUDDLLLLAILLILLELLLIARLRANULLLARLLLALTLLLLLSBRULLLLS
% "R Tags *RK

a_tag(tatm). /* atom */

a_tag(tint). /* integer */
a_tag(tneg). /* negative integer */
a_tag{tpos). /* nonnegative integer */
a_tag(tstr). /* structure */
a_tag(tlst). /* cons cell */
a_tag(tvar). /* variable */

atom_tag(tatm).

atomic_tag(tatm).
atomic_tag(tint).
atomic_tag(tneg).
atomic_tag(tpos).

pointer_tag(tstr).
pointer_tag(tlst).
pointer_tag(tvar).

193

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&%%%%%%%%%&%%%&%%%%%%%%%%%%%%%%t%%%%%%%&%%%%%%%
$ *** Addressing modes ***
% Both read and write access:

heap(get, W, X) -->> {ptr_word(W)}, [get (W, X)) :heap.
heap(set, W, X) =-->> {ptr_word(W)]}, [set (W,X)]:heap.

ptr_word(T"_) :- pointer_tag(T).

reg(get, R, X) =-->> {reg(R})}, {get(R,X)]:regs.
reg(set, R, X) -->> {reg(R)}, [set (R, X}]:regs.

reg{r(I)) :- int(I), !'.

hreg(R) :- reg(R), !.
hreg(r(h)i. .

perm(get, P, X) -->> {(perm(P)}, {get (r(e),E)):regs, {get(E,P,X)}.
perm(set, P, X} -->> {perm(P)), {get(r(e),E)}]:regs, {set (E,P,X,NewE} },
{set (r{e),NewE)] :regs.

perm(p{(I)) :- natural(I).

a_var(WR, V, X} -->> reg{WR, Vv, X), !.
a_var(wWr, Vv, X) -->> perm(WR, V, X}.

a_var (Req) reg(Reg), !.
a_var(Perm) :- perm(Perm).

var_i(WR, V], X) -->> a_var(get, V, W), heap(WR, W, X), !.
var_i (WR, VvV, X) =-->> a_var(WR, V, X).

% Read access only:

$ An int is its own value:
int (N) :- integer(N).

% An atomic is its own valve:

an_atomic(I) := int (1), !.

an_atomic (T 3) :- atom(A), atom_tag(T), !.
an_atomic(T" (F/N)) :- atom(F), pos(N), atom_tag(T).

arg(Arg, Arg) -->> {an_atomic(Argil, t.
arg{Axzqg, X) =-->> a_var(get, Arg, X)}.

arg_i(Arg, Arg) -->> {an_atomic(Arg)}, .
arg_i(Arg, X) -->> var_il(get, Arg, X).

numreg (Arg, Arg) -->> (int(Arg)}}, !.
numreg (Arg, X) -->> regl(get, Arg, X).

numarg (Arg, Arg) -->> {int(Arg)}, !.
numarg (Arg, X) =-->> var_i(get, Arg, X).
var_off ((Var+l]l, X) -->> a_var(get, Var, T), !,

{pos (1)}, add_word(T, I, T2), [get(T2,X)}:heap.

var_off ([var], X) -=->> a_var(get, Var, T), [get(T,X)]:heap.

% Creating immediate tagged pointer objects:
imm_tag{(Tag (r(h)+D), W) -->> {pointer_tag(Taglij, !,
{get (r(h),T)]:regs,
{pos (D)), add_word(T, D, X),
insert_tag(Tag, X, W).
imm_tag(Tag~r(h), W) -->> (pointer_tag(Tag)l}, !,
[get (r(h),X)] :regs, .
insert_tag(Tag, X, W).

% Effective address for equal:

ea_e(Var, X) -->> a_var(get, Var, X), !'.
ea_e(VarQff, X), -->> var_off(varoff, X).

% Effective address for move:

ea_m(Arg, X) -->> arg(Arg, X), °'.
ea_m(VarOff, X) -->> var_off(varoff, X), !.
ea_m(T r(h), X) -->> imm_tag(T c(¢hj, X).

% Effective address for push:
ea_p(Arg, X) -->> arg_i(Arg, X), !.
ea p(T-Y, X) =->> imm_tag(T"Y¥Y, X).

STHELLLLLLLLLLRLBALLLLLTALTALTLRLTALRALLLLLLTLLLULHUBLVBLLLALLHLLLLLRHRLBRA%S

§ ***» Miscellaneous ***

eq_neleq). /* Equal */
eq_ne(ne). /* Not equal */

cond(1lts). /* Signed less than */

cond(les). /* Signed less than or equal */
cond(gts). /* Signed greater than */
cond(ges). /* Signed greater than or equal */
cond(eq). /* Equal */

cond(ne). /* Not eqgual */

hash_type (atomic).
hash_type (structure).

1bl (fail).
1bl(N/A) := atom(N), natural(A).
1bl1(1(N/A,I)) :- atom(N), natural(A), natural(l).

nv_flag(nonvar).
nv_flag(var).
nv_flag('?’).

195

% A list of register numbers:

% (May contain the value ‘no’ as well)
regs(l[]}).

regs((R1Set]) :- (int(R): R=no), !, regsfSet).

SELLLRLLFLLLASLLTLLLLLELALGTLLLALFUARLLLILLLACLLRTLLLLLLLLLLLALUNTHLUHBLLBLLL0e
$ Dereference utilities:

deref rtn(X, X) -->> {nonvartag(X)}, !.
deref_rtn(X, Y) =-->>

[get (X,X2)] :heap,

deref_rtn_cont (X, X2, Y).

deref_rtn_cont (X, X, Y) =-->> !, {Y=X}.
deref_rtn_cont(_, X, Y) -->> deref_rtn(X, Y).

%%%%%%%%%f%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&%\t%\ti%%i‘t%‘ii\t\%\‘%%%%%%

¢

% Equal routire:

equal rtn(X, X, _)} -->> !.
equal_rtn(_, _, L} -->> [set(r(pc),L)):regs.

THEEELLRHISELLLLLLLLLLLLLATTAIILAATTLLLIRLALLEALLLLLELHLLLLLLLLLTELALLLLLEILLLSLAS
$ Switch and test routines:

switch_rtn(_, tvar, A,_,_) -->> !, [set(r(pc),A)]):regs.

switch_rtn(T, TX, _.B,_) =-->> {equivalent_tag(T,TX)},!, [set(r(pc),B)]:regs.
switch_rtn(_, _¢ _+1_eG) —=>> [set(r(pc),C)]:regs.

test_rtn(Eq, T, TX, L) -->> {test_true(Eq, T, TX)), !, [set(r(pc),L)):regs.
test_rtn(_. _, _. _) —-=>> [].

test_true(eq, T, TX) :- equivalent_tag(T, TX).
test_true(ne, T, TX) :- \+equivalent_tag(T, TX).

SESELLTALVLILTATAILTLBALACTLSLRLLLBLABLLCALLSLLABLALLTLTLLALALLLLLLLELAALTRLLLN
% Arithmetic utilities:

arith(op, A, B, V) -->>
numarg (A, XA), (extract_value(XA, VA), check_int (XA)},
numarg(B, XB), {extract_value(XB, VB), check_int (XB)},
arith_operation(Op, VA, VB, VC},
a_var(set, VvV, VQ).

arith_operation(add, VA, VB, VC) :- VC is VA+VB.
arith_operation(sub, VA, VB, VC) :- VC is VA-VB.
arith_operation(mul, VA, VB, VC) :- VC is VA*VB.
arith_operation(div, VA, VB, VC) :- VC is VA//VB.
arith_operation(mod, VA, VB, VC) :- VC is VA mod VB.
arith operation(and, VA, VB, VC) :- VC is VA /' B.

196

arith_operation(or, VA, VB, VC) :- VC is VA \/ VB.

arith_operation{xor, VA, VB, VC) :- VC is (VA /\ \(VB)) \/ (VB /\ \(VA)).
arith_operation(not, VA, _, VC) :- VC is \(Va).

arith_operation(sll, VA, VB, VC) :- VC is VA<<VB.

arith_operation(sra, VA, VB, VC) :~ VC is VA>>VB.

TLELURBLRTLLLLLLLLILILLLTRLLRALRILLLLLLT040¢RELL00oR L8482 ABERETRARRARLRAS

% Conditional jump:

jump _cond_rtn(C, VA, VB, L) -->> {jump_truel(C, VA, VB)}, !, (set(x(pc),L)]):regs.
jump _cond_rtn(_, _, _., _) -=>> {}.

jump_true(lts, VA, VB) :- VAB<VB.
jump true(gts, VA, VB) :- VA@>VB.
jump true(les, VA, VB) :- VA@=<VB.
jump_ truet(ges, VA, VB) :- VA@>=VB.
jump_true(eq, VA, VB) :- VA==VB,
jump_true(ne, VA, VB) :- VA\==VB.

%%%t%%%%%%%%%%i%

$ Hash table utilities:

hash_lookup(PC, X, N} -->>
{PC1 is PC+1},
{get (PC1, pragma (hash_length(N)))]:code,
{PC2 is PCl+1},
{PCN is PC1l+N},
hash_lookup_2(PC2, PCN, X).

hash_lookup_2(PC, PCN, _) -->> {PC>PCN}, !.
hash_lookup_2(PC, PCN, X) -=>> {PC=<PCN},
[get (PC,paix(E,L))] :code,
{E=X},

1
.0

{set (r(pc),L)]:regs.
hash_lookup_2(PC, PCN, X) -->> {PC=<PCN},

{PC1 is PC+l},

hash_lookup_2(PC1, PCN, X).

% Indirection needed for structures because main functor is in memory:

hash_indirect (atomic, X, X} -=>> {].
hash_indirect (structure, X, ¥Y) -~=->> [get (X,Y)]:heap.

SELSHLFLLARLHLLLHALLLLALLTLLLALLALVRLLLLLALTAALLABLLALULLLLLBLAARLTALLIELEIALRY
% Choice point and fail utilities:

save_choice_regs([), _) -->> {].

save_choice_regs({nolRs), B) =-->> !,
save_choice_regs{Rs, B).

save_choice_regs([I1lRs}, B} -->>
{get {r(1),R}]:regs,

197

{ins(B, r(I), R) I},
save_choice_regs(Rs, B).

restore_choice_regs((]}, _) -->> (].

restore_choice_regs({no|Rs], B} =-->> ',
restore_choice_regs(Rs, B).

restore_choice_regs({1IRs], B) -->>
{get (B, r{I), R} I},
{set(r(I),R)]:regs,
restore_choice_regs(Rs, B).

SLELLLRERLLRLLGLLLLLLLTLLLLLLLLLLTLLLEHLATLLLELLLLLLLAGLLLLLHLLHLLLLLLBULG%4%
$ Trailing and detrailing:

trail_rtn(xi -=>>
[get (r (hb) ,HB)] : regs,
cmp_trail (X, HB).

cmp_trail(X, HB) -->> {less_trail(X, HB)}, !,
{get (r(tr),TR)] :regs,
[{set (TR, X)) :trail,
{TR1 is TR+1},
(set (r(tr),TRl)) :regs.
cmp_trail(_, _) -->> [].

less_trail(_"X, _"Y) :- X<Y.

% Restore to unbound the variables on the trail between OldTR and CurTR.
detrail rtn(CurTR, OldTR) -->> (CurTR=<OldTR}, LR
detrail rtn(CurTR, OldTR)l -->> {(CurTR>OldTR},

{CurTRl is CurTR-1},

(get (CurTR1,V)]:trail,

{set (V,V)] :heap,

detrail_ rtn(CurTRl, O1ldTR).

SEELTLLLELLLTLRLLLEERRLALTLALALLLLLTLALLTLLLRLELLELLULHLALLTLLLTLLLLRLLREILR404Y
% General unification routine:

unify rtn(Wi, W2, L) -->>
unify rtn_2(Wl, w2, Flag),
unify end(Flag, L).

unify_end(success, _) -=>> [].
% For later: detrailing if L\fail.
unify_end(fail, L) -->> [set(r(pc),L)]:regs.

unify rtn_2(W1l, W2, Flag) -->>
{extract_tag_value(Wi, T1l, V1}},
{extract_tag_value(W2, T2, V2)},
unify rtn_2(T1, V1, T2, V2, Flag).

unify rtn_2(tvar, V1, NTag, V2, success) -->> (NTag\==tvar), !,

198

trail_rtn(tvar~Vl},
{make_word(NTag, V2, Word)]},
{set (tvar~V1,Word)] :heap.

unify_rtn_2(NTag, V2, tvar, V1, success).-->> {NTag\==tvar}, !,
trail_rtn(tvar~vl), '
{make_word (NTag, v2, Word)}.,
(set (tvar-Vl1,Word)) :heap.

unify_rtn_2(tvar, V1, tvar, V2, success) -->> !,
unify varvar(vl, Vv2).

% Matching atomic tags:

unify_rtn_2(ATag, V1, BTag, V2, Flag) -->>
{atomic_tag(ATag)},
{atomic_tag(BTag)},
{equivalent_tag(ATag, BTag)), -

[)
.’

unify atm(vl, V2, Flag).

% Non-matching nonvariable tags:

unify rtn_2(ATag, _., BTag, _, fail} -->>
{ATag\==tvar, BTag\=»=tvarl,
{\+tequivalent_tag(ATag, BTag)l.
]

% Matching pointer tags (recursive case):
wvnify_rtn_2(ATag, V1, ATag, V2, Flag) -->>
{pointer_tag(ATag)}.
get_size(ATag, V1, Sz),
unify rtn_args_2(0, Sz, ATag, V1, V2, Flag).

% The term’s Size is the maximum offset needed to traverse the term in memory.
get_size(tlst, _, 1) -~>> {(].
get_size(tstr, V, N} -=~>>

(get (tstr-V,Func)] :heap,

{Func=(tatm" (_/N))).

unify rtn_args_2(N, Sz, _, _, _. Success) -->> {N>Sz), .
unify rtn_args_2(N, Sz, T, V, W, Flag) -->> (N=<Sz}, !,

{VN is V4N},

{WN is W+N},

{get (T"VN,VX)):heap, deref_ rtn(vx, DVX),

[get (T"WN,WX)] :heap, deref_rtn(wx, DWX) ,

unify rtn_2(DVX, DWX, F),

{N1 is N+1},

unify_rtn_args_3(F, N1, Sz, T, V, W, Flag).

% Continue with other arguments if argument unification succeeded:
wnify rtn_args_3(fail, _, _, _, _. _, fail) -=>> {J.

unify rtn_args_3(success, N1, Sz, T, V, W, Flag) -->>
unify rtn_args_2(Nl, Sz, T, V, W, Flag).

% Unifying value parts of two atomic terms with equivalent tag:
unify atm(V, V, success) -->> !.
unify atm(_, _. fail) -->> (}.

% Unifying two variables: bind youngest to oldest, trail youngest.
unify varvar(vl, v2) ~=>> {(V1>V2}, !,

199

trail_rtn(tvar-vl),
{set (tvar~V1,tvar~v2)] :heap.
unify varvar(Vl, V2) -->> {Vi=<V2}, !,
trail_rtn(tvar~ve),
(set (tvar~"v2,tvar~vl)]:theap.

SEELLLHLLRLERLITLTLULELLEACHLARRABAUCELLLLLILLLLDHATLOCRHLLLCRARARBRATLRUURLLLLLS
$ Simple type utilities:
ground(X) :- nonvar(X), funcror(X, _, N), ground(N, X).

ground(N, _) :-~ N=:=0, !.)
ground(N, X) :-~ N=\=0, arg(N, X, A}, ground(A), Nl is N-1, ground(Nl, X).

natural(N) :~ integer (N), N>=0.
pos(N) :~ integer(N), N>O0.

SLLRLLTLLBLLPURRILIVLLILISTITLALLRLLILILALLLLALLLLLLTLLLLLLLLLUSLILEILILULSLS
% Word, tag, and value manipulation utilities:

% This takes into account the relationship between tpos, tneg and tint.
% For ‘integers it extracts tpos or tneg tags and the absolute value

% of the integer. It creates the correct integer, given the tpos, tneg
% or tint tags.

equivalent_tag(T, Ty - .
equivalent_tag{tint, tpos) :- !.
equivalent_tag(tint, tneqg).

extract_tag(N, tpos) :- integer(N), N>=0Q, !,
extract_tag{(N, tneg) :- integer(N), N<OQ, ¢,
extract_tag(T"_, T).

extract_value(N, N} :- int(N), N>=0, !,
extract_value (N, M) :- int(N), N<O, !, M is -N.
extract_valve(_"V, V).

extract_tag_value(W, T, V) :-
extract_ tag(wW, T},
extract value(W, V).

nonvartag(Il) :- int(I}, !.
nonvartag (T _) :- \+T=tvar.

% Only used for pointer tags:
insert_tag(T, _"v, T V).

make word(tint, I, I) :~ !.

make word(tpos, I, I) :~ !.

make word{tneg, N, I) :- !, I is -N,
make word(T, V, T V).

add_word(T I, J, T K) :- K is I+J.
% Eventually, print out value of PC:
check_int (I} :~ int(I), .
check_int (_) :-
error{[’'Operand of conditional is not.an integer.‘]).

LEALEHLLLALLLBRRLEVLELTRLFLAELLLLLELLALNBLTUTULLLBLLLURILTLLILRUTLLLELLILISS%%
% Table utilities:

% This code implements a mutable array, represented as a binary tree.

$ Insert a value in logarithmic time and constant space:

% This predicate is used in this program only to create the array,
§ although it can also be used to access array elements.

ins(T, I, V) :~ hash(I, H), ins_2(T, H, V).
ins_2(node(N,W,L,R), I, V) :- ins_2(N, W, L, R, I, V).
ins 2(N, Vv, _, _, I, V) :- I=N, !,

ins_2(N, _, L, R, I, V) :-
compare (Order, 1, N),
ins_2(Order, I, V., L, R).

ins_2(<, I, Vv, L, _) :- ins_2(L, I, V).
ins 2(>, I, V, _, R) :- ins_2(R, I, V).

% Access a value in logarithmic time and constant space:

% This predicate cannot be used to create the array incrementally,
% but it is faster than ins/3.

get(T, I, V) :- hash(I, H), get_2(T, H, V).

get_2(node(N,W,L,R), I, V) :~-
compare (Order, I, N),
get_3(Order, I, V, W, L, R).

get_3(<, I, VvV, _, L, _) :- get_2(L, I, V).
get_3(=, , V, W, _, _) := V=W,

get_3(>, I, V, _, _, R} - get_2(R, I, V).
% Update an array in logarithmic time and space:
set (T, I, V, U) :- hash(I, RB), set_2(T, H, V, U).

set_2(leaf, I, V, node(I,V,leaf, leaf)).
set_2(node (N,W,L,R), I, V, node(N,NW,NL,NR)) :-
compare (Order, I, N),
set_3(0rder, I, v, W, L, R, NW, NL, NR).

set_3(<, I, V, W, L, R, W, NL, R) :- set_2(L, I, Vv, NL).
set.__3(=, _ v, e L, R, Vv, L, R).
set_3(>, 1, V, W, L, R, W, L, NR) :~ set 2(R, I, V, NR).

% Prevent any further insertions in the array:

201

seal (leaf).
seal (node(_,_,L,R)) :- seal(L), seal(R).

% Print values of array in sorted order:
print_array(Term) :-
flat_array(Term, 2, Flat),
print_list(Flat).

print_list([)).

print_list ({(A->B) IL]) :-
write (A}, put(9), write(’= ‘), write(B), nl,
print_list(L).

flat_array(Term, N, Sort) :-

N>0, N1 is N-1,

flat_array(Term, N1, Flat, []), !,

sort (Flat, Sort).
flat_array(leaf, N, {1) :- N=:=0, ¢,
flat_array(node(_,_.,_,_), N, “...7) :- N=:=0, !,
flat_array(Te}m, _r Term).

flat_array(leaf, _) --> {].
flat_array(node(H,T,L,R), N) -->
flat_array(L, N),
{hash(H, 111},
{flat_array(T, N, F)},
((I->F)],
flat_array(R, N).

% Invertible hash function:

% Bit inversion of the integer components of a ground term. Other parts are
% unchanged. This one inverts the low 16 bits. 1t can be changed by changing
% the last argument of bit_invert/3.

hash(I, H) :- integer(I), !, bit_invert (I, H, 16).

hash(T, H) :- functor(T, Na, Ar), functor(H, Na, Ar), hash 2(Ar, T, H).

hGSh_z(ol e _) -1
hash 2(N, T, H) :~ N>0,
arg(N, T, X),
arg(N, H, Y),
hash(X, Y),
Nl is N-1,
hash_2(N1, T, H).

bit_invert(0, 0, _) :- !.
bit_invert (N, I, B) :- N>0,
L is N>>1,
R is N/\ll
Bl is B-1,
bit_invert(L, LI, Bl),
I is R*(1<<B) + LI.

SEEAAALLLAALTLLLRLTEALLLLLRRATLLLAALRLLLLALLLLLLLLLLLALLLLLLABRLARATLALBRRLEY

202

% Error handling:

error{l) :-
write(’*** Error: ‘),
error_loop(L),
write(’ **+*"), nl.

error_loop((}).
error_loop([MIL]) :- write(M), error_loop(L).

