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1. Introduction 

This is the final report on research in the system architecture of accelerators for the high perfor
mance execution of logic programs. It was conducted by the Electrical Engineering - Systems 
Department of the University of Southern California, under award number 25879 as subcontractor 
to the University of California, Berkeley. The research was sponsored by the Defense Advanced 
Research Projects Agency under contract number N00014-88-K-0579. 

The scope of this work included: 

• Design of an abstract machine for the execution of Prolog, the Berkeley Abstract Machine 
(BAM). 

• Design, simulation, and implementation of a high-performance VLSI Prolog accelerator 
chip, the VLSI-BAM. 

• A simulator for the Aquarius-IT multiprocessor. 

• Release of version 1.0 of the Berkeley Extended Prolog (BXP) compiler. 

• Design, implementation, evaluation, and release of the Advanced Silicon-Compiler in 
Prolog (ASP) System. 

All of the above work was completed, as reported in the following section of this report. 

It was originally proposed that this work would include the design and performance evaluation of 
the Aquarius-II and Aquarius-ill multiprocessors, under options A-II and A-ID. As these options 
were not funded, the research was not performed. 
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2. Accomplishments 

2.1 Aquarius Prolog Compiler 

Our work on compilation of Prolog revealed that the language can be implemented an order of 
magnitude more efficiently that the best existing systems, with the result that its speed approaches 
that of imperative languages such as C for a significant class of programs. The approach used was 
to encode each occurrence of a general feature of Prolog as simply as possible. The design of this 
system, Aquarius Prolog, is based upon four principles: 

• Reduce instruction granularity. Use an execution model, the Berkeley Abstract Machine 
(see below), that retains the good features of the Warren Abstract Machine (WAM). 

• Exploit determinism. Compile deterministic programs with efficient conditional branches. 
Most predicates written by human programmers are deterministic, yet previous systems 
often compile them in an inefficient manner by simulating conditional branching with 
backtracking. 

• Specialize unification. Compile unification to the simplest possible code. Unification is a 
general pattern-matching operation that can do many things in the implementation: pass 
parameters, assign values to variables, allocate memory, and do conditional branching. 

• Dataflow analysis. Derive type information by global dataflow analysis to suppon the 
above ideas. 

The resulting Aquarius Prolog system (Appendix 1) is about five times faster that the high-per
formance commercial Quintus Pro log compiler. Because of limitation of the dataflow analysis 
system, Aquarius is not yet competitive with the C language for all programs. This can be 
addressed in future work. 

2.2 Berkeley Abstract Machine (BAM) 

The design of the Berlceley Abstract Machine (BAM) was based upon the Programmed Logic 
Machine (PLM), which was a straightforward microcoded implementation of the Warren Abstract 
Machine, the most widely-used· model for the execution of Pro log. Studies of the PLM found that 
perfonriance was limited by bus bandwidth. It also proved difficult to perform compiler optimiza
tions on PLM code because of the complexity of the operations. These problems were addressed 
in the BAM design. 

The BAM began with a general-purpose RISC architecture and added a minimal set of extensions 
to support high-performance Prolog execution. Exploiting these features required simultaneous 
development of the architecture and an optimizing compiler. While most Prolog-specific opera
tions can be done in software, a crucial set of features that must be supported by the hardware in 
order to achieve the highest performance: 

• Tagging of data, with tags kept in the upper four bits of a 32-bit word. 

• Segmented virtual addressing. 

• Separate instruction and data buses, with the data bus being double-width. 

• Special instructions which can also be used in implementing other languages. 

• Instructions to test and manipulate tags. 
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• Unification support 

The results of this study showed that the special architectural features added 10.6% to the active 
area of the BAM chip, while increasing performance by 70%. This study is presented in detail in 
Appendix 2, "Fast Prolog With an Extended General Purpose Architecture." 

2.3 Advanced Silicon-Compiler in Prolog (ASP) 

The Advanced Silicon-Compiler in Prolog (ASP) is a full-range hardware synthesis system. The 
goal of ASP is to synthesize a single-chip VLSI processor from a high-level specification of the 
ISA. The approach is to study a specialized vertical slice of the design space. The design of the 
system proceeds hierarchically. At each level, many choices are considered for each component, 
making it convenient to consider the process as a conversion of a conceptual AND-OR tree into 
an AND tree, with design decisions being the choice of a particular OR branch. 