%%%&%%
% Primitive version of write:

write_rtn -~->>
(get (r(0),X)]:regs.,
write_rtn(X).

write_rtn(tvar’V) -->> !, (write(’'_’), write(V}).
write_rtn(I) ~->> (int(I}}, !, {(write(I)].
write_rtn(tatm" (F/N)) -->> !, (write(’’’’), write(F/N), write(‘*"°)]).
write_rtn(tatm-a) -->> !, {write(A)}.
write_rtn(tlst"Vv) -=->> !,

{W.is V+1),

[get (t1st "V, Head)] :heap,

[get (t1st"W,Tail)) :heap,

deref_ rtn(Head, DHead),

deref_rtn(Tail, DTail),

{write{ ' [‘)]},

write_rtn(DHead),

{write(“ 17} },

write_rtn(DTail),

{write(’1’)1}.
write_rtn(tstr-V) -->> ',

{get (tstr~V,tatm” (F/N))] :heap,

{write(F), write(‘ (")},

write_arxg(Vv, 1),

write_args(2, N, V),

{write(")*)}.

write_args(i, N, _} -->> {I>N}, !.
write_args(I, N, V) -->> {(I=<N}, !,
{I1 is I+1},
{write(‘,’)),
write_arg(v, I),
write_args(ll, N, V).

write_arg(V, I) -->>
(W is V+I},
[get (tstx™W, X)] :heap,
deref_ rtn(X, DX},
write_rtn(DX).

ALLALALAAALTLALLEELLALATALLLALALLLLALLLALLLRLTLLRLLERLLALTARLLLRRALRRARRBARRLE

203

Appendix D

Semantics of the Berkeley Abstract Machine

1. Introduction

This appendix gives an English-language description of the semantics of the Berkeley Abstract
Machine (BAM) as comments attached to a Prolog specification of its syntax. The BAM is intended to
operate on the same data structures as the Warren Abstract Machine (WAM), therefore some familiarity
with the WAM is an advantage. The semantics are represented by short descripuons suppiemented by
pseudo-code and examples where necessary.

The BAM.is designed to be simple and easily translated to most general-purpose processors. Many
of its optimizations apply to any processor, for example the streamlined choice point management and the
use of write-once permanent variables to simplify trailing. Although the first target is the VLSI-BAM pro-
cessor, we have built transiators for other processors including the MIPS and the MC68020. Pragmas give
information that is used 1o obtain the best translation for different processors.

- The instruction set is divided in six categories, each in a differeat section. Each section starts with a
box giving the syntax of the instructions presented in that section. This is followed by a description of the
instructions’ actions. Section 2 gives the unification instructions. Section 3 gives the conditional control
flow instructions. Section 4 gives the arithmetic instructions. Section 5 gives the procedural control flow
instructions. Section 6 gives the pragmas, which contain information that allows better translation. Section
7 gives the user instructions, additions to the BAM that are never output by the compiler but are intended
for the BAM assembly programmer. The last section defines the syntax and semantics of the addressing
modes used in the instructions. °

In explaining the semantics, a few assumptions are made about the data representation. An infinite
number of registers is assumed; the translator should map registers of sufficiently large index 1o memory.
A tagged architecture is assumed; i.e. each word contains a tag and a valuc field which are treated as
separate eniities in some instructions and as a unit in other instructions. A load-store architecture is
assumcd; almost any architccture has a subset of instructions that satisfy this assumption. The actual
dcuails of the translation 10 the target architecwre are not given since they depend on the characteristics of
the architecture. These characteristics include the number of registers, the addressing modes, hardware
support for centain features (tagging, dereferencing, trailing, etc.), the precise format of choice points and
environments, and so forth.)

204
2. Unification instructions
Unificauon syntax
instr(deref (V,W)) 1= var_i(V), var_i(w).
instr{equal (EA,A,L)) :- ea_e(ER), arg_i(A), 1lbl(L).
instr(unify(V,W,F,G,L)) :- var_i(V),var_i(W),nv_flag(F),nv_flag(G),1lbl(L).
instr(trail(V)) :- var_i(Vv).
instr(move (EA,VI)) :- ea_m(EA), var_i(VI).
instr{(push(EA,R,N)) :- ea_p(EA), hreg(R}, pos(N}.
instr(adda(R,S,T)) :~ numreg(R), numreg(S), hreg(T).
instr(pad(N)) := pos(N) .
instr{unify_atomic{V,I,L)):- var_i(V), an_atomic(I), lbl(L).
instr(fail).
deref (V,W) Dereference the argument V and store the result in W. The argument

V is unchanged. This is the only instruction which dereferences its
argumeni. All other instructions assume that their arguments are
dereferenced. Giving the dereference instruction two arguments
simplifies the implementation of write-once permanent variables and
makes a fast implementation of trailing possible.

equal(X,Y,L) Compare X to Y and branch to L if they are not equal. The comparison
is a full word operation, equiva.ent to *‘eq"’ in Lisp. It is assumed that
X and Y are dereferenceu.

unify(X,Y¥,T,U,L) Perform a general unification of X and Y, and branch to L if it fails.
Always binds oldest variables to the youngest. In the failure case all
bindings are undone. It is assumed that X and Y are dereferenced. The
two parameters T and U are added as an optimization, and may be
safely ignored. They are flags (with values *?‘, var, or nonvar)
that say whether it is known if X and Y are variables or nonvariables.
* With this information a beuer translation to the target processor can be
done.

trail(x) Push the address of X on the trail stack if the trail condition X<xr (hb)
is satisfied. It is assumed that X is a dereferenced unbound variable,
i.e.ithas2a tvar tag. Only one comparison is necessary for the trail
check. The statc register r (hb) points 10 the heap location which
was the top of the heap when the most recent choice point was created.

move (X, Y) Move X 10 Y. Depending on the addressing mode, this instruction docs
a load or store or creates a tagged value.

push (X,R,N) Push X on the stack with stack pointer R, then increment R by N. This
instruction is used for write mode unification.

adda (X, Y,R) Add X and Y into R. This is a full word operation which never traps,
unlike the arithmetic instructions in section 4. This instruction is used
to alfocate space for uninitialized variablcs. The second argument Y is
an offsct which is scalcd properly by the wranslator (i.c. it is unchanged
for the VLSI-BAM since it is word-addressed, and it is multiplied by 4
for the MIPS, since it is bytc-addressed).

.r

pad (N}

unify_ atomic(X,Y,L)

fail

to

Add N words to the heap pointer r (h). This is a full word operation
which never traps, unlike the arithmetic instructions in section 4. It is
uscd o ensurc the correct alignment of compound terms. The space
rescrved by pad will never be stored 10. If the increment is a muluiple
of the alignment then the pad disappears. The increment is scaled
properly by the translator (see previous description of adda).

Unify the vanable X with the atomic term Y, and branch to L if it fails.
It 1s assumed that X is dereferenced. The unify_atomic instuc-
tion is a special case of gencral unification that is added to reduce code
size in the VLSI-BAM processor. There is a compiler option 10 enable
or disable the gencrauon of this insuruction.

Untrail al} variable bindings and jump w0 the reiry address. Do not
restore argument registers. Argument registers arc restored by the
choice point management instrucuons.

3. Conditional control flow instructions

N

Clause selection syntax

instr({switch(T,V,.A,B,

instr(test (Eq,T,V,L))
instr(jump(C,A,B,L))
instr (move (CH,V))
instr (cut (V))

instr (hash(T,R,N,L))
instr{pair(E,L))

instr(choice(I/N,Rs,L))

C))

pos(I), pos(N), I=<N, lbl(L), regs(Rs).
:- eq_ne(Eq), var_i(V), a_tag(T), 1lbl(L).

:— a_var(V), choice ptr(CH).

:= a_var(Vv).

:= hash_type(T), reg(R), pos(N), 1lbl{(L).
:- an_atomic(E), 1bl(L}).

a_tag(T), var_i(V), 1bl(A),1bl(B),1bl(C).

cond(C), numarg_i(A), numarg_ i(B),1bl{(L).

switch(T,R,A,B,C)

A three-way branch: branch to the label A, B, C depending on whether

. thetag of R is tvar, T, or any other value. The label fail is not

choice(1I/N,RS,L)

an address, but denotes a branch to the global failure routine. It is
assumed that R is dcreferenced.

The choice point management instruction for choosing clause I out of
N clauses. Choice poinats are of variable sizc. The semantics of choicc
depends on | as follows:

I=1 Create a choice point with reury address L. Save in it the
registers listed in RS.

1<I<N Restore the registers mentioned in RS from the choice point,
ignoring no terms. The no terms make it possible ©
know the position of the registers in the choice point without
an explicit size field in the choice point. Update the retry
address to L.

I=N Restore the registers mentonced in RS, ignoring no terms.
Remove the choice point. (L will always bc fail when
I=N))

200

The above notation is consistent with three possible implementatons
(in order of decreasing efficiency): (1) The implementation given
abovc, in which only those registers listed in RS are saved and restored,
and the choice point does not have a sizc field. Restoring registers is
done by the choice instructions, not by the fail instruction. The com-
piler does an effort to minimize the set of registers mentioned in RS.
(2) Saving all registers up to the maximum register lisied in RS. In this
case the choice points are of variable size, and the no termsin RS arc
ignored. The notation is consistent with choice points containing a size
field. (3) Always saving and restoring all registers. In this case the
choice points are of fixed size, the RS argument is ignored, and the fail
instruction restores the registers. In this case the semantics correspond
(o the try, retry, and trust instructions of the WAM.

test (E, T, %, L) Branch t label L if the tag of X is equal/not equal 0o T.
Equality/nonequality is selccted by the value of E. The label £fail is
not an address, but denotes a branch to the global failure routine. It is
assumed that X is dereferenced.

jump (C, X, Y, L) Compare X and Y and jump to L if the comparison is true. The kind of
comparison is given by C. This instruction traps if either argument is
not an integer. The label fail is not an address, but denotes a
branch 1o the global failure routine.

cut (X) Implement the cut operation. Move X into the r (b) register; also
move the value of r(h) in this choice point into the r (hb) regis-
ter. The lauer move is an optimization that reduces the number of
trailed variables, but is not needed for comectness. The compiler
ensures that X contains a pointer to the choice point which was most
recent when the current predicate was entered.

hash(T,R,N, L) . Look up register R in 2 hash table located at label L. The hash wble
contains atomic terms (when T=atomic) or the main functors of
structurcs (when T=st ructure). If R is not in the hash 1able, then
execution falls through to the next instruction. Otherwise execution
continues at the label contained in the hash table. When
T=structure the compiler guaraniees that R points to a structure.
The following is an example of hash table code:

hash(Type,Reg,N,Lbl). . Hash Reg into table at Lbl
... ; Fall through if not present

label (Lbl). ; The hash table
hash_length(N). ; Length of the hash table
pair(El,Ll). : N entries

pair(Ez,L2).
pair(Ei,Li). ; Jump to Li if Reg = Ei

pair (EN,LN) .

pair(g, L) A hash table entry. E is cither an atom or the main functor of a suruc-
turc. The label L is the address where exccution continucs if the sup-
plicd valuc matches E.

4. Arithmetic instructions

207

Arithmetic syntax

instr(add(A,B,V))
instr(sub(A,B,V))
instr(mul (&,8,V}}
instr(div(A,B,V))
instr(and(A,B,V))
instr(or(A,B,V))
instr(xor(A,B,V))
instr(not (A,V))

instr(sll(A,B,V))
instr(sra(A,B,V))

:- numarg_i(A), numarg i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), pumarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var (V).
:- numarg_i(A), numarg_i(B), a_var(V}.
:- numarg_i(A), numarg_i(B), a_var (V).
:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), a_var(v).
- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var(v).

‘e

All arithmetic instructions assume that tfleir operands are dereferenced and destructively overwrite
the result register. All perform operations on integers with correct tag and retumn a result with comect tag,
trapping if either operand or the result is not a integer. Arithmetic semantics are:

add(X,Y,2)
sub (X, Y,2)
mul (X,Y,2)
div(X,Y,2)
and(X,Y,2)
or(¥X,Y,2)
xor (X,Y,Z)
sll1(X,Y,2)
sra(X,Y,2)
not (X, 2)

Z < X+Y

Z XY

Z & X*Y

Z< XY

Z« Xand Y (bitwise and)

ZeXorY (bitwise or)

Z « X xor Y (bitwise exclusive or)

Z « X << Y (logical shift of X left Y places)

Z « X >> Y (arithmetic shift of X right Y places)
Z « not X (bitwise invent X into Z)

5. Procedural control flow instructions

Procedural syntax

instr (procedure(N/A)) :- atom(N), natural(d).

instr(call(N/A)) :- atom(N), natural(a).

instr(return).

instr(simple call(N/A)) :- atom(N), natural(A).

instr(simple_return).

instr(label(L)) := 1bl(L).

instr(jump(L)) := 1bl(L).

instr(allocate(Perms)) :~ natural (Perms).

instr(deallocate (Perms}) 1= natural(Perms).
procedure (P) The entry point of procedure P.

call(N/A)

return

Call the procedure N/A, assuming a fixed location for the arguments.
The arguments of N/A are scquentially loaded into argument regis-
ters. By default the registers used are numbered from zero, i.c. r(0),
r (1), ... This call is used for all user-defined predicates. It may be
nested, but must be surrounded by an allocaic-deallocate pair when
uscd in the body of a predicaic.

Retun (rom a call.

simple_call(N/A)

simple_return

label (L}

jump (L)

allocate (N)

deallocate (N)

. Pragmas

203

Simple call of the procedure N/A, assuming the same argument pass-
ing as call(N/A). This is a one-level call; it may not be nested. It
docs not requirc a surrounding allocate-deallocate pair. It can be
implemented by saving the return address in a fixed register. This
wstruction is useful for interfacing with assembly routines.

Return from a simple call.

Denotes a branch destination. The label fail is not an address, but
denotes a branch 10 the global failure routine.

Jump unconditionally to labe! L. The label may be to the first instruc-
uon of another procedure N/A or it may be intenal o the current pro-
cedurc. The label fail is not an address, but denotes a branch to the
global failure routinc.

Create an environment of size N on the local stack, i.c. a new set of N
permanent variables which are denoted by p (1). Typically, the only
state registers stored in the environment are r (e) and r(cp). The
environment must NOT contain the r (b) register.

Remove the top-most environment (which is of size N) from the Jocal
stack.

Pragma syntax

instr(pragma(Pragma)) :- pragma{(Pragma).

pragma(align{v,N)) :~ a_var(V), pos{(N).
pragma (push(term(Size))} :- pos{Size).
pragma (push (cons)) .

pragma (push(structure(ad))) :- pos(A).
pragma (push (variable)).

pragma (tag(Vv,T)) :- a_var(V), a_tag(T).
pragma (hash_length(Len)) :- pos(Len).

align(V,N)

hash_length(N)
push (term(S))

push (cons)

push(structure(A))

push(variable)

hash_length(N)

At this point the contents of register or permancnt V are a muluplc of
N. This information helps the reordering stage o gencralc double-
word load instructions for the VLSI-BAM processor.

N is the length of the hash table starting at this point.

At this point a block of push instructions is about to create a erm of
size S on the heap.

At this point a cons cell (of size two words) is about to be created on
the hcap. This information helps the reordering stage 0 generaic
double-word push instructions for the VLSI-BAM processor.

At this point a structure of arity A is about 1o be created on the heap.
This information helps the reordering stage to gencrate double-word
push instructions for thc BAM processor.

Al this point an unbound, initialized variable is about to be created on
the heap.

This is the stan of a hash table of length N.

tag(v,T)

209

The contents of vanable V have tag T. This pragma precedes a load or
a storc with address V. [t is uscd o make loads and stores efficient for

processors which do not have explicit tag support

7. User instructions

This sccuon describes the parts of the BAM language that are never output by the compiler, but only
used by the BAM asscmbly programmer. This is used (0 write the run-time system in BAM code, so that it
is as portablc as possiblc. Additional instructions are jump to register address, creating and decomposing
aagged words, non-trapping full-word arithmetic, non-trapping full-word unsigned comparison, and trailing
for backuackable destructive assignment. Additonal registers are used in implementing the run-time sys-

tem, and can be mapped to memory locations.

Additional instructions

user_instr(ord(A,B))

user_reg(r(R))

instr(I) :- user_instr(I).

user_instr (jump_reg(R}) :- reg(R).
user_instr(jump_nt (C,A,B,L)):- cond(C),numarg_i(A),numarg_i(B),1bl(L).

:- arg(R), a_var(B).

user_instr{(val(T,A,V)) 1= a_tag(T), numarg_i(A), a_var(V).
user_instr{add nt (A,B,V)) := numarg_i(A), numarg_i(B), a_var(V).
user_instr(sub_nt(A,B,V}) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr{and nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(or_nt(A,B,V)) :— numarg_i(A), numarg_i(B), a_var(V).
user_instr(xor_nt(A,B,V)) := numarg_i(A), numarg_i(B), a_var(V).
user_instr{(not_nt (A,V)) := numarg_i(A), a_var(v).
user_instr(sll_nt(A,B,V}) :- numarg_i(A), numarg i(B), a_var(V).
user_instr(sra_nt(A,B,V)) := numarg_i(Ad), numarg_i(B), a_var(Vv).
user_instr(trail bda(X)) - a_var(X).

:- atom(a).

jump_reg (R)

jump_nt (C,A,B,L)

ord (A,B)

val(T,A,V)

Jump unconditionally to the address stored in register R,

Compare A and B and jump w0 L if thc comparison is truc. The kind of
comparison is given by C. This instuction does a full word com-
parison and ncver traps. The label fail is not an address, but
dcnotes a branch to the global failure routinc.

Store in B the machine integer that corresponds to the atom or integer
in A. This function strips the tag from A, and therefore depends on the
target machine and the program that is compiled. It is used to convent
atoms and integers into table indices.

Create a tagged word in B by combining the tag T and the machine
integer in A. This function is the inversc of ord(A,B): In the
scquence ord (Al,B), val(T,B,A2) the argument A2 will
reccive an identical value 10 A1 if T isthewagof Al

210
add_nt (A, B,V) These arithmetic instructions desuuctively oveswrite the result register
sub_nt (A,B,V) All perform operations on full words, retum a full word, and ncver
and_nt (A,B,V) trap. See the previous section on arithmetic for a description of the

or_nt(A,B,V) operations performed.
xor_nt (A,B,V)
not_nt(A,B,V)
sll_nt(A,B,V)
sra_nt(A,B,V)

trail_bda (X) Push the address and value of X on the trail stack if the trail condition
X<r (hb) is satsfied. It is assumed that X is derefercnced. When
detrailing, the old value of X is restored. This is used to implement
backtrackable destructive assignment. Only one comparison is neces-
sary for the trail check. The state register r (hb) points to the heap
location which was the top of the heap when the most recent choice
point was created.

8. Instruction arguments
This section defines the syntax of the instructions’ arguments.

Addressing modes for equal, move and push
% Effective address for equal:
ea_e (Var) :- a_var(Var).
ea_e(Varoff) :- var_off (Varoff).

‘% Effective address for move:

ea_m(Arg) :- arg(Argj.
ea_m(VarOff) - var_off (VarOff).
ea_m(Tag H) :1- pointer_tag(Tag), heap ptr(H).

% Effective address for push:

ea_p(Arqg) - arg_i(Arg).
ea_p(Tag~H) :~ pointer_tag(Tag), heap_ptr(H).
ea_p(Tag” (H+D)) :- pointer_tag(Tag), pos(D), heap_ptr(H).

Other addressing modes
heap_ptr(r(h)).
choice_ptr(r(b)).
reg(r(I)) = aint{I).
reg(T) :- user_reg(T).
hreg(R) :- reg(R).
hreg (R) :=- heap ptr(R).
perm{p{1)) :—- natural(Il).

an_atomic (I) Sz=
an_atomic(T"A) A
an_atomic(T" (F/N)) :-

a_var (Req) -
a_var (Perm) -

- arg(Arqg) :-
arg{(Arg) e

var_i(Var) :-

var_i([Var]) S
arg_i (Arg) Hi
arg_i(Arg) -
numreq (Arg) -
numreg(A:g) . :-

numarg_i (Arg)
numarg_i (Arg)

var_off([Var]}) s~

var_off ({var+1}]) =

int(I).
atom(A), atom_tag(T).
atom(F), pos(N), atom_tag(T).

reg (Reg) .
perm(Perm) .

a_var (Arg).
an_atomic(Arg).

a_var(var).
a_var(Var).

var_i(Arg).
an_atomic(Arq) .

reg(Arg).
int (Arg) .

var_i(Arqg).
int (Arg).

a_var(var).
a_var(var), pos(l).

Tag syntax

a_tag(tatm). /*
a_tag(tint). /*»
a_tagf(tneg). /*
a_tag(tpos). /*
a_tag(tstr). /*
a_tag(tlst). /*
a_tag{tvar). /*

atom_tag(tatm).

pointer_tag(tstr).
pointer_tag(tlst).
pointer_tag(tvar).

atom */

integer */

negative integer */
nonnegative integer */
structure */

cons cell */

variable */

211

Condiuonals syniax

eq_ne(eq).
eq_ne(ne).

cond(eq). /* Equal */

cond(ne). /* Not equal. */

cond(lts). /* Signed less than */

cond(les). /* Signed less than or equal */
cond(gts). /* Signed greater than */
cond(ges). /* Signed greater than or equal */

Miscellancous syntax

hash_type (atomic) .
hash_type (structure).

1bl(fail).
1bl(N/A) :- atom(N), natural(A).
Ibl1(1(N/A,1)) :- atom(N), natural (A}, int(I).

nv_flag(nonvar).
nv_flag(var).
nv_flag('?").

$ A list of register numbers:

% (May contain the value ‘no’ as well)
regs([(}).

regs ([RiSet}) :- (int(R); R=no), regs(Set).

9
tJ

Ulility predicates

ground (X)

ground (N,

ground (N, X)

int (N}
natural (N)

:~ nonvar (X), functor(X, _, N), ground(N, X).

_) := N=:=0,
:- N=\=0, arg(N,X,A), ground(A), N1 is N-1, ground(Nl1,6X).

:- integer(N).
- integer(N), N>=0.

pos(N) :- integer(N), N>O0.

213

Appendix E

Extended DCG notation:
A tool for applicative programming in Prolog

1. Introduction

This appendix describes a preprocessor that simplifies purely applicative programming in Prolog.
The preprocessor generalizes Prolog’s Definite Clause Grammar (DCG) notation to allow programming
with multiple accumulators. It has been an indispensable tool in the development of the Aquarius Prolog
compiler. Its use is transparent in versions of Prolog that conform to the Edinburgh standard. The prepro-
cessor and a user manual are available by anonymous fip to arpa.berkeley.edu.

It is desirable to program in a purely applicative style, i.¢. within the pure logical subset of Prolog. °
In that case a predicate’s meaning depends only on its definition, and not on any outside information. This
has two imponant advantages. First, it greatly simplifies verifying comrectness. Simple inspection is often .
sufficient. Second, since all information is passed locally, it makes the program more amenable 0 parallel
execution. However, in practicc the number of arguments of predicates written in this style is large, which
makes writing and maintaining them difficult. Two ways of getting around this problem are (1) to encapsu-
late information in compound structures which are passed in single arguments, and (2) 10 usc global instead
of local information. Both of these techniques arc commonly used in imperative languages such as C, but
neither is a satisfying way to program in Prolog, for the following reasons:
. Because Prolog is a single-assignment language, modifying encapsulated information requires a

time-consuming copy of the entire strucwre. Sophisticated optimizations could make this efficient,

but compilers implementing them do not yet exist.

. Using global information destroys the advantages of programming in an applicative style, such as the
case of mathematical analysis and the suitability for paraliel execution.

A third approach with neither of the above disadvantages is extending Prolog to allow an arbitrary number
of arguments without increasing the size of the source code. The extended Prolog is translated into stan-
dard Prolog by 2 prcprocessor. This repont describes an extension 1o Prolog’s Definitc Clause Grammar
notaton that implements this idea.

2. Definite Clause Grammar (DCG) notation

DCG notation was developed as the result of research in natural language parsing and understanding
(Pereira & Warren 1980]. It allows the specification of a class of auributed unification grammars with
semantic actions. These grammars are strictly more powerful than contexi-free grammars. Prologs that
conform 10 the Edinburgh standard (Clocksin & Mellish 1981) provide a built-in preprocessor that
translates clauscs writen in DCG nouwation into standard Prolog.

An important Prolog programming technique is the accumulator [Sterling & Shapiro 1986). The
DCG notation impiements a single implicit accumulator. For example, the DCG clausc:

term(S) ~-> factor(A), [+], factor(B), {S is A+B}.
is translated internally into the Prolog clause:
term(S,X1,X4) :- factor(A,X1,X2), X2={+(|X3], factor(B.X3,X4), S is A+B.

Each predicate is given two additional arguments. Chaining together thesc arguments implements the
accumulator.

214

3. Extending the DCG notation

The DCG notation is a concise and clear way to express the use of a single accumulator. However,
in the development of farge Prolog programs I have found it useful to carry more than one accumulator. If
written explicily, each accumulator requires two additional arguments, and these arguments must be
chaincd together. This requircs the invention of many arbitrary variable names, and the chance of intro-
ducing errors is large. Modifying or extending this code, for example to add another accumulator, is tedi-

ous.

One way 10 solve this problem is o0 exiend the DCG notation. The extension described here allows
for an unlimited number of named accumulators, and handles ali the tedium of parameter passing. Each
accumulator requires a single Prolog fact as its declaration. The bulk of the program source does not
depend on the number of accumulators, so maintaining and extending it is simplified. For single accumula-
tors the notation defaults to the standard DCG notation.

Other exiensions 10 the DCG notation have been proposed, for example Extaposition Grammars
{Percira 1981] and Definite Clause Translation Grammars [Abramson 1984). The motivation for these
extensions is natural-language analysis, and they are not directly useful as aids in program construction.

4. Anexample

To illustrate the extended notation, consider the following Prolog predicate which converts infix
expressions containing identifiers, integers, and addition (+) into machine code for a simple stack machine,
and also calculates the size of the code:

expr_code (A+B, S1 s4, C1, C4) :-

expr_code(’., S1, S2, C1, C2),

expr code (B, S2, S3, €2, C3),

C3={plusiC4], /* Explicitly accumulate ‘plus’ */

Si is S3+1. /* Explicitly add 1 to the size */
expr_code(I, S1, S2, €1, C2) :-

atomic (1),

Cle=[push(I){C2],

S2 is Sl+1.

This predicate has two accumulators: the machine code and its size. A sample call is
expr_code (a+3+b,0,Size,Code, (]), which retums the result :

Size = 5
Code = [push(a),push(3),plus,push(b),plus}

With DCG notation it is possible to hide the code accumaulator, although the size is still calculated expli-
citly:
expr_code (A+B, S1, S4) -->
expr_code(A, S1, S82),

expr_code(B, S$2, S3),
{plus}, /* Accumulate ‘plus’ in a hidden accumulator */

{S4 is S3+41). /* Explicitly add 1 to the size */
expr_code(l, S1, S§2) -->

{atomic (1)),

{push(I}].

{S2 is S1+41)}.

The exwended notation hides both accumulators:

215

expr_code (A+B) -~>>
expr_code(A),
expr_code (B),

{plus]:code, /* Accumulate ‘plus’ in the code accumulator */

{1):size. /* Accumulate 1 in the size accumulator */
expr_code (I} -->>

{fatomic(I)),

{push(I)] :code,

[1):size.

The translation of this version is identical to the original definition. The preprocessor needs the following
declarations:

acc_info(code, T, Out, In, (Out=(T|In)))./* Accumulator declarations */
acc_info(size, T. In, Out, (Out is In+4T}).

pred_info(expr_code, 1, (size,code]). /* Predicate declaration */

For each accumulator this declares the accumulating function, and for each predicate this declares the
name, arity (number of arguments), and accumulators it uses. The order of the In and Out arguments
determines whether accumulation proceeds in the forward direction (see size) or in the reverse direction
(sec code). Choosing the proper direction is important if the accumulating function requires some of its.
arguments (o be instantiated.

S. Concluding remarks

An extension 1o Prolog’s DCG notation that implements an unlimited number of named accumula-
tors was devcloped to simplify purely applicative Prolog programming. Comments and suggestions for
improvements are welcome.

6. References
{Abramson 1984]

H. Abramson, “‘Definite Clause Translation Grammars,’* Proc. 1984 International Symposium on
Logic Programming. 1984, pp 233-240.

{Clocksin & Mellish 1981])
W.F. Clocksin and C.S. Mellish, ‘‘Programming in Prolog,”* Springer-Verlag, 1981.
{O'Keefe 1988)

R. A. O'Keefe, *‘Practical Prolog for Real Programmers,’* Tutorial 8, Fifth International Conference
Symposium on Logic Programming, Aug. 1988,

{Percira 1981])

F. Pereira, ‘‘Extraposition Grammars,” American Journal of Compuational Linguistics, 1981, vol.
7.n0. 4, pp 243-255.

(Pereira & Shieber 1981])
F. Pereira and S. Shieber, “*Prolog and Natural-Language Analysis,”” CSLI Leciure Notes 10, 1987.
{Pereira & Warren 1980]

F. Percira and D.H.D. Warren, **Definite Clause Grammars for Language Analysis—A Survey of the
Formalism and a Comparison with Augmented Transition Neiworks,”” Journaal of Artificial Intelli-
gence, 1980, vol. 13, no. 3, pp 231-278.

{Sterling & Shapiro 1986)
L. Sterling and E. Shapiro, **The An of Prolog,”* MIT Press. 1986.

Extended DCG notation:
A tool for applicative programming in Prolog

User Manual

1. Introduction

This manual describes a preprocessor for Prolog that adds an arbitrary number of arguments 1o a
predicate without increasing the size of the source code. The hidden arguments are of two kinds:

{1) Accumulatcrs, useful for results that are calculated incrementally in many predicates. An accumula-
tor expands into two additional arguments per predicate.

(2) Passed afguments, used to pass global information o many predicates. A passed argument expands

into a single additional argument per predicate. "
The preprocessor has been tested under C-Prolog and Quintus Prolog. It is being used by the author in pro-
gram development, and is believed 10 be relatively bug-free. However, it is still being refined and -
extended. The most recent version is available by anonymous fip to arpa.berkeley.edu or by contacting the
author. Please let me know if you find any bugs. Comments and suggestions for improvements are wel-
come,

2. Using the preprocessor

The preprocessor is implemented in the file accumulatox.pl. It must be consuited or compiied
before the programs that use it. In Prologs that conform to the Edinburgh standard, such as C-Prolog or
Quintus Prolog, the user-defined predicate term_expansion/2 iscalled when consulting or compiling
each clause that is read. With this hook the use of the preprocessor is transparent.

Clauses t0 be expanded are of the form (Head-->>Body) where Head and Body are the
head and body of the clause. The head is always expanded with all of its hidden arguments. Table 1 sum-
marizes the expansion rules for body goals. In the table, Goal denotes any goal in a clause body, Acc
denotes an accumulator, Pass dcnotes a passed argument, and Arg denotes either an accumulator or a
passed argument. Hidden arguments of body goals that are not in the head have default values which can
be overridden. For compatibility with DCG notation the accumulator dcg is available by default. If-
then-else is not handied in this version.

The preprocessor assumes the existence of a database of information about the hidden parameters
and the predicates to be expanded. Three relations are recognized: a declaration for each predicate, each
accumulator, and each passed argument. These relations can be put at the beginning of each file (in which
case their scope is the file) or stored in a separate file that is consulted first (in which case their scope is the
whole program).

A short example gives a flavor of what the preprocessor docs:

% Declare the accumulator ‘castor’:
acc_info(castor, _. _. _. truey.

% Declare the passed argument ‘pollux’:
pass_info(polluxj.

% Declare three predicates using these hidden arguments:
pred_info(p. 1, (castor,pollux]).
pred_info(q. 1. (castor,polluxj).

217

Table 1 — Expansion rules for the preprocessor

Body goal Action

{Goal) Don’t expand any hidden arguments of Goal.

Goal Expand all of the hidden parameters of Goal that are also in the
head. Thosc hidden parameters not in the head are given default
values.

Goal:L If Goal has no hidden arguments then force the expansion of all

arguments in L in the order given. If Goal has hidden argu-
ments then expand all of them, using the contents of L to override
thc expansion. L is either a term of the form Acc,
Acc(Left,Right), Fass, Pass(Value), or a list of such
tcrms. When present, the arguments Left, Right,and Value
ovcrride the default values of arguments not in the head.

List:Acc Accumulate a list of terms in the accumulator Acc.

List Accumulate a list of terms in the accumulator dcg.

X/Arg Unify X with the left term for the accumulator or passed argument
Arg‘.

Acc/X Unify X with the right term for accumulator Acc.

X/RAcc/Y Unify X with the leftand Y with the right term for the accumuta-
tor Acc.

insert (X, Y) :Acc Insert the arguments X and Y into the chain implementing the ac-
cumulator Acc. This is useful when the value of the accumulator
changes radically because X and Y may be the arguments of an
arbitrary relation.

insert (X, Y) Insert the arguments X and Y into the chain implementing the ac-
cumulator dcg . This inserts the difference list X-Y intw the ac-
cumulated lisL

pred_info(r, 1, [castor,pollux]).

t The program:
p(X) -->> Y is X+1, q(Y), r({Y).

This examplc declares one accumulator, one passed argument, and three predicates using them. The pro-
gram consists of a singlc clausc. The preprocessor is used as follows: (bold-facc denotcs user input)

% cprolog

C-Prolog version 1.5

| ?- [’accumulator.pl’].

accumulator.pl consulted 9780 bytes 1.7 sec.

yes
| ?- ['eaxample.pl’]).
example.pl consulted 668 bytes 0.25 sec.

yes
| 2=

Now the predicaic p (X) has been expanded. We can see what it looks like with the listing com-
mand: -

| ?- listing(p).
p(X, $1, S3, P) :- Y is X+1, q(Y, S1, S2, P), r(Y, S2. S3, P).
(Vanable namcs have been changed for clarity.) The arguments S1, S2, and S3, which implement the

218

accumulator castor, arc chained together. The argument P implements the passed argument. It is
added as an extra argument (o each predicate.

In object-oriented terminology the declarations of hidden parameters correspond (o classes with a
single method defined for each. Declarations of predicates specify the inheritance of the predicate from
multiple classes, namely each hidden parameter.

3. Declarations

3.1. Declaration of the predicates
Predicates are declared with facts of the following form:

pred_info(Name, Arity, List)

The predicate Name/Arity hasthe hidden parameters givenin List. The parameters are added in the
order given by List and their names must be atoms.

3.2. Declaration of the accumulators
Accumulators are declared with facts in one of two forms. The short form is:
acc_info(Acc, Term, Left, Right, Joiner)

The long form is:

acc_info(Acc, Term, Left, Right, Joiner, LStart, RStart)

In most cases the short form gives sufficient information. It declares the accumulator Acc, which must be
an atom, along with the accumulating function, Joiner, and its arguments Term, the term 10 be accu-
mulated, and Left & Right, the variables used in chaining.

The long form of acc_info is useful in more complex programs. It contains two additional argu-
ments, LStart and RStart, that are used to give default starting values for an accumulator occurring
in a body goal that does not occur in the head. The starting values are given to the unused accumulator ©
ensure that it will execute correctly even though its value is not used. Care is needed to give cormrect values
for Lstart and RStart. For DCG-like list accumulation both may remain unbound.

Two conventions are used for the two variables used in chaining depending on which direction the
accumulation is done. For forward accumulation, Left is the input and Right is the output. For
reverse accumulation, Right isthe inputand Left is the output

To see how these declarations work, consider the following program:

% Example illustrating the difference between
$ forward and reverse accumulation:

% Declare the accumulators:
acc_info(fwd, T, In, Out, Out=[T|In]). A Forward accumulator.
acc_info(rev, T, Out, 1n, Out=(T|In]). % Reverse accumulator.

% Declare the predicates using them:
pred_info(flist, 1, {fwd}}.
pred_info(rlist, 1, [rev]).

% flist(N, []), List) creates the list (1, 2, ..., N}
flist (0) ~->> []. .
flist(N) ~->> N>0, (Nj:fwd, NI is N-1, flist(N1l).

t rlist(N, List, [])) creates the list (N, ..., 2, 1}
rlist(0) -->> []).
rlist (N} -->> N>0, (N):rev, Nl is N-1, rlist(N1l).

- This defincs two accumulators fwd and rev that both accumulate lists, but in diffcrent dircctions. The

219

joiner of both accumulators is the unification Out={T|In), which adds T to the head of the list In
and creates the list Out. Inaccumulator fwd the output Out is the left argument and the input In is
the right argument. This builds the list in ascending order. Switwching the arguments, as in the accumulator
rev, builds the list in reverse. A sample execution gives these results:

| 2- flist(10, {]), List).
List = [1,2,3,4,5,6,7,8,9,10]

yes
t ?- rlist(10, List, []).

List = {10,9,8,7,6,5,4.3,2,1)

If the joining function is not reversible then the accumulator can only be used in one direction. For exam-
ple, the accumulator add with declaration:

acc_info(add, I, In, Out, Out is I+In).

It can only be uscd as a forward accumulator. Attempting to use it in reverse results in an error because the .
argument In of the joiner is uninstantiated. The reason for this is that the predicate is/2 is not pure
logic: it requires the expression in its right-hand side to be ground.

3.3. Declaration of the passed arguments
Passed arguments are declared as facts in one of two forms. The short form is:

pass_info(Pass)
The long form is:
pass_info(Pass, PStart)
In most cases the shont form is sufficient. It declares a passed argument Pass, that must be an atom. The

long form also contains the starting value PStart that is used to give a default value for a passed argu-
ment in a body goal that does not occur in the head. Most of the time this situation does not occur.

4. Tips and techniques

Usually there will be onc clause of pred_info for each predicatc in the program. If the program
becomes very large, the number of clauses of pred_info grows accordingly and can become difficult
to keep consistent. In that case it is useful to remember that a single pred_info clause can summarize
many facts. For example, the follewing declaration:

pred_info(_, _., List).

gives all predicates the hidden parameters in List. This keeps programming simple regardiess of the
aumber of hidden paramcters.

220

Appendix F

Source code of the C and Prolog benchmarks

LHEELHLLTLFLLLTLLLRELLASLTLALLLLEALLLLLLILIVLRTHVLULLUTLESVLLTRBRILHRLHLLIHLLS
/* C version of tak benchmark */
#include <stdio.h>

int tak{x,y,2)
int x, y. 2:
{
irt al, a2, a3;
if (x <= y) return z;
al = tak(x-1,y,2):
a2 = tak(y-l,z,x);
as tak(z-1,x,y);
return tak(al,a2,a3):
}

main ()"

{
printf ("$d\n", tak(24, 16, 8)):

- - _——— - ——— —————— —— " v - - T —— - —— — — — — ————

/* Prolog version of tak'benchmark */

main :- tak(24,16,8,X), write(X), nl.

X =< Y, Z = A.
-X>Y,

Xl is X 1, tak(X1,Y,2,Al1),
Yl is ¥ 1, tak(Yl,2,X%X,A2),
21 is 2 - 1, tak(21,X,Y,a3),
tak (Al,A2,A3,A).

tak{X,Y,Z,R)
tak(X,Y,2,A)

FALLLBLLLLALTLSLLLLELLLLLLLLLLLLLALELLLTHALLLLLHLLLLHBLCLACLLLLLLALLLLRELLS
/* C version of fib benchmark */
#include <stdio.h>

int fib(x)

int x;

{
if (x <= 1) return 1;
return (fib(x-1)+fib(x-2));

221

main{()
{
printf (“%d\n*, £ib(30)):

e o e o e e - = T —— " " = " = T = - = - - L e D L R = D e € S e S e

/* Prolog version of fib benchmark */

main :- fib(30,N), write(N), nl.
fib(N,F) :=- N =< 1, F = 1.
fib(N,F) := N > 1,

Nl is N - 1, fib(N1,Fl), .
N2 is N - 2, fib(N2,F2),
F is Fl1 + F2.

%%S%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/* C version of hanoi benchmark */
#include <stdio.h>

han(n,a,b,c)
; .

int nil;

if (n<=0) return:;
nl = n-1;
han(nl,a,c,b):
han(nl,c,b,a):

}
main()

{
han(20,1,2,3):

e Y ——— - o " D " T - o = " " T o T T e S S LS S 4R B s e s

/* Prolog version of hanoi benchmark */
main :- han(20,1,2,3).
han(N, , ,) :- N=<O.
han(N,A,B,C) :- N>0,
Nl is N - 1,
han(N1l,A,C, B),
han(N1,C,B,A}.
%%%%%%%%%%%%%%%%%%%%%%%%\%%%%ll!%!‘%%&%‘%%%%i\lllt‘%l%t‘\%%%3%%%“*!%%‘%‘%%‘%%

/* € version of quicksort benchmark */

222

#include <stdio.h>

int ilist[50) = (27,74,17,33,94,18,46,83,65, 2,
32,53,28,85,99,47,28,82, 6,11,
55,29,39,81,90,37,10, 0,66,51,

7,21,85,27,31,63,75, 4,95,99,
11,28,61,74,18,92,40,53,59, 8}):

int list({50}:

gsort(l, r)
int 1, r;
{
int v, t, i, Jj;

if (1<x) ¢
v=list{1l); i=1l; j=r+l;
do {
do i++; while (list{i]<v):
do j~-; while (list[jl>v}:

t=1list[j); list(j)=list(i]; list(i]=t:
} while (j3>i):
list{i)=list[j):; list[j)=list(l]. list{l])=t:
qgsort(l,3-1);
gsort (j+l,r):

}

main ()
{
int 1, 3:

for(3=0; 3j<10000; j++) |
for(i=0;i<50:;i++) list(i)=ilist (i)
gsort (0,49);

}
for(i=0; i<50; i++) printf(sd ",listli]):

printf(“\n"):

-—----——-—.—---——-——q-——----—--.—--————-—_———-——-_.----—-—-------—-----——----—-—_.