Conceptually, each level of abstraction is composed of a simulator module, a compiler module, a 
design program (engine) module, and a knowledge base. Each level accepts a specification in a 
formal specialized language and produces a more detailed and concrete specification in a different 
specialized language. To determine which design choices should be made, a benchmark program 
is provided to each level to that the developing architecture can be simulated and measured rela
tive to the design choice. 

ASP is a design automation (DA), as opposed to a computer-aided design (CAD) system. In it, the 
silicon compilation problem is divided into three major problem domains, behavioral, logic, and 
circuit The geometric domain is concerned with the lowest level of design, the efficient layout on 
silicon of a particular logic design. The logic domain produces that logic design, given a behav
ioral (or register transfer level-- RTL) design. At the highest level, the behavioral domain gener
ates a behavioral description of a particular ISA. 

A summary of ASP is presented in Appendix 3, "A CAD Design Environment Based Upon Pro
tog." 

2.4 Aquarius-II Simulator 

As a first step toward a Prolog multiprocessor, we developed the NuSim simulator to serve as a 
testbed for new ideas. Based upon the VLSI-PLM, NuSim provides a framework that permits 
simulation at many levels, from the instruction set to the memory architecture (including caches 
and coherency protocols). The simulator's flexibility allows extensive instrumentation and con
tinual updates and changes. 

NuSim is an event-driven simulator, with the events being memory accesses ordered by time. 
This technique simulates a multiprocessor using a uniprocessor. The simulator consists of 16,000 
lines of C code and two small machine-dependent routines to save and restore the coroutine 
stacks. It is fairly portable, currently running under 4.3 BSD Unix on the VAX 785 and the Sun 3, 
and under System V Unix on an Intel 396-based personal computer. 

In Appendix 4, "The Validation of a Multiprocessor Simulator," we report on validating NuSim 
with respect to the VPSim uniprocessor simulator. 
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3. Summary 

Under this subcontract, the University of Southern California has performed research in accelera
tors for the high-performance execution of Prolog programs, including compilation techniques, 
accelerator architecture, multiprocessor design, and application to design automation. 

In particular, this project included the design and implementation for a microprocessor for the 
high-performance execution of Prolog, implementation of a simulator for the Aquarius-ll multi
processor, release of the Aquarius Prolog Compiler, and design, evaluation, and release of the 
ASP System. 
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ABS"ffiACI" 

The pwpose of this dissertation is 10 provide construcuve proof thallhe logic programming language 

Prolog can be implemented an order of magnitude more efficiently than the best previous systems. so that 

its speed approaches imperative languages such ~ C. for a significant class of problems. The driving force 

in the design is io encode each occurrence of a general feature of Prolog as simply as possible. lbe result-

' 
ing system, Aquarius Prolog, is about five times faster than Quintus Prolog. a high performance commer-

t 

cial S)'stern, on a set ~r represenrative programs. The design is based on the following ideas: 

(1} Reduce instruction granularity. Use an execution model. the Betkeley Abslract Machine (BAM), 

that-retains the good features of the Warren AbstraCt Machine (W AM), a SWldard execution model 

for ProJog, but is more easily optimized and closer to a real machine. 

(2) Exploit determinism. Compile deterministic programs with efficient conditional branches. Most 

predicates written by human programmers are deterministic. yet previous systems often compile 

them in an inefficient manner by simulating conditional bl311Ching with baclcttacJcing. 

(3) Specialize unification. Compile unification 10 the simplest possible code. Unification is a general 

pattern-matching operation that can do many things in the implementation: pass parameters. assign 

values to variables. allocate memory. and do conditional tnnching. 

(4} Data8ow analysis. Derive type infonnation by global dalaftow analysis 10 suppon lhese ideas. 

Because of limitations of the dataftow analysis, the system is not yet competitive with lhe C language for 

all programs. I outline the work that is needed to close lhe remaining gap. 

Alvin M. Despain (Committee Chairman) . '. 



Acknowledgments 

This project has been an enriching experience tn:many ways. It was a privilege to be part of a team 

consisting of so many talented people, and I learned· much from them. h was by uial and error that I 

IC311lcd how to manage the design of a large program lhat docs not all fit into my head at once. interaction 

with my colleagues encouraged lhe development of the formal specifications of BAM syntax and seman

tics, which greatly eased interfacing the compiler with the rest of the system. The use of the compiler by 

severa1 colleagues, in particular the development of the run-time system in Prolog by Ralph Haygood, 

improve<! its robustness. 

I wish to Jhank all those who have contributed in some way to this work. AI Despain is a wonderful 

advisor and a source of inspiration to all his students. Paul Hilfinger's fine-tooth comb was invaluable. 

Bruce Holmer's unfailing sharpness of thought was a suong support. I also would like 10 thank many 

friends, especially Ariel, Bernt. Francis, Herve, Josh, Miteille, Sue, and Dr. D. von Tischtiegel. Veel dank 

ook aan mijn farnilie, et gros bisous pour Brigitte. 

This research was panially sponsored by the Defense Advanced Research Projects Agency {DoD) 

and monitored by Space & Naval Warfare Systems Command under Contract No. NOOOI4-88-K-0579. 

ii 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



- Ill -

Table of Contents 

Chapter I: Introduction 

1. Thesis sutcmcnt .................................................................................................................................. . 

2. The Aquarius compiler ...................................•...........•........•............................................................... 

3. Structure of the disscnation ...................... : ..... .., .................................... - ....•.•...•................................... 

4. Conlrib1,1tions ...................................................................................................................................... . 

4.1: Demonstration of high performance Prolog execution ·---········---··--····-·-·····-··········-·· ' . 

4.2. Test of the thesis statement ·················-·····-···-····-···-····---······-··-·--············-····-··--··· 

4.3. DevelQpment of a new abstraCt machine ·-·-··············-··--·--··--···-·······-····--·-···-········· 
4.4. Deve1opmcnt of the Aquarius compiler······-···-····-·--··-·----···-···----··························· 

4.5. Development of a global dataflow analyzer ····-·······--·-··--···-··-······················-·········--... 
4.6. Development of a 1001 for applicative programming ·-·--··-···-----··-····--············---

Chapter 2: Prolog and Its High Performance Execution 

I. The Pro log language ........................................................................................................................... . 

1.1. Data ··································--················--········--···-··-·--·····-···············-·····-·-··················· 

I. I .I. The logical variable ····-····-····----···--·····-·-----··--········---·-···--···-·············· 
1.1.2. Dynamic typing ............................ ,.. ......................................................................... . 

1.1.3. Unification ................................................................................................................ . 

1.2. Control ·····--·····-············-···············-·-··-·-··-·--·-·····--···-----·-·-································· 

1.2.1. The cut operation -·····-·-········---·-···-····--···--·--·······-······························-······· 

1.2.2. The disjunction ···-·-···-·········-·---········--·--------·-----······-~-----·---·· 
1.2.3. If-then-else -··········-····-·················-···-·······--·-··-··-·······························-·-·····-·· 

1.2.4. Negation-as-failure ··--···········-----·-········-·-··--·---······················-········-··-·-·· 

13. Syntax ·-··---·----·--··-·-·········-····------····-···------·····-··-··-···-----·--·-···-·· 
2. The principles or high performance Prolog execution ---------------·----··-···-····-·· 

2.1. Operational semantics of Prolog ---------··--·-------··--:..·----···-··-·-··-··· 

2.2. Principles or the'" AM ------··--···----· 
2.2.1. Implementation Of dynamiC typing WWlllgS --------·------·-··-·------

2.2.2. Exploit detenninisrn ···-·---···----···-·········------····---··········-···········-········· 

2.2.3. Specialize unification ·-·-··-·-·----···-·····-··-·--··········-·-·····--·····-···············-····· 

2.2.4. Map execution to a reat mac:hi~ --.. ·····----·····---··--·-····-·---·······-···--·· 

2.3. l>escription or the WAM ---·--·····-·-·-----···--·····-·····-·-···········-·················-··············· 

2.3.1. Memory areas ···-···-··-···--·--··--···-·······-·····-··-···-······ .. ·-····-·-····················-·· 
2.3.2. Execution SLate ··---·------·----·-------·-··-···---·······-···-····················· 

23.3. The insuuc:tion set ------··----------·--······-··-···············-····························· 

23.4. An example of WAM code --·····-·---···-·-···---·-··-··-········-·····-························ 

I 

3 

4 

6 

6 

6 

7 

8 

8 

9 

10 

II 

II 

II 

12 

12 

13 

13 

14 

14 

14 

16 

16 

18 

19 

20 
21 

22 

22 
22 
24 
25 

25 



·IV· • 
2.3.5. Compiling into W AM ............................................................................................... . 26 

3. Going beyond the WAM ..................................................................................................................... 27 

3.1. Reduce instruction granularity ······················:··········--······························ .. ····························· 28 • 
3.2. Exploit detenninism ...................................... :......................................................................... 29 