/* Prolog version of quicksort benchmark */

main :- range(1,1,9999), gsort(_), fail.
main :- gsort(S), write(S), nl.

range (L, L,H).
range(L,I,H) :- L<H, L1 is L+l1, range(Ll,1I,H).

gsort(S) :- gsort ((27,74,17,33,94,18,46.83,65, 2,
32,53,28,85,99,47,28,82, 6,11,
ss,29,39,81,90,37,10, 0,66,51,

7,21,85,27,31,63,75, 4,95,99,

223

11,28,61,74,18,92,40,53,59, 8}.5,[)).

gsort ({XIL],R,RO) :-
partition(L,X,L1,L2),
qgsort (L2,R1,R0},
gsort (L1,R, [{XIR1]).

gsort{{),R,R).

partition([YlLJ,X,(YILI],LZ) :~ Y=<X, pattition(L,X,Ll,L2).
partition([YlL],X,Ll,[YILZ]) ;- ¥Y>X, partition(L,X,L1,L2).
partition((}._,(},[1).

%%%%%&%%%%%%!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%i%%%%%%%%%%%%%%%%%%%%%%t%%%%%%%%&%%%

224

Appendix G

Source code of the Aquarius Prolog compiler

Due to the sizc of the source code, it has not been included here. The complete Aquarius system
including sourcc codc will be distributed in Spring 1991. The source code of the compiler may also be
obtaincd from the author. .

. Files in the compiler

File Description
accumulator.pl Extended DCG preprocessor
accumulator_cleanup.pl Cleanup file needed for preprocessor
analyze.pl Dataflow analyzer
clause_code.pl Clause compiler ;
conditions.pl Formula manipulation utilities
compiler.pl Top level of compiler, includes type enrichment
expression.pl Compile arithmetic expressions
factor.pl Factoring transformation
flatten.pl . Flattening transformation
inline.pl In-line replacement
mutex.pl Mutual exclusion and implication of formulas
peephole.pl BAM transformations (except synonym)
preamble.pl Pant of standard form transformation
proc_code.pl Predicate compilcr
regalloc.pl Register allocator
segment .pl Head-body segmentation and goal reordering
selection.pl Determinism extraction
standard.pl Standard form transformation
synonym.pl Synonym optimization
tables.pl Compilaton tables
testset.pl List of west scis
transform_cut.pl Cut transformation
unify.pl Unification compiler
utility.pl Utility predicates

Appendix 2

“Fast Prolog With an Extended General Purpose Architecture”
Bruce Holmer, et al.

17th Annual International Symposium on Computer
Architecture, 1990

-w

Fast Prolog with an Extended General Purpose Architecture

Bruce K. Holmer, Barton Sano, Michael Carlton, Peter Van Roy,
Ralph Haygood, William R. Bush, Alvin M. Despain
Computer Science Division
University of California, Berkeley

Joan M. Pendleton
Harvest VLSI Design Center, Inc.

ABSTRACT

Most Prolog machines have been based on specialized architec-
tures. Our goal is (o start with a general purpose architecture and
determine a minimal set of extensions for high performance Prolog
execution. We have developed both the architecture and optimizing
compiler timultaneously, drawing on results of previous implemen-
tations. We find that most Prolog specific operations can be done
satisfactorily in software; however, there is a crucial set of features
that the architecture must support to achieve the best Prolog perfor-
mance. The emphasis of this paper is on our architecture and
instruction set. The costs and benefits of the special architectural
features and instructions are analyzed. Simulated performance
results are presented and indicate a peak compiled Prolog perfor-
mance of 3.68 million logical inferences per second.

1. Introduction

Logic programming in general and Prolog (1] in particular
have become popular for rapid sofiware prototyping, natural
language translation, and expert system programming. Prolog's use
of dynamic typing, backtracking, and unification place hesvy compu-
tational demands on general purpose computers. In an attempt 10
achieve ever higher performance, several special purpose architec-
tures have been proposed and built. Early Prolog architectures (2]
were microcoded interpreters. Because no compilation was done,
performance was disappoimting. Higher performance processors [3-
6] have since been based on the Warren Abstract Machine (WAM)
(7). Their instruction sets were derived from the WAM to support
execution of Prolog programs. These processors are special purpose,
microcoded engines which depend on panallel execution of opers-
tions within each relatively coarse-grained instruction for high per-
formance. Initial designs implemented only the instructions that
supported the WAM and depended on & host processor for non-
WAM computations. To support Prolog built-ins (primitive Prolog
operations provided by the system) and system 1O, newer designs
incorporate general purpose instructions 1o minimize dependence on
ahost Altematively, the use of a simple, non-WAM instruction set
better supports compiler optimization. Several such special purpose
reduced instruction set architectures have been proposed for logic
programming (8-11]. These architectures include primitives which
support the use of tagged data, pointer dereference, and multi-way
branches. Our hypothesis is that providing support for both compiler
optimization and Jow-level operations can best be accomplished by
extending & simple general purpose architecture o support Prolog
without compromising the general purpose performance.

The performance improvements of recent genersl purpose
architecnures over older architectures can be traced t0 fesearch in

Tep Dobry
University of Hawaii, Manoa

which both the compiler and architecture were developed together
{12-14). Architectural features that cannot be used by the compiler
or which cannot demonstrate performance improvement are not
included. Likewise, architecmural features are added which support
often used primitive operations. We have adopted this approach
from the beginning of our project.

It has been conjectured that commercial special purpose sym-
mucpmmgmﬁmmmdmdmmeymnum-’
modity items, and consequently, economics prevent them from stay-
ing on the leading edge of implementation sechnology. However, if
uudﬁmmfemmynhmszmboﬁc perfor-
mance are modest and do not interfere with the gencral purpose
architecture, then as more chip area becomes available, future imple-
mentations of general purpose processors can deliver high perfor-
mance symbolic computing in a standard product. We hope that our
work is a step towards this result.

This paper presents the design of a processor based on the
Berkeley Abstract Machine (BAM) architecture and motivates its
design with the results of our preliminary studies. We also present a
brief discussion of the optimizing compiler, a cosybencfit snalysis of
the architectural features, and the simulated performance. Familiar-
ity with the WAM is helpful. Section 2 summarizes the processor
architecture and hardware implementation. Section 3 presents the
instruction set along with the results of our studies which motivated
instruction selection. The compilation of Prolog programs is
described in section 4, and in section S we present a costdenefit
analysis of the special features and instructions. Section 6 gives the
performance results. The final section concludes with a summary of
our results.

2. Processor Architecture and Implementation

The BAM processor is a general purpose, single chip, pipelined
processor with extensions o suppont Prolog execution (Figure 1).
Both data and instruction words are 32 bits, and most instructions
execute in 2 single cycle. The main features for Prolog are tag mani-
pulation (integrated into arithmetic snd the memory system), a
double-word data port to memory, special branch on tag support, and
sevenil instructions to support our execution model for Prolog.

The architecture is presented in detail along with our motiva-
tions in the subsections below. Retaining a core general purpose
architecture imposes constraints on the symbolic extensions. For
example, the processor should be able 10 handie tagged data items as
single entities, with no special treatment for the tags. We discuss the
ramifications of this oa the word format and the vistual memory sys-
on. Then we present the architecture’s register structure and
memory interface. Finally, we present some detsils of the imple-
mentation such as the pipeline structure and our mechanism for

To appear in the Proceedings of the 17th
International Symposium on Computer Architecture

fost tag shadow

1

i

instruction cache

Figure 1
Block Diagram of the BAM Processor

multiple-cycle instructions.

2.1. Word Format

Prolog does not require the user to specify the type of a data
item. This requires that run time type checking be implemented by
adding a tag to each data item to encode the type of that item. Many
Prolog processors handle the tag and value fields separately. This
approach does not satisfy our goal of integrating tagging into a gen-
eral purpose architecture. Instead, we use a standard 32-bit word
length and place the tag in the most significant four bits of the word.
Arithmetic computations and addresses, however, use the entire 32-
bit word, so general purpose computations are not affected by
Prolog’s use of tags. Tag values fixed by the hardware are those for
non-negative integers (0000) and negative integers (1111). This
selection of tags for integers is a common technique used by Lisp
implementations on general purpose machines (15]. We have also
fixed the tag value for variable pointers (tvar = 0001) to increase the
number of bits available for branch displacements in several Prolog
specific instructions. All other tag values are software defined. Our
Prolog implementation uses tags similar to those of the WAM.

2.2, Segmented Virtual Addresses

One consequence of using both the tag and value as an address
is that each data type is mapped into its own area of virual memory.
For Prolog’s execution model one wishes to place several data types
in the same stack or heap. One possible solution is t0 mask (zer0)
the tag bits of the address before using it to access memoty. This
solution i not satisfactory when applied to applications not using
tags (for exsmple, C programs). To avoid this difficuity, we have
introduced & segment table which maps the most significant six bits
of an address to a twelve-bit value (Figure 2). An addresc before
mapping is referred to as a shon vistual address (SVA), and the 38-
bit address resulting from the mapping is referred <o &s & long virtual
address (LVA). This memory segmentation scheme is similar to the
segmentation used in the 801 processor (16]. The 801 uses segmen-
tation © extend the virtual address space; however, our primary
motivation for using segmentation is to allow muitiple data types 1o
be mapped 0 the same LVA segment. Mapping two bits in addition
to the tag bits allows the use of several memory areas for a given

* sgment *—~——————— gcgmeqt offsax —
J .
segpnent map
. J |
1 12 i 26)

long virtual address

Figure 2
Segmentation of Virtual Address Space

data type, each area using a different mapping. At one extreme all
data types can be mapped w the same LVA segment (this is
equivalent to masking the most significant six address bits). At the
other extreme, all SVA segments can be mapped to distinct LVA
segments. In our current implementation of Prolog, variable, list,
and structure pointers are mapped w the same LVA segment,
whemasmemvxmnmmxldmcepounnxk.!henﬂmd:.mu
symbol table are mapped to separate segments.

Another use of segmentation is for sharing data in amulnpm-
cessor system. In this case the 38-bit LVA is used as the global vir-

maladdtessmdshmngofdmbyeoopennngptwumn
the segment level.

23. Memory Interface

The high memory bandwidth requirement of Prolog dictates
separate instruction and data buses (Figure 1). In addition, we have
expanded the data bus to double-word width. A double-word data
bus is motivated by Carison’s study {17] of the architectural require-
ments of high performance Prolog processors. Carison compiled
Prolog programs into basic register transfer level operations and then
compacted them into more complex instructions while enforcing
microarchitectural constraints. His results show that the best
performance/cost tradeoff occurs when the architecture provides a
double-word port to das memory.

A double-word memory port improves the performance of term
creation and speeds block transfers o and from environments and
choice points. Some previous Prolog processors support fast choice
point creation and restoration through the use of specialized buffers
or shadow registers [3,9). Such hardware solutions are costly and do
not fit our goal of maintaining a general purpose architecture.
Instead, we rely on double-word memory operations and oa compiler
optimizstion 10 minimjze shallow backtracking {18).

Our processor design is tightly coupled with the cache design.
We decided against on-chip caches since, in our case, it is more
2ppropriate to use processor chip area for architectural features and
use fast, dense static RAM chips for large caches. To speed cache
accesses, however, protection violation and consistency checks and
address tag comparison are done on-chip. More details about the
cache interface are given in [19).

2.4. Base Architecture

All programmer visible processor registers are accessed as two
sets of 32 registers: the general purpose register set and the special
register set. mmﬂmuﬁmmwﬂfmpwedm
argument passing, temporary storage, and as stack pointers. The
oaly general purpose register with a preassigned use is the continua-

M

tion pointer (r31). This register is implicidy set to the return address
by the call instruction. All other uses of the general purpose regis-
ters are defined by software convention.

The special registers provide access to the processor status
word (PSW), program counter (PC), partial product/quotient register
(PQ). segment mapping table, cache interface configuration registers,
and a set of fifteen extra registers (s0-s14).

2.5. Implementation Details

The execution pipeline consists of five stages (Figure 3). All
instructions which modify registers or memory do so in the last pipe-
line stage. Bypassing forwards available results of calculations to
instructions following in the pipeline. Hardware interiocks are pro-
vided for both Joad and store delays. If data from a load instruction
is used by the next instruction, then the next instruction is delayed by
a cycle. Also, memory instructions immediately following a store
are delayed by acycle. -

instruction fewch
register read
ALU
memory read
register/memory write

€X> W~

Figure 3
BAM Processor Execution Pipeline

All instructions are 32 bits with a 6-bit opcode and fixed source
register format. Instruction execution is controlled by an opcode
pipeline which operates in parallel with the execution pipeline. Each
stage of the opcode pipe decodes the opcode associated with that
stage of the cxecution pipcline. Multi-cycle instructions and condi-
tional instructions are implemented using *‘internal opcodes’® [20].
The internal opcodes of multi-cycle instructions are fetched from a
PLA and insened into the opcode pipeline. When an intemal opcode
is inserted, no instruction is fetched during that cycle. Thus a single
external opcode can invoke a sequence of intemal opcodes (0 pro-
vide for often used complex operations (for example, pointer dere-
ferencing). Intemal opcode insertion is also used for atomic syn-
chronization operations, for pipeline interlock delays, and for trap
and interrupt handling. Conditional execution is implemented by
conditionally replacing an opcode in the opcode pipe with an intemal
opcode. Our design uses 5SS external opcodes and 24 intemnal
opcodes; of the intemal opcodes, nine are related to traps (rap, 7ft),
13 implement multi-cycle instructions (dref, sex, std, pushd, las,
Jmpr), and two implement conditional operation instructions (kni,
pusht).

“‘Fast tag logic'’ is used to implement single-cycle tag-
compare-and-branch instructions. The fast tag logic consists of an
extra register file which duplicates the tag portion of the general pur-
pose register file and special tag comparison logic which allows
quick tag comparison and branch. Previous Prolog processors [3)
have also duplicated tag bits to accelerate branching on tag value.

The general purpose register file has two read ports (one
single-word and one double-word) and two write ports (both single-
word). This port structure provides the bandwidth required by
singie-cycle double-word memory accesses without greatly increas-
ing the complexity of the register file design.

3. Instruction Set
In this section we present the BAM instruction set. The

instructions are divided into three groups: general purpose. Prolog
inspired general purpose, and Prolog specific. The general purpose
instructions are those which can be found in typical processors. The
Prolog inspired instructions are those which are not often present in
general purpose processors, but which can still be used for general
computation. The remaining instructions are tailored specifically o
the requirements of Prolog execution.

The general purpose instructions are summarized in Table 1. It
is important 10 point out that all arithmetic and logic operations
operate on the full 32-bit word. Also, conditional branches consist
of separate compare and branch instructions. Compare instructions
set or clear the TF (true-false) condition code bit, and the branch
instructions take the branch when TF is set. Branches, jumps, and
calls are delayed by one instruction. The instruction in a branch
delay slot can always be executed (br), annulled (turned into a nop)
if the branch is taken (btar), or annulled if the branch is not taken
(btan). Both directions of annulling are included because Prolog
often favors annulling when the branch is taken (for example,
branching out of straight-line code (0 the unification failure routine),
whereas conditional branches to the top of a loop (common in pro-
cedural languages) favor annulling when the branch is not taken

The remainder of this section motivates and presents our exten-
sions to the general purpose instruction set. A major influence on the
design of these extensions was the simultaneous development of an
optimizing Prolog compiler. The abstract machine used by the com-
piler was initially designed using a top-down approach [21]). We
assumed a set of data structures similar to those used by the WAM.
Knowledge of possible compiler optimizations was apfilied t0 the
semantics of Prolog to decompose Prolog’s general operations into
their components. These components, the abstract instruction set,
are the instructions and addressing modes required to compile Prolog
operations into efficient code. Efficient translation of abstract
machine instructions into the architectural instruction set was a
prime infBluence in the first pass of the instruction set design.

In addition to our studies of abstract instruction sets, we inves-
tigated the microarchitectural requirements for high performance
Prolog {17] and gathered execution statistics for the VLSI-PLM, a
microcoded implementation of the WAM [4). These investigations
pointed out those microarchitectural features that would give the
greatest performance gains and the Prolog operations that most need
instruction set support.

3.1. Prolog Inspired Genera! Purpose Instructions

Prolog inspired general purpose instructions are those instruc-
tions which support Prolog and which also may be useful in the
implementation of other languages (Table 2). These instructions
include load and store of immediates, singie-cycle double-word load
and store, and push and pop memory operations.

Immediates can be loaded, stored, or used in a comparison (idi,
sa, stid, cmpi). The immediates are tagged and are created by sign-
extending a 12 or 17-bit immediate and replacing the four most
significant bits with an immediate tag. Load immediate (idi) is used
for creating integers and atoms. Store immediate (s5z) is an optimi-
2ation of a ldi, st sequence and is used 10 bind an atom with a vari-
able that is known at compile time to be unbou 4

Double-word memory operstions (ldd, sud, stdc, pushd,
pushdc) are motivated by Prolog’s large memory bandwidth require-
ments. A double-word store or push is single-cycle only if the
source registers fonn a consecutive, even/odd register pair, because
only three registers, two of which must be adjacent, can be read per
cycle from the register file. Although non-consecutive double store
and push (std, pushd) are two-cycle instructions, this is offset by the

Instruction Operands Action — Cycles
1d,1d £(i), disp16, 1(k) (k) & Mlr(i)+disp16) (idl distinguishable to cache) 1
1dx (i), r(j). r(k) k) « Min(i}+1()) 1
R, 5w (i), r(k), displé Mr(k}+disp16) e 1(i) (st distinguishable 1o cache) 1
StX (i), r(k). 7(1) Mirk)+r(l)] & 1(i) 2
las r(i), disp16, (k) (k) « Mir(i)+disp16); Mlr(il+disp16] ¢~ -1 2
add, sub, and, or, xor (i), 1(§). r(k) (k) « (i) op t(j) 1
add32, sub32 i), 1(3), 7(k) (k) & 1(i) op 1(j) (rap on signed 32-bit overflow) 1
addi, andi, ori, xori i), imm16,5(k) (k) ¢ 1(i) op imm16 1
sl sra, sl £(i), r(j), r(k) (k) « (i) op r(j)<4:0> 1
shli, srai, srli (i), immS, r(k) (k) & 1(i) op imm5<4:0> 1
divs, mpys 1), r(j), v(k) (r(k), PQ, TF) « op(r(i). r(j), PQ, TF) 1
cmp cond, r(i), 7(j) TF « (x(i) cond 1(j)) 1
bt addr26 if (TF) PC<25:0> « addr26 1
btan addr26 if (TF) PC<25:0> « addr26; else annul next instruction 1
btat addr26 if (TF) { PC<25:0> « addr26; snnul next instruction) 1
jmp addr26 PC<25:0> « addr26 1
jmpr 1(i), disp16 PC « (i) + displ6 2
call addr26 1(31) & PC+1; PC<25:0> « addr26 1
rd (i), r(k) (k) « s(i) 1
wr 1(i), s(k) (k) « 1) 1
trap imm5 save PCs and PSW; set supervisor bit; PC « 2°(32+imm5<4:0>) 6
it restore saved PSW; fewch at saved PCs 4
Table 1
General Purpose Instructions

Tables 1-3 summarize the BAM processor instruction set, divided into three groups: general purpose, Prolog-inspired gen-

eral purpose, and Prolog specific. The first two columns give the instruction mnemonic and operands. The third column -
gives the instruction’s register transfer description. R(i) denotes general purpose register i; s(i) denotes special regisier i;

dispn is & sign-extended na-bit displacement; imm a is 8 sign-extended » -bit immediate; addr26 is a 26-bit segment offset;

off1_8 and off2_8 are zero-extended 8-bit displacements; tag is a four-bit immediate tag value; and cond is one of twenty
comparison conditions. M(x] is the memory location at address x. Tag"value specifies the tag insertion operation. Tvar
represents the value of the unbound variable tag (0001). Cycle counts assume no pipeline stalls due to load or store delays.

All branch and jump instructions are delayed, and the following instruction is executed unless it is annulled. The cycle count

of dref depends on the number of memory operations (1) performed.

absence of a pipeline stall when they are immediately followed by a
memory operation.

Push instructions are included to support compound term crea-
ton. Using branch-and-bound search techniques, we determined an
optimal set of single-cycle instructions for creation of all possible
two and three-word structures. This set of instructions is optimal in
the sense that, for our microarchitecture, each structure is created in
the smallest number of cycles. The resulting **‘compound term crea-
tion instruction set’* favors the idiom of placing two words of data in
registers and then moving them to memory using a double-word
push. Push operations also allow the fill of the cache line from
memory to be skipped if a push incurs a cache miss and also refers 10
the first word of the cache line [19). This optimization has been used
in a previous Prolog design [5]. The push instructions allow the
amount of the increment to be specified, and any general purpose
register can be used as a stack pointer,

Prolog requires that variable assignment be undone on beck-
tracking. This unbinding of variables is implemented by recording
variable addresses on & ‘‘trail’’ stack. The original WAM model
requires several pointer comparisons to determine if trailing is neces-
sary. Our implementation restricts variables to the global stack
(which reduces the number of comparisons to one) and uses a com-
pare instruction followed by & conditional push (pusir). The pop
instruction is used during backtracking to retrieve varisble addresses
from the trail stack. The compiler can reduce the amount of trailing
and detrailing through the use of flow analysis to determine when
uninitialized variables (22] can be used (our use of uninitialized vari-
ables is different from [22) —we use the same tag for both initialized

and uninitialized varisbles and determine at compile time when des-
tructive assignment is safe).

Unsigned maximum (umax) is provided to simplify the
management of the environment and choice point stack pointers.
Because these stacks are intermixed, allocation occurs at the max-
imum of the two stack pointer values.

32. Prolog Specific Instruction Set Support

Prolog specific instructions are those instructions which are
tailored specifically for efficient execution of Prolog (Table 3).
These instructions support tagged pointer creation, two and three-
way branch on tag, pointer dereferencing, and unification of atoms.

32.1. Tagged Data Support

Pointer creation is accomplished by the load effective address
(lea) instruction which calculates an address and then replaces the
most significant four bits with an immediate tag. This instruction is
used to create pointers w0 unbound variables and compound terms
(lists and structures),

Type checking built-ins are supporied with single-cycle
compare-and-branch-on-tag instructions (begeg and bigne). These
instructions also allow the compiler to repiace shallow backtracking
with a conditional branch on an argument’s tag.

Prolog allows unbound varisbies to be bound together. The
resulting reference chain must be dereferenced before subsequent
variable binding. WAM instructions always dereference their
operands, often resulting in superfiuous dereferencing. However, our

Instruction Operands Action Cycles
Wdi tag, imm17, r(k) 1(k) « tag"imm17 1
st tag, imm17, r(k) M(r(k)) « tag'imm17 1
stid tag, imm12, r(k), disp§ Milr(k)+disp5] « tag"imm12 1
cmpi cond, r(i), tag, imm12 TF « (1(i) cond tag"imm12) 1
ldd 1(i), disp1 1, r(k), (1) (k) « Mir(i)+disp11}; (r(i)+displ] even) 1
() « Mlr(ipdispl1+1)
sud £G), 1)), r(k), disp11 Mir(k)+disp11) « 1(i); (r(k)+displ] even) 2
Mir(ky+disp11+1] ¢ 1(j)
sudc 1(i). n(k), disp16 Mi(r(k)+disp16) « r(i); (i and r(k)+displ6 even) 1
M(r(k)+disp16+1) « r(i+1)
push 1), r(k), disp16 M(r(k)] « r(i); r(k) « r(k) + disp16 1
pusht (i), r(k), disp16 if (TF) (Mlr(X)) « r(i); (k) ¢ r(k) + disp16) 1
pushd 1(i), 1(j), r(k), disp11 M(n(k)] « (i) Mlr(k)+1) « 1(j); (r(k) even) 2
(k) « r(k) + displ1
pushdc (i), n(k), disp16 MIr(k)] « r(i); MIr(k)+1] « r(i+1); (i and r(k) even) 1
k) « r(k) + disp16
r(i), disp16. r(k) (k) « Mir(i)-disp16]); r(i) « r(i) - disp16 1
umin, umax 1(i), r(j), r(k) r(k) « unsigned_min/max(r(i), 1(j)) 1
Table 2
Prolog Inspired General Purpose Instructions
Instruction rands Action Cycles
P R
lea 1ag. r(i), disp12, r(k) r(k) « tag"(r(i)+disp12) 1
{ PC « PC + displ6; annul next instruction }
dref i) if (r(i)<31:28> = tvar) (! = aumber of memory refs) 1=0: 1
do (tmp « r(i); 1(3) « MIr())] } 120: 242
until ((r(i)<31:28> # tvar) or (tmp = 1(i)))
add28, sub28,
and28, or28, xor28 (i), r(j), r(k) 1(k) « r(i) op r(j) (trap on non-integer tags) 1
cmp28 cond, 1(i), 1(j) TF « (1(i) cond 1(§)) (trap on non-integer tags) 1
uni ag, imm17, 1(i) if (r(i)<31:28> = tvar) { MIr(i)] « tag"imm17; TF 0) 1
else if (r(i) = tag"imm17) TF « 0; else TF ¢ 1
swb (i), 1(j), off]_8, off2_8 if ((r(i)<31:28> = tvar) and (r(j)}<31:28> = tvar)) 1
PC « PC+ off1_8;
else if ((r(i)<31:28> w tvar) and (1(j)<31:28> = tvar))
{ PC « PC + off2_8; annul next instruction }
else annul next instruction
swt 1(i), tagl, tag2, if (r(i)<31:28> = tag1) (1ag! or tag2 is rvar) 1
off1_8, off2_8 PC « PC+off1_8;
else if (r(i)<31:28> = tag2)
{ PC « PC + off2_8; annul next instruction }
else annul next instruction
Table 3
Frolog Instructions

optimizing compiler keeps track of which variables are dereferenced
and generates explicit dereferences only when necessary. Imple-
menting dereference as a single instruction reduces static code size
and allows dereference memory reads to be pipelined, resulting in a
tighter loop than the equivalent assembly code [9,10]. We use the
same tag value for both unbound variables and reference pointers
(unbound variables are self referential). The dereference instruction
(dref) is implemented as a sequence of internal opcodes.

All of the basic arithmetic and compare instructions (add , sub,
and, or, x0r, cmp) have a version which traps on 28-bit overflow.
These instructions operate on the full 32-bit word, but 28-bit
overflow occurs if either of the sources or the result do not have
integer tags (0000 or 1111). The trap on 28-bit overflow allows Pro-
log arithmetic operations to be compiled to fast, safe code which
avoids extra instructions for tag overflow checking. If a 28-bit
overflow does occur, the trap routine can signal an overfiow error or
" convert the dxa into an altemative representation.

3.2.2. Unification Support

Unification is one of the primary operations of Prolog; it is
used for argument passing, structure creation, structure decomposi-
tion, and pattem matching. Although general unification is a com-

" plex algorithm, if one is given information about the arguments

being unified, the general algorithm can be greatly simplified. This
is one of the advantages of the WAM instruction set over an inter-
preter. Our compiler takes this principle further and propagates
information 0 simplify unification as much as possible.

Analysis of the primitives necessary to suppont unification of a
Prolog varisble with an atom [21) motivates the single-cycle unify-
immediate instruction (ual) which binds the atom to the variable if
the variable is unbound, and otherwise tests them for equality.

Unification of a Prolog variable with a compound term also

benefits from special support. Analysis of the primitives necessary
10 support unification of a Prolog variable with a list or structure [21)

Program Argument Type (%) Cosx {cycles) |

ges_list variable list other two-way
prover 18.7 80.5 0.8 1.20 1.40
meta_gsort 4.1 420 160 | 1.58 232
simple_snalyzer | 24.4 674 83133 174
chat_parser 83 84.8 64 | 1.15 1.37
| average 23.5 68.7 79 {132 1.71

| get_stucture | variable structure other | swi_ two-way
prover 26.7 733 00 | 127 1.53
meta_gsort 376 624 0.0 | 138 1.75
simple_analyzer 13.5 86.5 00 } 114 1.27
chat_parser 44.0 52.5 35]148 1.98
average 30.4 68.7 09 (131 164

Table 4

WAM Variable/Compound Term Unification Statistics

This table gives the percent occurrence of the argument type for
vanable/compound term unification in the WAM (ge1_list and get_strucmre
instructions). Columns 2-4 give the percent occurrence of variable,
list/structure, and other types. The swt column gives the average time to
execute the three-way branch assuming that the execution times for the
three directions, (variable, liststructure, other), are (2, 1, 2) cycles respec-
tively. Likewise, the two-way column assumes that the three-way branch is
simulated using two two-way branches and that the execution times for the
three directions are (3, 1, 4). The statistics for tables 4 and 5 were gathered
using the VLSI-PLM {4] microarchitecture simulator.

motivates the switch-tag instruction (swt), a three-way branch based
on the tag of one register. One direction of the branch i; taken if the
tag is an unbound variable; a second direction is taken if the tag
matches a specified immediate tag (usually list or structure); and a
third direction is taken for all other tags. The three-way branch
could be implemented using two two-way branches, however, WAM
execution statistics (Table 4) show that there is a small but
significant performance advantage to the three-way branch.

The LOW RISC processor (8] provides a 5-way branch and the
Camel-2 processor [10] provides a 10-way branch based on the tag
of a single register. WAM execution statistics show that such gen-
erality is unnecessary for unification of a Prolog variable with a com-
pound term.

When the compiler cannot determine any information about the
types of the arguments to be unified, then general unification must be
used. In this case one can still take advantage of dynamical proper-
ties of the argument types. The common cases of general unification
should be done quickly in-line and infrequent cases passed to a gen-
eral unification subroutine. Analysis of WAM execution (Table 5)
indicates that about 70% of all general unifications are simple bind-
ings of an unbound variable with a nonvariable. These statistics
motivate the switch-bind instruction (swb), s three-way branch
based on the tags of two registers. The conditions of the three
branch directions are: variable/nonvariable, nonvariable/variable,
and otherwise (order of the argumernts matters). This allows the
common cases of variable/nonvariable and nonvariable/variable to
be done in-line. A general unification subroutine is called for all
other cases. Note that although the quick success and quick failure
cases are simple to check for, their execution frequency is low
enough that we have chosen not 10 do these checks in-line.

The Pegasus processor [9] supports general unification with a
16-way branch based on two tag bits from each of two registers. Ti.e
LIBRA processor {11]) has a ‘“‘partial unify’* instruction. This
single-cycle instruction performs either s nop, a store, a call, or a
branch depending on the tags and comparison of the two arguments.
It executes the variable/nonvariable case of general unification in

Argument Type (%)
Program quick quick var nonvar var recursive
success failure nonvar var var
prover 156 156 00 614 00 75
meta_gsort 00 0.0 00 505 495 00
simpic_analyzer 0.1 22 133 Wy 118 2.1
chat_parser 03 118 136 693 23 25
average 4.0 74 67 629 158 30
Table 5
WAM General Unification Siatisiics

This table gives the percent occurrence of various argument types passed w0
general unification in the WAM (get_value and unify_value instructions).
In the quick success column both arguments are identically equal. In the
quick failure column both arguments are nonvariable and have unequal tags
or both are atomic and are unequal. In the var/nonvar column the first argu-
ment is 8 variable and the second is a nonvariable. Likewise, in the
nonvar/var column the first argument is nonvariable and the second is vari-
able. In the var/var column both arguments are variable. The last column
contains the remaining cases which must be passed 10 8 recursive
unification subroutine.

four cycles (not counting dereferencing of the arguments). Using
switch-bind (swb), BAM executes this case in five cycles. Although
the partial unify instruction of the LIBRA has a slight performance
advantage, its complexity does not fit with our goal of minimally
extending a general purpose arzh:tecture.

-

4. Compilation of Prolog

A significant aspect of our project was the simultancous
development of an optimizing Prolog compiler [21,23]. The com-
piler incorporates techniques for determinism extraction and use of
destructive assignment. The compiler accepts standard Prolog and
produces code for a simple non-WAM abstract machine. Although
the compiler uses stacks and data structures similar to WAM imple-
mentations, it does not use the WAM during compilation, but instead
directly compiles to its own abstract machine. Automatic mode gen-
eration (type inferencing) is implemented using abstract interpreta-
tion [24]. It derives ground, uninitialized variable [22], and derefer-
ence modes. Optimizations are still being implemented, and we
expect our performance numbers to improve compared to the
aumbers listed in the following sections.

Compilation of Prolog is done in three stages. First, the com-
piler produces code for its abstract machine. Second, this code is
macro-expanded into the BAM instruction set Finally, the BAM
code is optimized by a peephole optimizer and instruction reordering
stage that maximizes the use of the double-word bus and minimizes
the number of nops and pipeline stalls.

5. Cost/Benefit Analysis of Architeaunl Features and Instruc-
tions

In section 3 we motivated our instruction selection based on
several sources of information: work on abstract instruction sets for
compilers, bottom-up analysis of microarchitectural requirements for
high performance Prolog. and analysis of WAM execution statistics.
In this section we give a more rigorous validation of the architectural
design and instruction selection by analyzing the cost and perfor-
mance benefits of each special purpose feature and instruction.
There has been some work 0 determine such results for other
designs (9, 10, 15), but no complete analysis has been done.

S.1. Cost of Features
Table 6 shows the implementation cost of those features which

Feature Active area Die.sign complexity Instructions affected
[segment mapping _ 4.8% | “100% compiled — o
tagged-immediate 2.2% 100% compiled idi, cmpi, sti, stid, lea, uni
[double-word memory port 1.9% | 95% compiled; 5% by hand | 1dd, std. stdc, pushd, pushdc
fast tag logic 1.6% | “100% compiled bigeq. bugne, sw, swb, dref, uni
multi<cycle/conditional 0.1% 100% compiled stx, std, pushd, pusht, dref, uni
| lag overflow detect “0.0% 100% by hand (10 S cm228I add28, sub28i mazsl or28, xor28
\otal special features 10.6% | 99% compiled; 1% by hand
Table 6
Cost of Special Architectural Features

For each special feature of the BAM processor, this table gives the percentage of active area (transistors and wires) required
10 implement the feature, the design complexity of the layout, and a list of instructions which depend on the festure. The
design complexity is given as a percentage of the lsyout that was automatically generated (using tilers, routers, eic.) and the
percentage that was laid out by hand. ~100% compiled indicates that less than 30 gates were placed by hand. Multi-
cycle/conditional is a subset of intemal opcodes—the 0.1% active area refers to the entire internal opcode implementation.

extend the BAM beyond a general purpose architecture. Implemen-
tation cost is expressed in terms of chip area required to implement
the feature and in terms of VLSI design effort required. The chip
area is measured in percent of total active ares which includes ooth
transistor and wiring area. The chip contains approximately 110,000
transistors, and the total active area is 91 square millimeters using
12 p CMOS. The VLSI layout was donc using a symbolic layout
editor with custom designed, parameterized cells. The building
blocks were assembled into larger units using a datapath compiler,
PLA compiler, tiler, and router. The design effornt for each feature is
given as a percentage of its design that was automatically performed
by the design tools. The last column of Table 6 lists those instruc-
tions which depend on a given feature. We do not give each
feature's effect on the cycle time, since the microarchitecture and
logic designs were done carefully to prevent these features from
being on the critical path.

Segment mapping requires the greatest arez of the special
features. This area is primarily due to the 32 by 24-bit register file
which contains the segment map. This register file is used to extend
the address space as well as perform tag mapping. A smaller register
file tailored to tag mapping alone would take less area. The next
greatest area consuming feature is the tagged-immediate generation
circuitry. This is due in part to the use of three distinct instruction
formats for tagged-immediates. The double-word memory port
requires extra ports on the general purpose register file to support the
increased bandwidth. The area listed is the difference in size
between our four/five-port register file and the more usual three-port
register file. The extra pads required by the double-word bus are not
included in the cost. After the fast tag logic, the remaining features
use a very small portion of the total active area,

$.2. Benefits of Features

To determine the performance benefit of each feature, we cal-
culated the cycle count increase caused by omitting the use of all
instructions that depend on the feature [25). For example, if omitting
the instructions Idd, std, stdc, pushd, and pushdc increases execution
time from 100 cycles to 111 cycles, then the performance benefit due
to the double-word memory port is 11%. An instruction is omitted
by replacing it with its macro-expansion into simpler instructions.
An effort was made to determine optimal expansions, and after
macro-expansion, peephole optimization and instruction reordering
are performed. Omission of segment mapping requires that explicit
instructions be inserted 10 mask tag bits before tagged-pointers are
used as addresses. A detailed description of the analysis sechniques
is given in [26).

Table 7 lists the performance benefit of the features given in

Table 6. Fast tag logic, double-word memory port, segment map-
ping., multicycle support, and tagged-immediate support arc con-
sistently important features. Tag overflow detection is imporant
only in programs which make heavy use of integer arithmetic. The
overall Prolog support column is determined by using only the
instructions from Table 1 (and non-tagged versions of Idi and cmpi),
omitting segment mapping and all instructions in Tables 2 and 3.

To summarize, the specialized support added for Prolog does
not require unreasonable amounts of chip space or hand layout (11%
active area for all Prolog related feamres), and it provides & perfor-
mance benefit of 70%.

53. Benefits of Individual Instructions

Table 8 provides a similar analysis applied to individual
instructions or instruction groups, rather than to architectural
features. Significant (grcater than one percent) performance benefit
is obtained from a majority of the special purpose instructions (dref,
uminfumax, lea, push/d/c, swt, and bigeg/ne). The multi-cycle
pointer dereference instruction (dref) has an average execution time
of 1.6 cycles. Macro-expansion of dref into an explicit loop
increases the average dereference time to 2.2 cycles. Although the
benefit of dref per dereference is only 0.6 cycle, the total perfor-
mance benefit is significant because of its frequent use. Some of the
smaller benchmarks, however, show no benefit for dref due to the
complete elimination of dereferencing by compiler optimization.
Unsigned maximum (umax) is used during environment and choice
point creation. Omission of wnax causes the time to determine the
top of siack to increase from one to three cycles. Tagged-pointer
creation (lea) is a frequent operation, and its omission adds an extra
cycle for tag insertion (using or). Elimination of suto-increment
addressing (push, pushd, pushdc) requires one exira cycle for each
block allocation. The three-way branch on tag (swt) can be replaced
by two brgeq instructions, adding an extra cycle to two of the branch
directions. Elimination of the two-way branch on tag (bigeg/ne)
would require a two instruction compare and branch.

The remaining instructions have less than one percent average
performance benefit. Because the VLSI-PLM spends about 5% of its
time trailing variable addresses, we included special support in the
BAM (pusir). However, due to the compiler’s use of uninitialized
variables, which do not have 10 be trailed, trailing time is reduced 1o
14% in the BAM. Omitting push¢ causes a slow down of 0.7%,
which corresponds to trail time increasing from 2 10 3 cycles. Prelim-
inary amalysis using macro-expsnded WAM for the chat_parser
benchmark indicated that the benefit for pop would be 1.5%. Com-
piler optimization of trailing has reduced this result. Similarly, com-
piler optimization reduces the number of general unifications,

Benchmark Feanpre Performance Benefit (%)
fasttag double-word scgment multicycle tagged- tagoverflow all Prolog
ic memory port i conditional immediate detect
log10 24 8.1 53 0.0 93 0.0 300
ops8 6.6 147 42 26 9.2 0.6 426
times10 62 14.1 40 1.0 12.0 0.0 471
divide10 56 154 36 1.7 13.5 0.0 469
nreverse 14.0 14.6 2.1 0.7 250 0.0 99.8
qsort 11 4.1 106 16 140 13.0 75.5
seriatise 40 182 94 70 50 23 835
query 0.0 36 1.7 0.0 23 27 126
mu 36.0 14.5 200 153 8.0 0.1 959
queens_8 6.9 17.0 59 0.7 30 346 105.9
poly_10 18.8 938 89 33 9.7 31 715
1ak 0.0 8.3 42 28 42 28.1 66.6
prover 183 206 14 63 9.0 00 726
meta_gqsort 196 17.6 128 10.7 9.1 0.6 723
simple_analyzer 20.5 124 123 106 s6 5.0 676
chat 17.3 17.9 8.8 8.8 7.7 0.0 67.7
P —
ﬂ_’&_@ 189 17.1 10.3 9.1 7.9 14 70.0
) Table 7
Performance Benefit of Special Architectural Features
Instruction Performance Benefit (%)
Benchmark umin push btgeq sti
dref umax lea d/c swt t swb uni stid
log10 00 03 53 22 02 19 00 00 00 02 00
ops8 09 32 50 32 09 25 03 00 00 04 00
times10 00 41 59 42 11 20 00 00 00 1.1 00 =

divide10 00 37 71 k¥] 10 18 00 00 00 10 00

nreverse 00 14 28 10 10 ¢0 00 00 00 00 00

gsort 00 16 106 3.7 45 00 00 00 00 00 00

serialise 37 61 28 26 25 11 0.5 14 00 0.1 04

query 00 0.1 06 00 060 00 00 00 00 1.1 00

mu 109 16 34 27 48 44 21 05 07 00 03

queens_8 00 26 23 33 29 13 00 00 00 00 00

poly_10 09 32 54 28 28 08 04 01 0.0 00 00

1ak 00 28 42 00 00 00 00 00 00 00 00

prover 1.3 34 23 3S 22 1.2 03 02 07 04 02

meta_gsort 58 50 32 24 26 08 07 0SS 01 02 02

simple_analyzer 73 33 2s 14 16 15 03 02 01 03 00

chat,_parser 35 33 30 24 1.7 16 1.6 16 07 02 07

[average 45 38 28 24 20 13 07 06 04 03 03

Table 8

Performance Benefit of Individual Instructions

Tables 7 snd 8 give the percent performance benefit for each special feature and instruction of the BAM processor. The last
column of Table 7 lists the performance benefit of segment mapping and all instructions given in Tables 2 and 3. Averages are
calculated using only the last four benchmarks which are representative of well writien, medium sized (100-1000 line) Prolog
programs, All benchmarks are compiled with automatic mode generation, and cache effects are not included.

minimizing the benefit of swb. Our initial studies also overes-
timated the benefits of special support for unification of atoms (und,
sti, stid). Although pushe, swb, pop, uni, sti, and stid provide mar-
ginal performance benefit, their implementation uses only features
already required by other instructions.

An interesting conclusion about the number of directions
peeded in multi-way branches can be made from these measure-
ments. Multi-way branches are implemented in the BAM with the
swt and swh instructions, which are both single-cycle three-way
branches (Table 3). Swe is used for unification of compound terms,
for which grester than a three-way branch is not needed (Table 4 and
[21]). Swb is used for unification of terms whose types are unknown
at compile time. It takes care of 70% of these cases (Table $), which
gives an 0.6% execution time improvement (Table 8). If some

single-cycle branch took care of 100% of these cases, we calculate
the further improvement would be about 0.7%. Given the additional
complexity that such a branch implies, we conclude that a multi-way
branch with more than three directions is not effective for Prolog.

6. Performance Results

Table 9 compares the performance of the BAM processor to
that of other Prolog systems. The results for BAM are simulated
assuming a 30 MHz clock and include overhead due 10 cache misses
{19]. The simulated system has 128 KB instruction and data caches.
The caches are direct mupped and use a write back policy. They are
run in warm start, that is, each benchmark is run twice and the results
of the first run are ignored. Cache effects are significant only for the
last five programs in Table 9. The cache overhead is greatest for

! X BAM
Benchmark Quintus VLSI-PLM KCM no modes auto modes
logl0 0468 Q139) 0.137 (922) 0.039 &) 0.0263 (1.77) 0.0149 (1.00)
ops8 0.767 (40.8) 0.177 (9.41) 0059 G.14) 0.0289 (1.54) 0.0188 (1.00)
times10 1.0 @94) 0247 (9.26) 0.082 (.08) .0.0403 (1.51) 0.0267 (1.00)
divide10 127 @24 0287 (9.58) 0.091 (3.04) 0.0433 (144) 0.0300 (1.00)
nreverse 487 (62) 210 (15.6) 065 4.83) 0308 (228) 0.135 (1.00)
gsont 16.9 (86.2) 424 (21.6) 132 (67) 0.371 (189) 0.196 (1.00)
serialise 108 (30) 247 20 122 (.60) 0.516 (1.10) 0469 (1.00)
query 723 (189) - 126 (3.30) 522 aan 382 (1.00)
mu 283 (350) 5.18 (6.41) - 1.02 (26 0.808 (1.00)
prover 41 (262) 683 (.4) - 1.07 (.16) 0921 (1.00)
queens_8 73.7 (65.1) 288 (25.4) - 1.88 (1.66) 113 (1.00)
meta_gsort 231 49.0) 45 (9495) - 525 (1) 471 (1.00)
simple_snalyzer 636 (19.0) - - 369 (1.10) 334 (1.00)
poly_10 1420 “00) 307 (8.65) - 62.5 (1.76) 355 (1.00)

3300 (62.8) 940 (179) - .1 139) 526 (1.00)
chat_parser 3590 (27.0) 781 (5.87) - 161 1.21) 133 (1.00)
geometric mean (36.7) -(10.3) (3.48) (1.44) (1.00)

Table 9
Performance Results

This table compares the perfarmance of BAM with that of several other Prolog implementations for which benchmark results are
available—Quintus Prolog, the VLSI-PLM, and the KCM. Each result is presented as a time in milliseconds followed in
parentheses by the ratio to the best BAM time. The Quintus Prolog results are for compiled code executing under Quintus Prolog
Release 2.0 on a Sun 3/60. The VLSI-PLM [4] results are simulated assuming a cycle time of 100 ns with no cache misses. The
KCM results (6] are derived from actual measurements of a system with a cycle time of 80 ns. The BAM results are simulated
assuming a 30 MHz clock and 128 KB instruction and data caches [19). For BAM, the auto modes and no modes columns give
results with and without automatic mode generation. Results are presented for the well-known Warren benchmarks (the first
eight in the table), of which query is modified to use integer division in place of the original floating point; for mu, which proves a
theorem of Hofstadter’s **mu-math’"; for prover, a simple theorem prover, for queens_8, which solves the eight queens problem
using an incremental generate-and-test strategy; for meta_qsort, a meta-interpreter running Warren's gsort; for simple_snalyzer, a
flow analyzer analyzing Warren's gsort; for poly_10, which symbolically raises a polynomial o the tenth power; for tak, which
executes recursive integer arithmetic; and for chat_parser, which parses & set of English sentences. Further information about the

benchmarks may be found in {28]. The benchmarks are available by anonymous ftp from arpa.berkeley.edu.

simple_analyzer, poly_10, and tak; for these programs the overhead
ranges from 11% to 38%. For meta_gsort and chat_parser the over-
head is less than 3%.

Although programs are usually compiled with automatic mode
generation, we have included numbers without modes to show the

slightly larger than that of the KCM. This is due to direct compila-
tion into simple instructions, the success of flow analysis in reducing
code size, and the appropriatcness of the BAM instruction set for
Prolog.

effect on performance. The average performance improvement due BAM/PLM | KCM/PLM | SPUR/PLM
10 automatic mode generation is 1.44. The number is higher for bytes 31 30 14.1
some of the smaller benchmarks because mode generation is able to instructions 26 1.1 120

do a better job for them. For example, the qsort and queens_8 bench-

marks perform well because the mode information allows the com- Table 10

piler to eliminate most choice point creation and replace variable Static code size ratios

binding with destructive assignment. The number is lower for the
simple_analyzer benchmark because it uses built-in predicates
heavily.

The KCM [6], one of the best WAM implementations, has a
relatively large amount of specialized hardware 10 execute 8 WAM-
like instruction set efficiently, whereas the BAM processor uses
modest hardware to support an optimizing compiler. We find that
the speed advantage of the BAM over the KCM is equal to or greater
than the cycle time ratio.

A common measure of Prolog speed is logical inferences per
second (LIPS). In general this quantity is ambiguous; however, it is
well defined for the naive reverse benchmark. The execution time
for naive reverse with sutomatic modes (Table 9) gives a perfor-
mance of 3.68 miltion LIPS.

Table 10 compares the static code sizes of the BAM, the KCM
[6). and the SPUR (27] relative to the PLM [3]. Macro expansion of
WAM code into SPUR instructions causes the large code size of the
SPUR. Static code size for the BAM is surprisingly small, only

This table gives the static code sizes of the BAM, the KCM, and the
SPUR relative 10 the PLM, a micro-coded implementation of the WAM
[3). The BAM code size is cakulated from prover, meta_gsort,
simple_analyzer, and chat_parser. The KCM code size is from [6].
The SPUR code size is from [27).

7. Conclusions

The primary goal of our research has been to determine a
minimal set of extensions to a general purpose architecture necessary
for achieving high performance logic programming. At the same
time, however, performance of the general purpose architecture has
not been compromised. We have identified tagged-immediate sup-
port, segment mapping, double-word memory bus, special logic for
fast branch on tag, and muliti-cycle instruction support as important
Prolog specific features. Our measurements justify the utility of

push, pointer dereference, and tagged-pointer creation instructions.
Ourspeanlhmﬁmsformnm;mdmiﬁadmonms how-

ever, are of marginal benefi. Finally, we conclude that a multi-way
branch with more than three directions is not effective for Prolog.

We have demonstrated that one can extend a general purpose
architecture to include explicit support for symbolic languages such
as Prolog with modest increase in chip area (11%) and yet attain
significant performance benefit (70%).

ACKNOWLEDGEMENT

First and foremost, we would like to thank Charlie Bumns of
Harvest VLS! for continued CAD 100l development as required by
the BAM processor and for help with the processor layout. We
would also like 1o thank Dave Chenevert of Sun Microsystems, for
key contributions to CAD algorithms and other assistance. And spe-
cial thanks to Wayne Rosing—VP ESG at Sun Microsystems, for
making computers, CAD tools, and other resources available.

Thanks to Jim Testa for encouraging us to start a new Prolog
chip design and to Georges Smine for work on cache board design
and simulation. Thanks to Vason Srini, Ashok Singhal, and Hervé
Touati for comments on earlier drafts of this paper. We also ack-
nowledge the members of the Aquarius project.

We wish to thank Zycad Corporation for the use of their N2
hardware simulation tools that simplified the task of simulating the
microarchitecture. This work is partially funded by the Defense
Advance Research Projecis Agency (DARPA) and monitored by the
Office of Naval Research under contract No. N00O14-88-K-0579.
Equipment and other support for the project has been provided by
SUN, DEC, ESL,, and Xenologic.

References

1. L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 1986.

2. M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa, and S.
Uchida, **The Design and Implementation of a Personal
Sequential Inference Machine: PSI,'* New Generation Com-
puling., pp. 125 - 144, 1983,

3. T. P. Dobry, A High Performance Architecture for Prolog,
Kluwer Academic Publishers, 1990.

4. V. P Srnj, J. V. Tam, T. M. Nguyen, Y. N. Pat, A M.
Despain, M. Moll, and D. Ellsworth, *‘A CMOS Chip for Pro-
log,”* Proceedings of the International Conference on Com-
puter Design, pp. 605 - 610, October 1987.

S. H. Nakashima and K. Nakajima, ‘*Hardware Architecture of
the Sequential Inference Machine: PSI-IL,” 1987 Symposium
on Logic Programming, pp. 104 - 113, August 1987,

6. H. Benker, J. M. Beacco, S. Bescos, M. Dorochevsky, Th
Jeffre, A. Pohimann, J. Noye, B. Poterie, A. Sexton, J. C. Syre,
O. Thibault, and G. Watzlawik, ‘‘KCM: A Knowledge
Crunching Machine,”* 16th Internasional Symposium on Com-
puser Architecture, pp. 186 - 194, May 1989.

7. D. H. D. Warren, ‘‘An Abstract Prolog Instruction Set,”* TR
309, SRI Intemational, October 1983.

8. J. W. Mills, ‘A High-Performance LOW RISC Machine for
Logic Programming,’* Journa! of Logic Programming, vol. 6.
no. 1 & 2, pp. 179 - 212, January/March 1989.

9. K Seo and T. Yokota, “Design and Fabrication of Pegasus
Prolog Processor,”’ in VLSI 89, North-Holland.

10. A. Harsat and R. Ginosar, *‘CARMEL-2: A Second Genen-
tion VLSI Architecture for Flat Concurrent Prolog,’* Proceed-
ings of the International Corference on Fifth Generation Com-
puter Systems, pp. 962 - 969, November 1988.

11.

12.

13.

14.

15.

16.

17

18.

19.

20.

21,

23.

24,

26.
27.

28,

J. W. Mills, ““LIBRA: A High-Performance Balanced Com-
puter Architecture for Prolog.”" Ph.D. Thesis, Arizona State
University, December 1988.

G. Radin, **The 801 Minicomputer,'’ Symposium on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS 1), pp. 39 - 47, March 1982,

J. L. Hennessy, N. P. Jouppi, S. Przybylski, C. Rowen, and T.
Gross, *‘Design of a High Performance VLSI Processor,'*
Third CalTech Conference on Very Large Scale Integration,
pp. 33 - 54, 1983,

M. G. H. Katevenis, Reduced Instruction Set Computer Archi-
tectures for VLSI, MIT Press, 1985.

P. Steenkiste and J. Hennessy, ‘*Tags and Type Checking in
LISP; Hardware and Sofiware Approaches,”’ Second Interna-
tional Conference on Architeczural Support for Programming
Languages and Operating Systems (ASPLOS 1I), pp. 50 - 59,
October 1987.

A. Chang and M. F, Mergen, “‘801 Sworage: Architecture and
Programming,'* ACM Transactions on Computer Systems, vol.
6, no. 1, pp. 28 - 50, February 1988.

R. Carlson, ‘“The Bottom-Up Design of a Prolog Architec-
ture,’” Report No. UCB/CSD 89/536, University of Califomia,
Berkeley, May 1989.

P. Van Roy, B. Demoen, and Y. D. Willems, *‘Improving the
Execution Speed of Compiled Prolog with Modes, Clause
Selection, and Determinism,’* in TAPSOFT 87, Lecture Notes
in Computer Science, 250, pp. 111 - 125, March 1987.

M. Carlion, B. Sano, J. Pendleton, B. Holmer, and A. Despain,
Cache Innovations in the BAM Microprocessor, November
1989.

1. Pendleton, S. Kong. E. Brown, F. Dunlap, C. Marino, D.
Ungar, D. Paiterson, and D. Hodges, “* A 32-bit Microprocessor
for Smalltalk,'" IEEE Journal of Solid State Circuits, vol. SC-
21, no. 5, pp. 741 - 749, October 1986.

P. Van Roy, ‘‘An Intermediate Language to Support Prolog's
Unification,'* in Proceedings of the North American Confer-
ence on Logic Programming, ed. Lusk & Overbeek, pp. 1148 -
1164, MIT Press, October 1989.

J. Beer, **The Occur-Check Problem Revisited,”* Journal of
Logic Programming, vol. S, no. 3, pp. 243 - 261, September
1988.

P. Van Roy, *‘Can Logic Programming Execute as Fast as
Imperative Programming?,’* Ph. D. Thesis (in preparation).

S. K. Debray and D. S. Warren, *‘Automatic Mode Inference
for Prolog Programs,”’ 1986 Symposium on Logic Program-
ming, pp. 78 - 88, September 1986.

D. M. Ungar, The Design and Evaluation of a High Perfor-
mance Smalltalk System, MIT Press, 1987.

B. Sano, Performance vs. Cost of the BAM, December 1989.

G. Borriello, A. R. Cherenson, P. B, Danzig, and M. N. Nelson,
**RISCs vs. CISCs for Prolog: A Case Study,” Second Inter-
national Conference on Architecural Support for Program-
ming Languages and Operating Systems (ASPLOS II), pp. 136
- 145, October 1987.

R. Haygood, A Prolog Benchmark Suite for Aquarius,’’
Repont No. UCB/CSD 89/509, University of Califomia, Berke-
ley, April 1989.

Appendix 3

“A CAD Design Environment Based Upon Prolog”
Gino Cheng, William R. Bush, and Alvin M. Despain

Proceedings of ICCAS 1989

-1-

A CAD Design Environment Based Upon Prolog

Gino Cheng, William R. Bush, Alvin M. Despain

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley 94720

Abstract

The rapid prototyping of microprocessors requires a high level of automation. An
environment suitable for developing application programs which accelerate the design pro-
cess should provide an efficient method for manipulating data and a powerful programming
environment. This paper describes the benefits we have discovered by using PROLOG as the
JSoundation for ASP, a suite of CAD tools tailored towards the automatic generation of
microprocessors. PROLOG provides an inherent relational database which is ideal for
describing and manipulating a host of elements at all phases of a design, from a behavioral
description to a circuit layout. PROLOG also lends itself to heuristical as well as algo-
rithmic programming styles.

1. Introduction

There are many characteristics inherent to data elements in Computer Aided Design
(CAD) that make them difficult to represent in a database {1-2]. The difficulty lies in express-
ing the many different relationships between elements. For example, a wire element may be
related to other wire elements by node, by layer, and by location. A CAD tool should be able
to generate a set of elements by any of these relations. This paper will show that the relational
database inherent in Prolog is well suited for the requirements of a CAD database. An imple-
mentation of objects which cover the entire design process is presented.

Although some CAD problems are well understood, most of the problems in CAD are
only partially understood or not well defined. Problems of this nature are solved by employ-
ing heuristics such as simulated annealing, and rule based expert systems. Problems that are
well understood such as the simulation and channel routing are solved by proven algorithms.
Problems that are partially understood may have heuristics imbedded within algorithms. Pro-
log supports both algorithmic as well as heuristic programming techniques which make it an
ideal candidate for CAD programming. This paper will illustrate many of the Prolog pro-
gramming techniques employed in ASP.

ASP [3] is a full-range synthesis system tailored for the development of microproces-
sors. It produces VLSI masks from instruction set architecture specifications written in Pro-
log. The system is composed of several hierarchical components that span behavioral, cir-
cuit, and geometric synthesis. Behavioral descriptions are transformed into register transfer
level descriptions by VIPER (4]. Controller and datapath are realized in sticks by a suite of
layout tools in VENOM. The blocks are compacted, placed, and routed by Sticks Pack [5].

This paper will reveal some of the problems associated with representing data for CAD
while illustrating the solutions that we have discovered using Prolog. An application of these
philosophies, Sticks in Prolog (SIP) is explained in detail and the other abstract levels in ASP

-2.

are introduced. Advantages for using a clause based language for CAD development will be
presented by describing the programming methodology employed by ASP.

2. Design Considerations For Implementing CAD Objects

To model the many complex CAD structurcs as well as the relationships between struc-
tures, many CAD environments use object oriented databases. CAD elements, whether they
be geometry for a compactor, transition states for a sirnulator, or logic expressions for a logic
minimizer can all be expressed in terms of objects. There are two strategies for representing
CAD elements as objects.

In one approach the database provides a set of primitive objects (objects such as
polygons, properties, containers, and paths) that model CAD relationships with a representa-
tion policy. For example a container object can be used to describe a common node relation-
ship by placing all objects belonging to a node within the container object. Similarly, a com-
mon layer relationship can be represented by placing all objects that share a common layer
within the container object [6]. The primative objects must be capable of representing every
data element and relationship that will be necessary for any design. A policy to represent
CAD elements with the primative objects must be chosen. There may be several possible
representations of an element within a given set of objects. For example given a data object
of type BOX containing four integer value fields, a box can be represented as a center coordi-
nate with width and length measurements as in CIF, or as a pair of coordinates denoting two
opposite comers. Relationships between objects must be explicitly defined. Once esta-
blished, all CAD applications must adhere to the well defined set of policies.

In another approach, each CAD element is expressed as an object [7-8]. For example,
elements such as wires, nets, contacts, transistors, and waveforms are all expressed as tailored
objects. Relationships can be expressed implicilly within the objects by adding data fields.
For example, a wire element may contain a field describing the layer of the wire or by a
pointer to another of the same layer. With this methodology, the representation policy is dee-
ply imbedded within the data objects. Provisions must be made for adding new objects. For
example, assume that a system tailored for CMOS circuits must be modified to handle bipolar
transistors for a BIMOS circuit. If the data fields chosen for the transistor element are inca-
pable of representing the bipolar transistor, a new data type must be added to the system.
Furthermore, all programs that process transistors must be modified to support the new data
type. The primary issue in developing a set of data objects to represent CAD elements is
determining how much inherent support to offer [9).

2.1. PROLOG as a Database

Relationships between the elements can be expressed in terms of groups. For example,
elements in a cell can be grouped by node, by location and by layer. Current object oriented
databases for CAD have strict set relations [6-8). For example, many databases categorize
wires by layer, but not location. To find wires of the same layer, one simply calls a generator
that retums instances of wires that are of the queried layer. But to find wires of the same
grid, one cannot simply generate wires based upon the grid information, but must generate
wires by layer and filter out the wires that are not of a common grid. Data in Prolog is linked
by structure and by value. Thus, the procedure for generating all wires on the metal 1 layer is
the same as the procedure for generating all wires on row 5, or generating all wires of node
vdd, or generating all the wires of row 5 and node vdd in metal 1. Prolog also provides

.3-

structures such as binary trees and sorted lists. These constructs make accesses to the ASP
Prolog database very uniform.

In ASP, each CAD element is expressed as an object. Elements ranging from
behavioral descriptions of architectures to logic equations for a module generator to offset
contacts in an ALU layout are all directly expressed in and referenced through Prolog. In
Prolog there is no syntactic or semantic difference between a procedure call and a database
query. This makes the introduction of new data types very simple. Clauses that process new
data types can be easily integrated into the system. There are thirty different representations
of a design, each with a set of data objects. One of the lowest levels, Sticks in Prolog, will be
described in detail in the next section.

2.2. Sticks in PROLOG

Sticks in Prolog (SIP) is a grid based sticks representation in Prolog that supports
hierarchy and parameterized elements. Module generators or human designers generate SIP
files which are converted to mask geometry by the STICKS-PACK compactor. In SIP, VLSI
clements are modeled as facts. Attributes for the elements are represented as atoms within
the facts. Currently, the SIP language consists of four facts representing VLSI elements:

wire(Layer, pt(X1,Y1), pt(X2, Y2), Width, Net).

cont(Type, pt(X1, Y1), Offset, Net).

transistor (Type, pt(SX1, SY1), pt(GX2, G2}, p(DX3, DY3), W, L, Nets, Netg, Netd).
pin(pi(X1, Y1), Layer, Widih, Label, Cell).

Layer are of the atoms: ml, m2, p, pd, nd

These represent the physical layers of the element (metall, metal2, poly, P-diffusion, or N-
diffusion).

Contact offsets are of the atoms: nw, nn, ne, ww, nof, ee, sw, ss, se
Contact types are of the atoms: mIm2, mlpd, mind, mlp

Width, XY coordinates, W, and L are integers. Nets are atoms that represent the connectivity
node of the element. Elements of the same node are electrically connected. Nodal informa-
tion is extracted by a net extracting program. pt(X, Y) represents a point location at (X, Y).
Transistors have 3 point locations, one for the source, one for the gate, and one for the drain.
Each location has a separate node.

Example: An Inverter in SIP:

wire(ml, pt(0,0), pt(0.5).2,vdd).
wire(ml, pt(0.1), p%(2,1).2,vdd).
wire(ml, pt(10,0), pt(10.5).2,vss).
wire{ml, p1(10,1), pt(8,1).2,vss).
wire(ml, pt(8.3), p(2.3)2.0u).
wire{ml, pt(6.3), p¥(6.5).2.0ut).

4.

wire(p, pn8.2), p(2.2}2 in).

wire(p, pt(6,0), pt(6.2)2.in).

trans(nd, p1(2.1), pt(2.2), p1(2,3). 4, 2, vdd, in, out).
trans(pd. p1(8.1), pt(8.2}, pt(8.3). 2. 2, vss, in, ous).
cont{mlipd, (2.1), nof, vdd).

cont(mlpd, (2.3), nof, out).

cont(mlpd, (8.1), nof, vss).

cont(mlipd, (8,3), nof, out).

pin(p6.0), p, 1, input, inv).

pin(pK(6,5), p. 1, outpus, inv).

Different CAD applications often generate different sets of elements. For example, the
simulator may generate all of the elements that are of nodes adjacent to a given node. The
compactor may generate all of the elements that are of the same grid and layer as a given ele-
ment. The floorplanner may generate all of the terminals of a given cell side. With the SIP
representation, data elements can be generated by any combination of characteristics very
easily. For example all of the wires that are of m1 of node vdd which have a width greater
than 3 can be generated in two lines of Prolog:

wire(ml, Ptl, P2, Width, vdd),
Width > 3,

This representation also allows fields to be easily parameterized within a cell. For example,

In a cell definition we have parameterized an output transistor with the statement:

parameter(outputrans, pt(2, 3)).

A call 1o the following clause would permit the modification of the W/L ratio of any transis-
tor that has been parameterized.

modtsize(Name, Neww, Newl).-
parameter(Name, pt{Xloc, Yioc)),
resract(trans(Layer, pi(Sy, Sy), pt{Xloc, Yioc), pt{Dx, Dy), _, _, Ns, Ng, Nd))),
assert(trans(Layer, pt{Sy, Sy), pt{Xloc, Yioc), pt{Dx, Dy), Neww, Newl, N5, Ng, Nd))), !.

modisize(Name, Neww, Newl):.
write('transigtor not found'), !.

-5.

This flexibility allows tools to address and modify specific elements within any context.
For example, a program that tries to optimize the performance of a circuit containing many
cells can do so by adjusting the W/L ratio of the output transistors. With the output transis-
tors parameterized, the program can reference the output transistors from any cell simply as
"outputrans” regardless of the transistor’s environment.

SIP provides an excellent abstraction of VLSI layout for an automated module genera-
tors that produce sticks layout, for example, the following clause:

makeinveryVddgrid, Vssgrid, Ingrid, Owtgrid, Pw, Pl, Nw, Nl):-
Pdgrid is Vddgrid - 1,
Ndgrid is Vssgrid + 1,
assert{wire(ml, py(2, Vddgrid), pi(2, Pdgrid), 1, unk)),
assert(wire(ml, pY(2, Vssgrid), pt(2, Ndgrid), 1, unk)),
assert(wire{ml, pY(1, Vddgrid), pt(5, Vddgrid), 1, unk)),
assert(wire(ml, pt(1, Vssgrid), p(S, Vssgrid), 1, unk)),
assert(wire(ml, pt{4, Pdgrid), p1(4, Ndgrid), 1, unk)),
assert(wire{ml, pt(4, Owsgrid), p(S, OQwgrid), 1, unk}),
assert(wire(p, pi(3, Pdgrid). pt{3, Ndgrid), 1. unk)),
assert(wire(p, pt(0, Ingrid), pt(3, Ingrid), 1, unk)),
assert(cont(mld, p(2, Pdgrid), nof, unk)),
assert(cont(mld, pt(2, Ndgrid), nof, unk)),
assert(cont(mld, pt(4, Pdgrid), nof, unk)),
assert(cont(mld, pt(4, Pdgrid), nof, unk)),
assert(trans(pd, pi(1, Pdgrid), pt(2, Pdgrid), pt(3, Pdgrid), Pw, Plunk, unk, unk)),
assert(trans(nd, pi(1, Ndgrid), p1(2, Ndgrid), py(3, Ndgrid), Nw, Nl,unk, unk, unk)), !.

will generate an arbitrarily sized inverter with variable input and output locations. Nodal .
information is deduced by the extractor. Roms, PLAs, and other regular layout structures can
be generated in a similar fashion

3. PROLOG Programming for CAD

There has been a growing trend in CAD to develop tools that use both algorithmic and
rule-based programming styles [10-11). Algorithms are generally fast, but are inefficient at
handling problems that have many special cases. Rule-based systems are well suited for
solving problems with many special cases or problems that are not well defined. Rule-based
systems have generally been slow. Rules in such a system must be looked up and efficient
management systems have not yet been developed. Many CAD problems, such as simula-
tion, have algorithmic solutions, but most problems, such as routing and logic minimization,
can be solved by a host of methods.

Prolog provides an environment for both algorithmic and rule-based programming
styles. Several examples of both styles have been implemented in ASP. An example of how
simulated annealing is implemented in Prolog is illustrated in the Appendix. The clausal
nature of Prolog allows rules to be easily updated or modified. Algorithms can also be
expressed in a simple and intuitive manner which makes Prolog a language ideal for rapid
prototyping.

Prolog source code is typically 10-100 times more dense than C or Fortran source code
performing the same function. This makes Prolog systems much more readable and

-6-

maintainable. For a large system such as a silicon compiler, this has turned out to bc essen-
tial.

3.1. PROLOG Programming Methodology Employed by ASP
There are three basic formats for Prolog clauses arc employed by ASP:

Procedural Clauses: These clauses work to achieve a certain value or state without fail-
ing. Examples of such clauses include arithmetical functions and list manipulations.

/* The mindist routine finds the minimum spacing distance between two objects of layer and
width. The ’space’ routine returns the minimum spacing distance between two layers, and
the width routine determines the minimum width of a layer */

mindist(Layerl, Widthi, Layer2, Width2, Distberwnobjctsj.-
space(Layerl, Layer2, Distance),
width{Layerl, Widthspace!l),
Widthmodl is Width]*Widthspacel,
width{Layer2, Widthspace2),
Widthmod2 is Width2*Widthspace2,
Distbetwnobjcts is Widthmodl + Widthmod2 + Distance.

Filtering Clauses: These clauses interpret a given set of data elements differently depend-
ing upon the values of certain data fields. If-Then, and Case constructs can be expressed
through these clauses.

/* checkonstr determines how to space two elements. Each sub-clause filters out a certain
condition. If the elements are on the same row, the spacing is irrelevant. If the elements are
contacts, they can not be stacked upon each other and must be spaced accordingly. If the ele-
ments are not contacts and of the same node, the spacing doesn’t matter, otherwise the ele-
ments must be spaced */

checkconstr(Layerl, Widthl, Nodel, Rowl, Layer2, Width2, Node2, Row2, Layer2).-
Rowl=Row2.

checkconstr(Layerl, Widthl, Nodel, Rowl, Layer2, Widih2, Node2, Row2, Layer2):-
contacts(Layerl, Layer2),

.....

c};eclzom(layer], Widshl, Nodel, Rowl, Layer2, Width2, Node2, Row2, Layer2):-
Nodel=Node2.
checkconstr(Layerl, Widthl, Nodel, Rowli, Layer2, Width2, Node2, Row2, Layer2):-

Generator Clauses: These clauses generate sets of elements through backtracking or the
bagof construct in Prolog.

/* Makebox, a routine that creates boxes from various elements, first processes wires, followed by contacts and
ransistors. */

makebox:-
wire{Layer, pt(X1, Y1), pt(X2,Y2), Wid, Node),

cons(T' ype piRow, Y), Oset,),

fail,
makebox:-
trans{Type, pt(Sx. Sy). pt{Gx, Gy), pt{Dx, Dy), W, L, Sn, Gn, Dn),

fail.
makebox.

4. Conclusion

Prolog provides a relational database and a powerful programming environment. The
relational database is easy to use, can represent all CAD objects, and provides a flexible inter-
face to the programming environment. The clausal nature of Prolog provides an environment
suitable for algorithmic and rule based programming styles. The success of ASP has shown
that Prolog is a robust language well suited for CAD development.

This work was sponsored in part by Defense Advanced Research Projects Agency
(DoD) and monitored by Space and Naval Warfare Systems Command under Contract No.
NO00039-84-C-0089.

5. Appendix

% Simulated Annealing package
% You provide the move set, stopping criterion, and number of inner loop iterations.

siman(InitTemp, StateQ, Cost, Finalstate, Finalcost):-
doOuter(InitTemp, State0, Cost, Finalstate, Finalcost).

% Outer Loop

doOuter(Temp, StateQ, Cost, State0, Cost):-
endhere(Temp, State0, Cost). % Outer loop complete by criterion endhere

doOuter(0, Temp, State, Cost, Finalstate, Finalcost):-
dolnner(0, Temp, State, Cost, Newstate, Newcost),
updatetemp(Temp, NewT),
doOuter(NewT, Newstate, Newcost, Finalstate, Finalcost).

% Inner Loop

dolnner(Count, Temp, State, Cost, State, Cost):-
maxinnercount(Mcount),
Count > Mcount. % inner loop complete

dolnner(Count, Temp, State, Cost, Finalstate, Finalcost):-
gennewstate(State, Newstate, Newcost), % create & new state by move
Deltacost is Cost - Newcost,
accepi(Dehacost, Temp),
Nextcount is Count + 1,
dolnner(Nextcount, Temp, Newstate, Newcost, Finalstate, Finalcost).

doInner(Count, Temp, State, Cost, Finalstate, Finalcost):- % new state not accepted
Nextcount is Count + 1,
dolnner(Nextcount, T, State, Cost, Finalstate, Finalcost).

accept(Deltacost, Temp):- % Good move
Deltacost =< 0.

accept(Deltacost, Temp):- % Random factor
Aexp is -1*Deltacost/Temp,
Afactor is exp(Aexp),
random(Randnum),
Randnum < Afactor.

updatetemp(Temp, Newtemp):-
Newtemp is Temp *0.04, !.

maxinnercount(100).

6. References

(1]

(2]

(3]

(4]
[s]

(6]
(7

(8]

9]

[10]

(11]

A. Guttman, "New Features for a Relational Database System to Suppont Computer Aided Design”,
Ph.D. thesis, U. C. Berkeley, 1984.

R. H. Katz, "A Database Approach for Managing VLSI Design Data”, Proceedings on the 191h
Design Auwtomation Conference, June 982.

W. Bush, G. Cheng, R. McGeer, A. M. Despain "An Advanced Silicon Compiler in Prolog”, JEEE
International Conference on Computer Design, June 1987, pp. 27-31.

B. Bush, “Behavioral Synthesis in Prolog”, publication pending, 1986.

W. Bush, G. Cheng, R. McGeer, A. M. Despain "A Prototype Silicon Compiler in Prolog™, UC Berke-
ley Technical Reporr, 1988.

P. Moore, "The General Structure of OCT", Internal Memorandum, January 1986.

N. H. E. Weste, "MULGA - An Interactive Symbolic Layout System for the Design of Integrated Cir-
cuits”, The Bell System Technical Journal 60, 1981.

K.H. Keller and A.R. Newton, “A Symbolic Design System for Integrated Circuits™, Proceedings on
the 19th Design Automation Conference, June 1982.

D. Rieu and G.T. Nguyen, "Semantics of CAD Objects for Generalized Databases”, Proceedings on
the 23rd Design Automation Conference, June 1986

F. D. Brewer and D. D. Gajski, "An Expen-System Paradigm for Design”, Proceedings on the 23rd
Design Awomation Conference, June 1986.

T. Yoshimura and S. Goto, "Rule Based and Algorithmic Approach for Logic Synthesis”, Proceed-
ings on the IEEE Insernational Conference on Computer-Aided Design, November 1986.

Appendix 4

“The Validation of a Multiprocessor Simulator”
Tam Nguyen and Vason Srini

July 25, 1989

The Validation of a Multiprocessor Simulator

Tam M. Nguyen Vason P. Srini

Computer Science Division

University of California
Berkeley, CA 94720

Abstract

Oue of the Ley steps in performance prediction of multiprocessor svstems using simulations is the
validation process. A step in the validation process consists of sequential execution of benchmark
programs on the multiprocessor simulator and a uniprocessor simulator, and comparing the results
and performance measuremen:s data. The simulated cvcle count. simulator overhead, operation
coun:, and memory access count are identified to be the key performance data needed for :he
comparison. This process is illustrated using the multiprocessor NuSim for the parallel execution
of Prolog programs and the uniprocessor simulator VPsim. For large programs, the counts obtained
from the two simulators are within 20% of each other.

Submitted to the First International Conference on Systems Integration
July 25, 1989

1 Introduction

Simulation 1s an accurate and effective approach in prediciing performance of a new multi-
processor system. taking into account the many iniricate details in the hardware and sofrware
designs. The degree of accuracy depends on how much de:ail is included in the simuiator. To
ensure that the simulator accurately refiects the real svstem (vet 10 be built), the simulator
must be carefully validated for correct functional as well as timing results.

The validation process is carried out primarily by comparing performance data from the
new simulator with known data obtained from previously validated sources. The validation
process itsell can be quite tedious and difficult. with massive amounts of information thar
need to be analyzed. In this paper. we present our approach to validation. The process
involves sequential execution of benchmark programs on the multiprocessor simuiator and a
uniprocessor simuiator. comparing results and periormance data.

2 Validation Methodology

There are many approaches to the validation of 2 simulation model [Sar88). The concept of
our approach to validation is Quite simple: compasing new. unverified results with previousiy
known apswers. The more difficult task is the careful consideration of the many cifferen:
factors tbat can affect the results and the degree of these efiects. The valication process
for 2 compuier svsiem simulator is bes:i done iz & stepwise jashior. The exaci adeiaiis of

the necessary steps depends on the availzbility of the knowsx resuli. or the basis. used for
COmP&TISOT.

In this paper. the term hos? designates the mechice on which the simulator is rur znd
target refers 10 the computer architecture/system: being simulated. Velidation refers to the
process of ensuring that the simulator is coded correcily and that it accurateiy modeis the
target.

1. the initial phase. where a paper design is the onlv basis availabie, validation of the
simulator usually consists of:

. Manually checking for correct coding according to the paper design.

»-

(3]

Funning the simulator and checking for functional correctness, comparing
the results with manually worked ou: solutions.

3. Manualiy checking the timing of sub-blocis in the simulator.

. Running.the simulator 10 obtain timing estimates.

>

5. Running simulator withk insirumeniatior iurned on 10 capture dynamic exe-
cution statistics.

The term manually used above refer to the ad hoc approach of eveballing (for steps 1
and 3). hand calculations (step 2). or writing small, very special purpose software tocls to
accomplish the tasks. This approach is very tedious and error prone. but is often the oaly
possible way at this phase since a paper design is the only available basis. In the last step.
the monitor facility for instrumentation should not affect the timing.

Once the initial simulator is validated. it may be used as a basis for validating other
simulation svstems. The validation process can now be done with a greater degree of au- -
tomation. and thus achieving greater eficiency. However. great care must still be taken to
understand the factors that cause discrepancies.

The validation process of a multiprocessor system! simulator involves the following sieps:
1. sequential ezecution on one processor. This is done to test the processor

module of the simulator and the relevant support modules such as assembler
and loader.

o

parallel ezecution on one processor. This is a degenerate case, done 1o mea-
sure the overhead of parzllel executior.

3. paraliel ezeculion on two processors. This is a special case for testing in-
terprocessor communication with no interierence since there is exactly one
sender and one receijver.

4. parallel ezecution on three or more processors. This is the general case of
paralie] execution. with potiential for interierence on shared resources such
as the memory and communicatior channels. It is aiso used 1o test the ful
extent of the paralie] execution model. As more processors are added 10 the
configuration. the saturation of shared resources will occur and bottlenecks
will appear.

In this paper, we presen: the application of the first step of velidation of 2 multiprocessor
simulator, using a previously validated uniprocessor simulaior as & basis. Since there are
architecture and execution mode] variations in the two simulators, their results are compared
for prozimity. not for exact eouality. The following sections provide details on the simulators
and the validation approach.

3 Simulator Descriptions

The validation process is demonsirated using two simulators: VPsim and NuSim. Botb
simulators provide an abstraci machine engine for fast execution of the Prolog language.
V'Psim is a previously validated simulator 10 be used as the basis of comparison for NuSirm.

)Thbe term multiprocessor system is used o include both the multiprocessor architecture and the parallel
execution mode!

3.1 VPsim

\'Psim is a register transier level simulator for the \'LSI-PLM [STN™>88]. This chip is a2 VLS
implemeniztion of a high performance engine for Prolog. a modified version of the abstract
machine proposed by Warren [War83). V'Psim is written in the C language. consisting of 4300
lines of C code and 9000 lines of microcode operations (register transiers. CPU operations
and microbranches). :

To verify VPsim's functional correctness. a wide variety of Prolog programs were run
on \'Psim and compared with those obtained from runs on software Prolog envirooments
such as Quintus Prolog. Because \'Psim is microcode driven. the microstates automaticaliy
provide accurate timing. with each microstate being executed in exactly one processor cycle.
Gate and transistor level simulations of the VLSI-PLM chip are compared against the results
from \'Psim. The fabricated chip bas passed an extensive testing process and has successiuliyv
executed a number of benchmark programs. Work is in progress to interiace the chip with
a cache and memory board to be used as a coprocessor for the SUN workstation.

From tbe perspective of this paper. \'Psim is a solid simulator that has been well tested
and bas been verified by the bardware. It is an available resource that can be used as & bas:s
for testing oiher simulation systems.

3.2 NuSim

To cazry out our study in parallel execution of Prolog. we need an accurate and fiextible too! o
be used as z testbed for new ideas. We approach our study irom a system designe:’s point of
view, working with the complete svstem from soitware execution mode! 1o hardware support
for high periormance. We are pariiculaziy interested in practical designs that can be built iz
reasorable time. For these reasons. we base our mulkiiprocessor study oz our knowledge aac
experience with sequential execution of Prolog or the VLSI-PLM. In addition to the Prolog
specific instructions, the chip coniains z aumber of simple genera! purpose ipstructions and
primitive support for syactronization. Tris makes it a good candidate building block for &
muiilprocessor svstem.

A simuiator can best serve our interest in hardware support for high periormance. The
result obiained from a simulation run refects a composite efiect of many iniricate detalis
that car pot be easily formulated or calcuiated. By varyving the parameters of the simulator,
the effect that each parameter has on overall performance can be measured.

We have constructed 2 new simulation sysiem. called NuSim. 1o facilitate our studies of
paralie] execution models and the underlying multiprocessor architectures. This simulator
iramework ailows jor the compiete system simuiation: from the instruction set ieve: to the
memory architeciure level with caches and coberency protocols. The kev feature of tais
simulator framework is fiexibility. which allows for extersive instrumentation and coatinual
updates and changes. The modular design identifies main features of the executior model

—_ﬂ—

memory

Mmanagement
processor
moduk
memory sviem
moduic
Simulaton Conero)
paralle] execution
model module — \ NSTUMENALI0
outpul
debugper
graphucs iniualizer/
neriace loader

Figure 1: Overview of NuSim Simulator

and the architeciures being simulated as cleanly separated modules with cleasiv delined
iterfaces. This aliows jor easy modifications to the iadividual modules 10 suppori new
execution models and architeciures.

NuSim 3s 2n evesni-driven simulator. with the events being memory accesses ordered
by time. Thils technique simulates z multiprocessor uvsing & uniprocessor. NuSim consists
of 16000 iires of C code and two small machine dependen: routines 1o save and resiore ibe
coroutine siacks. it is fairly poriable. cusrently ruraing vader .3 BSD Urnix on the VAX 783

i Xe)
anc¢ Sur 3, and under Sysiem \ Unix o2 an Intel 386 personai computer.

Figure 1 shows the siructure of the NuSim simulatoz. Two of the major moduies of
ine simuizior are ibe processor module and the memory sysiem moduie. The processor
module emulates the VLSI-PLM ipstruction se:, 2aé is thus comparable 10 VPsim. Tae
memory system simulates a mulii [Bel85) memory architecture, with each processor baving
e locel cache and 2l caches communicate witk maiz memory viz 2 singie bus. The caches
are kept consistent via 2 bardvrare consistency proitocol. In the context of this pape:, these
two modules form the core of the simulator to which the validation process is appiiec. The
Ques:io2 at band is: how well does NuSim simulate ¢ VLSI-PLM?

3.2 Simulator Differences

Although boith NuSim and VPsim essenuially simulate the VLSI-PLM ciup. they were cre-
ated jor veryv different purposes. \'Psim was designed as & simulator for a very specific
microarciitecture of a Prolog processor. Detalls of the VLEI-PLNI microarchitecture are
“bard-wired” into the microcode. in terms of what micro-operatious are possible aud the
constraints Jn packing the micro-operations into a micro-siate. On the other hand. NuSim
was conceived as a more general purpose muliiprocessor simulator for sustem integration.
dealing at 2!l levels from hardware architecture to sofiware execution model. It will be used
10 experiment with differen: architectures and execution mode] tradeofis.

Because of the difierent goals in creating the simulators. there are a number of differences
between them. These difierences are identified 1o help us understand the difierences in pe:-
formance numbers. The following are some difierences between \'Psim and NuSim (running
sequen:izal codel:

o simulation level. \'Psim is « register-transier-Jevel. cycle-by-cycie simule-
tioz. while NuSim is an event driven simulator which step by memors access.
Toe ciock of V'Psim is incremented eacl cvcle. while tue clock of NuSim is
mcrementec by a vaiue obizined irom iable lookuD.

¢ cdr-coding. V'Psim uvses cdr-coding. while NuSim does no:. Cdr-coding is
& compressed representatior jor iist elements siorec in consecutive memory
jocations. It requires a bit 10 indicate if the pext location is the cer of ine
pext element. Cdr-coding is eiminaied because its compiexity bas causec
many sudlie bugs in the microcode while contribuiing little 10 the overall
peiormance {Dob&7}.

+ instruction fetch. NuSim does instruction feick on demancé. and accounts
iime for 2l! fetches. \"Psim does preieiching. whick does no: charge time for
&l! feiches. but mey spead time to fetch unnecessasiiy.

+ memory system. Nusim has a cache/memory system with realistic values
ior memory access time. It accounts time for cache misses and block transiers
irom memory. \'Psim has singie (processor) cvcie memors.

¢ Prolog builtins. \"Psim treats some Prolog duiliins (language predefined
routines) as exiernal functions. and stips daia outside tne VLSI-PLM pro-
cessor for processing by the bost. A varving amount of wime is cbarged for
the datz shipmensi (3 to 10 cycles). but no time is charged for executin
the externa! functioz. \'Psim also implemenis some Proiog builtins in tde
bibrary using V'LSI-PLM assembly code. NuS:m. oo tbe otner nand. executes
21! Prolog builtins inside the processo:. and charges time for them as normal
ipstructions. Ip NuSim. all builiins are written in C code.

—\‘

4 The Validation Example

In this section. we will compare the performaunce results of NuSim 1o those of \'Psim to see
how closely NuSim simulates a \'LSI-PLM processor. Many benchmarks were run on both
NuSim and \'Psimi. and their execution outputs were compared for functional correciness.
A group of benchmarks were chosen for closer timing evaiuation. These beucumarks differ
widely in static code size and dynamic memory usage aud execution time.

We have identified 2 number of measurements for comparison. They are: static code size.
cvcle count. simulation overhead. operation count. and memory access count. Each type of
measurement provide a difierent perspective of the simulation results. helping 1o understand
thie similarity and differences between the two simulators and at the same time validating
the results of NuSim.

Table 1. Benchmork Code Sizes and Descrintions
Benchmark | NS code | \'P code | NS/A'P | Description

bintree | 181 198 0.91 | build & 6-node binary iree
compiler_bintree 11409 12:88 0.91 | compiling the bintree program
compiler.plml 11613 12750 0.91 | compiling poriion of the compiler
hanoi a g2 1.11 | towers of hanoi for & disks
mumath 262 231 1.0: | Hoistadter's mumatk problem for mutiu
newchat 801¢ 8246 0.95 | parsing sentences with the chat parser
nrevi 164 109 1.50 | naive reverse a 30-element list
palin23 290 256 1.12 | palindrome for a 25-character stiring
puzzle 1138 1049 :.10 | solve & puzzle
Qs 219 i63 1.53 | quicksort on 30 numbers
1sd _mess 287 3¢7 1.23 | Prolog me:a interpreter ruzning gs<
gueensf 205 302 0.S7 | 8-queens probiem
recducer 2017 2020 1.00 | & graph reducer ior T-comoinaiors
£GGa 1663 1636 :.02 | static data dependency amnalvsis
tak: 69 T 0.90 { solves & recursively defined function
conl 52 46 1.13 | concatenauion of 3- anc 2-eiement lists)
conf 33 48 1.13 | painwise partition of a S-eiement list
fbo 71 €9 1.03 | compute 5:t fibonacci sumboer

4.1 Static Code Size

Teble 1 shows the descriptions and the static code sizes (in number of lines) for the same
Denchmark compiied using different options for execuiion under NuSim (NS) and VPsim
(\'P). The ihree smailes: benchmacks (coni, conf. and fibo) are listed separately ai tbe
bottom. The ratios NS/VP show that static NS code and VP code are for the most part
well within J0% of one anothe:. The ones that show big vasiances are due 10 the lack of

6

L

cdr-coding in NuSim. which requires two instructions to build an element (car and ¢dr) of a
list. For example. nrevl builds a list of 30 elements before reversing it and g¢s4 builds a hist
of 50 elements before quick-sorting it.

. . o
4.2 Cycle Count (Simulated Time)
Columns VP cycles and NS/VP cucles of Table 2 show the cycle count of V'Psim and the
ratio of NuSim/VPsim cycles. respectively. The Ait ratio column shows results for NuSim
configured 10 a $-way associative. 641X byie cache with a block size of 16 bytes. o

From these columns. we observe that:

» Simulated time of NuSim is quite comparable to VPsim -(column NS/VP
cucles value is approximately 1) for the large benchmarks (compiler bintree.)
compiler.plml. newchat. gueeas€. reduce:. and tak).

¢ Nusim cvcie count is worse than \V'Psiin in the small benchmarks due 10 low
hiz ratio (cache cold start). For example. conl. con6. and fibo have the lowest
kit ratios among the benchmarks. measuring at 88.7%. 95.7%. and 95.6%. e
respectively.

¢ Non-cdr coded lists also contributes a iittle to the degradation in periormance
ior @ smell benchmark such as nrevl which has & decent kit ratio of 95.3%.

®
4.3 Simulation Overhead
Although the time that the simulators recuire to run is la-gely independen: ¢f the correciness °
of the resuits. it is interesting to compare simulation overhead of ibe two simulators because
they simuiate at two different levels and foliow diferept simulation methodologies.
The following explanations refer to Table 2:
_ ®
o Column VP systime provides the sysiem simulation time (ihe time taken to
run the simulator on the host in seconds). and colump NS/VP sysiime pro-
vides tbe NuSim to VPsim ratio. These numbers are obiained from running
simulations on a SUN 3/60 witk 16MB of memory. These values give 2 feel
ior the response time of the simulators, ranging from .5 sec to 3920 secs (or ®

1.64 hours).

¢ The overhead columns are provided as the ratio of cvcle count (discussed
in section 4.2) 1o system simulation time, assuming 100ns cycie time fo: the
NuSim processor and the V'LSI-PLM chip. For example. a value such as 2000 ®

—_-\;

-

o~

Table 2: Cucle Count and Simulation Time

VP NS/VP NS VP NS/VP \'P NS/\P

Benchmark cvcles cvcles hit ratio svstuime svstime overhd overhd
bintree 9875 1.30 97.8 3.5 1.43 KEES 1.10
compiler.bintree | 2208006 0.99 99.5 529.5 0.87 2398 0.87
-compiler.plml | 5997896 0.89 99.6 1226.4 0.75 2378 0.85
hanoi 78884 1.50 99.9 21.4 1.17 2713 0.78
mumath 96907 1.26 99.8 26.2 0.92 2704 0.73
newchat | 6911008 1.09 9.9 1315.9 1.01 1904 0.92

nrevl 21192 1.38 98.3 6.1 1.31 2878 0.95

palin23 25026 1.08 98.6 7.4 1.08 2937 1.00

puzzle | 39456475 0.07 99.9 5920.2 © 043 1500 0.65

gs4 43190 0.98 98.9 11.9 0.92 2733 0.94

gs4.meta 348051 1.1% 98.9 113.6 -0.65 3264 0.56
queens8 | 19759942 1.04 100.0 3354.2 1.18 1697 1.13
reducer | 2343534 1.07 99.5 439.8 1.11 1729 1.04

sdda 85382 1.14 98.5 28.0 0.93 3279 0.82

tak | 9398238 0.96 902 2461.5 0.G2 2619 0.63

conl 256 2.96 88.7 0.5 6.00 19331 2.03

conb 1307 1.52 93.7 0.7 4.29 5336 2.82

fibo 2225 1,44 85.6 1.2 2.50 33¢3 1.73

in these columnrs means that it took 2000 seconds of the SUN 3/60 time to
simulate 1 second of the VLSI-PLM.

The worst numbers in the overhead columns appear in the three smaliest
benchmarks conl. conf. and §bo. This is due 10 the initial overhead of star:-
ing up the simulators. Also in tbe three smallest benchmarks. the overhead
of NuSim is much higher than VPsim (1.73 to 2.82 times worse). This is
because NuSim takes more time to startup. being 2 multiprocessor simulaior
and having to assemble the benchmark into assembiy code. For the larger
benchmarks, the NuSim is more efficient than VPsim. Excluding the three
smallest benchmarks. the average overbeads of NuSim and \'Psim are 2203
and 2535, respectively. Thus Nusim is 16% more eSicient.

¢ Even though NuSim simulates the VLSI-PLM a: a siightly higher ievel then
the register-transfer level of VPsim, it is not that much more efficient be-
cause VPsim microcode is “fiat”™ while NuSim C-routines are hierarchically
structured. The cost of structured code depends on the eficiency of the code
generated by the C compiler for subroutine calls and rezurns.

Simulation of the VLSI-PLM on a SUN 3/60 is more than 2000 times slower than actual
execution on a VLSI-PLM because of the following reasons:

¢ Data and control transiers are processed sequentially. In a real machine. it
would be done in parallel. The V'LSI-PLM has a two stage pipeline. with
the data unit and microsequencer executing in parallel. The V'LSI-PLM data
unit is also capable of doing & simultaneous transiers in one cycle.

o The host processor is less powerful than the target processor for symbolic
computation and the host memory access time is slower than the targe:
memory access time. The SUN 3/60 that we use has a 20MHz MC68020
and 16MB of main memory (300ns access time). There is no cache. The
V'LSI-PLM is a complex processor with tag processing capability.

o The code generated by the C compiler afiects the execution time of the host.
For example. inefficient subroutine calls and returns penalize the hierarchical
structure of NuSim C code.

s The presence of extensive instrumentation code in the simulators for extract-
ing performance resulis slows down execution on the host.

o The operating svstem cbaracteristic of the host can greatly affect perfor-
mance. The SUN 3/60 runs 4.3 BSD Unix and viriwal memory. The CPU
accesses a shared file server cornecied via Etherpet. and thus pageiaults are
very expensive.

The factors above blend togetber in the real uniprocessor svsierm and 1t is difficul 0
measure them separately. This is the reasor why a simuiator is needec for experimen:aiion
with individual system parameters. For simulating a muitiprocessor coniiguratioz, ihe event
¢oiven approach of NuSim may be accelerated by use of a faster uniprocessor. or & muliu-
processor host. as demonstrated by [WilS7. Jon86]. For the greatest eficiency in simuiatioz.
@ direct ezecuiion approach such as ihe one proposed by Fujimoto [FCS8] may be usec.
where the benchmark is compiied into code direci!y executabie by the bost. Insirumeniation
counters are inserted by the compiler into the code 10 measure performance ior tpe target
machine.

4.4 Operation Count

In Prolog. the metric Logical Inferences Per Second in units of 1000 (KLIPS) is often used for
measuring the performance of Prolog engines. A logical inference can be defined as a Proiog
funciion call, which inciude VLSI-PLM instructions calis. ezecutes. and escapes for Proiog
builtins. This metric is quite inaccurate since the logical inference can not be measured
exactly. The amount of work done by a Proiog funciion call depends or the number and
type of arguments in Prolog. For paraliel execuzion. the KLIPS measuremen: has even iess
significance. Multiprocessors may do more work bui do not necessarily achieve the final
result any Jaster, if the additional computations do not contribute direcily to the resuls.

Table 3: Loaical Inference Couni

NS NS NS \'P \'P VP NS/VP

Benchmark | calls escapes KLIPS calls escapes KLIPS KLIPS
bintree 7 131 177 128 101 232 0.76
compiler.bintree | 15113 7186 102 20886 2539 106 0.96
compilerplml | 42597 22318 122 67060 3992 118 1.03
hanoi 767 765 129 1022 311 194 0.67
mumatbh | 1211 82 106 1221 73 134 0.79
newchat | 66905 60 89 66911 35 97 0.92

nrevl 497 2 171 497 3 236 0.72

palin2d 228 97 121 °° 323 3 130 0.93
puzzle | 19796 6018 10 21800 40135 7 1.50

gs4 381 231 144 610 3 142 1.02

gsi.meta | 2694 720 84 3795 3 109 0.77
queens8 | 16457 1351736 111 228009 185 115 0.96
reducer | 15091 6303 79 18815 2491 84 0.94

sdda 532 408 99 715 249 113 0.87

tak | 63609 111317 195 174921 3 186 1.03

conl 4 2 79 4 3 273 0.28

conb 6 30 181 6 31 283 0.64

fibo 15 23 118 36 3 173 0.68

Table 3 shows the number of normal calis/executes and Prolog builtin invocations (or
escapes). Since VPsim does calls to Library routines for some of the builtins. it has 2 much
higner celis count and fewer escape count than NuSim. In order for KLIPS to be a useful
measure. the condition N Sep =+ N Seseape = 1 Peatt = 1 Pegeape snould hold true. The following
results show that this condition does noi hold, due to the implementation variations of
NuSim and VPsim (described in section 3.3).

Lach of the KLIPS columns is calculated by

calls + escepes

— = 10000
cycles

where cycles is obtained from Table 2. The unit for calls and escapes is the logical inference.
The constant factor of 10000 comes from the KLIPS unit conversion:

0% nsec 1 cvele 1 K
1 sec 100 nsec 1000

The NS KLIPS and VP KLIPS columns differ widely, showing once again the problem witk
this metric. For comparison purpose, the timing information in table 2 is much more useful
than this metric.

1 KLIPp =1

10

4.5

Memory Accesses

Table 4 compares the number of memory accesses made in running the simulations on NuSim
and the V'Psim. VP toi.refs gives the total count of memory references to give a sense of the
order of magnitude of memory accesses. which range from about 100 to over 12 million. The
next 4 columns show the ratios of accesses between NuSim and \'Psim for total references.
instrucuion fetches, reads, and writes.

Table 4: Memoryv References

\'P NS/VP \'’P NS/VP VP NS/VP VP NS/VP

Benchmark | totalrefs refs iferch ifetch reads reads writes writes
bintree 5001 1.19 2327 1.03 1368 1.80 1500 0.82
compiler.bintree 125977 1.07 4704063 1.18 420110 1.06 303204 0.93
compiler.plml 3511904 0.9C 138079¢ 0.95 1161393 1.04 869313 0.88
hanoi 51811 1.3¢8 21441 1.6 13776 1.26 16594 1.12
mumath 53022 1.2¢ 18258 1.78 18639 1.03 16133 1.03
newchazt 36951535 1.16 1376937 1.50 11358300 0.85 11398712 0.97
nrevl 8473 1.51 4812 1.97 2017 0.81 1624 1.06

palin2d 12759 1.10 5695 1.31 4114 0.89 29350 0.99
puzzle | 11600446 0.81 771231 1.539 94980654 0.72 1330341 0.98

Qsé 24302 0.93 11141 1.0 3509 0.87 7632 0.7¢9

as4.meza 197469 1.13 70542 1.42 61671 0.97 65256 0.96
Queens8 | 12352297 1.0¢ 5220239 1.25 4238614 0.99 2883344 0.9¢
reducer 1367038 1.14 402235 1.46 507144 0.e9 397639 Q.57

sdda 48313 1.13 17831 1.33 167352 1.08 13730 0.¢35

rak 5679238 0.83 3281760 0.66 103304 .18 1633833 ¢.9¢

conl Sz 2.} 35 2.07 27 3.62 22 H)

conb 499 1.58 163 1.82 170 :.86 166 1.0

fibo 1207 1.10 64S 1.13 233 1.22 K2 .63

We observe the following:

e NuSim fetches instructions on demand. while V'Psim does prefetching. NuSim

instructions are encoded ir word sireams, wiih the opcode and each operand
taling up one 32-bit word. \'Psim has the code stored in siring tabies. but
the microcode generates prefeich signals 10 simulate an encoding of 8-bit
opcode and 32-bit arguments.

The totel reference ratios arve for most benchmarks are about 1. The big vari-

tions are for conl (2.11), con6 (1.38), anc prevl {1.31). The va-iations are
perfect exampies of wors: case periormance without cdr-coding (in NuSim).
which wouid require more insiruction feiches. reads and writes. For the iarger
benchmarks, cdr-coding makes little difference.

The ifetch ratios show that the word-encoding of NuSim require more jetches,
as expected. However. for tai. NuSim ferches much less (ifeirch ratio of 0.66)

19

because mazy subiractions are done and NuSim use the builtin instruciion
is/2. while VPsim does a call to the library routine sub/8 which require a
longer sequence of simpler instructions.

5 Discussion

Simulation is an imporiant part of system integration. In this paper, we have shown a
methodology for validating the simulator of a multiprocessor system. We applied this scheme
to validate the processor and the memory module of a multiprocessor simulator (NuSim)
by comparing it with a previously validated uniprocessor simulator (VPsim). Benchmarks
of various sizes were executed sequentially on both simulators. and difierent performance
measurements were evaluated and compared against one another.

Because the simulation result is a2 composite result of many factors, we chose a num-
ber of measurements for comparison to obtain difierent perspectives on performance and 1o
understand the reasons of the variations. The chosen measurements were: code size. cvcle
count. simulation overhead. operation count. and memory access counts. The different mea-
surements indicate that the variations are significant only for the small benchmarks. where
startup time and slight model differences are a big percentage of toial execution time. For
large programs. NuSim is within 10% of the VLSI-PLM timing. Perhaps more imporiantly.
al] variations can be accounted for. We can thus conclude that NuSim is represeniative of 2
VLSI-PLM in a multiprocessor svstem. With NuSim, we can continue our siudy of imple-
men:able multiprocessor systems for paralle] execution of numeric and symbolic programs.
using logic programming. We also believe that the chosen measurements can be used in
valiGating other simulation systems.

6 Acknowledgement

We are indebted 1o Chien Chen for his contribution to the development of Nusim. 10 Bruce
Holmer for the developmen: of \'Psim. and 1o Mike Carlton for the implementation of ine
cache/memory module in NuSim. We would also like to express our gratitude to Peter
Varroyr and other members of the Aquarius group for their many useful suggestiorns.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD)
(monitored by the Office of Naval Research under Contract No. N00014-88-K-0579), NCR
Corporation in Dayvton, Ohio. and National Science Foundation.

12

References

[Bel83)
[Dob&7]
[FCss]

[Jon86]

[Sars8)

[STN=8§]

[War83]

[WilsT]

C. G. Bell. Multis: a new class of multiprocessor computers. Science. 228:402-
467, April 16. 1985.

Tep Dobry. A Higch Performance Architecture for Prolog. PhD thesis. University
of California. Berkeley, May 1987. Technical Report UCB/CSD 87/332.

R.M. Fuiimoto and W.B. Campbell. Efficient instruction level simulation of com-
puters. Transactions of the Society for Computer Simulation. 5(2):109-124, 198¢.

D.\V. Jones. Concurrent simulation: an alternative to distributed simulation. In
Proceedings of the 1956 Winter Simulation Conference, pages 417-423, Washing-
ton D.C.. December 1986.)

R.G. Sargep:. A tutorizl on validation and verification of simulation models. In
Proceedings of the 1988 Winier Simulation Conference. December 198E.

V. Srini. J. Tam. T. Nguyen. B. Holme:. Y. Patt. and A. Despain. Design anc
Implementation of o CMOS Chip for Prolog. Technical Report UCB/CSD 88/412.
CS Division, UC Berkeley, March 198¢.

D.E.D. Wazren. An Abstract Prolog Instruction Set. Technical Report, SRI Io-
ternational, Menlo Park, CA. 1983.

AW, Wiison. Paralieiization of an evenat driven simulator for computier sysiems
simulation. Simulction, 49{2}:72-78, Auvgust 1957.

pk!
e —