3.2.1. Measurement of detenninism .......... :......................................................................... 29 

3.2.2. Ramifications of exploiting determinism ................................................................... 30 

3.3. Spccial•zc unification .................................... ......................................................................... 31 

3.3.1. Simplifying variable binding ..................................................................................... 32 • 
3.4. Dataflow analysis .................................................................................................................... 33 

4. Related work ........................................................................................................................................ 33 

4.1. Reduce instruction granularity .... : ..... : .......................................................................... :.. ....... 34 

4.2. Exploit determinism ................................................................................................................ 34 • 4.3~ Specialize unification .............................................................................................................. 35 

4.4. Dataflow analysis .................................................................................................................... 36 

4.5. Other< implementations ............................................... ~............................................................ 37 

4.S.l. Implementing Prolog on general-pwpose machines ................................................. 37 

4.5.1.1. Taylor's system ............................................................................................. 38 • 
4.5.1.2. 18~1 Prolog ................................................................................................... 38 

4.5.1.3. SICStus Prolog .............................................................................................. 38 

4.5.1.4. SB-Prolog ..................................................................................................... 39 

4 .5.2. Implementing Prolog on special-purpose m3Chines .................................................. 39 

4.5.2.1. PLM .............................................................................................................. 39 • 
4.5.2.2. SPUR ............................................................................................................ 40 

4.5.2.3. PSI-.11 and PIM/p ........................................................................................... 40 

4.5.2.4. KCM ............................................................................................................. 40 

4.5.2.5. VLSI-BAM ................................................................................................... 40 • 
Chapter 3: The Two Representation Languages 
1. Introduction .......................................................................................................................................... 42 

2. Kernel Pro log ........ ............................................................................................................................... 42 

2.1. Internal predicates of kernel Prolog ....................................................................................... 44 • 
2.2. Convening standard Prolog to kernel Prolog ......................................................................... 46 

2.2.1. Standard form ttansformation ····----·········--·-·--···-----------·--··---······-············ 46 
2.2.2 Head unraveling ......................................................................................................... 46 

2.2.3. Arithmetic transformation ......................................................................................... 48 

2.2.4. Cut transformation ..................................................................................................... 48 • 
2.2.5. Aaucning ................................................................................................................... 49 

3. The Berkeley Abstract Machine (BAM) .......... :.................................................................................. 5 I 

3.1. Datalypcs in the BAM ........................................................................................................... 52 

3.2. An overview of the BAM ................................................................... -................................. 55 • 3.3. Justification of the complex insuuctions ................................................................................ 57 

3.4. Justification or the insuuctions needed for unification ····-···-·-··-···-·······················............. 59 
3.4. t. The existence or read mode and write mode ............................................................. 61 

• I 



• v . 

3.4.2. The need for dcreferencing ........................................................................................ 62 
I • 3.4.3. The need for a three-way branch ............................................................................... 62 

3.4.4. Consi.J'Ucting the read mode insiJ'Uctions ................................................................... 63 

3.4.5. Consi.J'Ucting the wriiC mode instruc'tions .................................................................. 64 

3.4.6. Representation of variables ............•.......................................................................... 66 

3.4. 7. Summary of the unification insiJ'Uclions .................................................................... 67 

• Chapter 4: Kernel transformations 

I. Introduction .......................................................................................................................................... 68 

2. Types ac; logical formulas .................................................................................................................... 69 

• 3. Formula manipulation ···································;······················································································ 71 
4. Factoring .............................................................................................................................................. 73 

5. Global datatlow analysis...................................................................................................................... 77 

5.1"'.. The theory of abstract interpretation ....................•................................................................. 77 

5.2. A practical application of abstract interpretation to Prolog .................................................... 80 . 
• 5.~.1. The program lattice .................................................................................................... 81 

5.2.2. An example of generating an uninitialized variable lypc .......................................... 82 

5.2.3. Properties of the lauice elements ............................................................................... 83 

• 5.3. Implementation of the analysis algorithm .............................................................................. 84 

5.3.1. Data representation ····························-···············-·-···-············-······························· 84 • 5.3.2. Evolution of Jhe analyzer........................................................................................... 85 

5.3.3. The analysis algorithm ..................................................... ·-···--··--·-····-···--··-··· 86 

5.3.4. Execution time of analysis ····················-··········-········-··-·····-····-························- 88 
5.3.5. Symbolic execution of a predicate............................................................................. 91 

5.3.6. Symbolic execution of a goal ·······-······················-·······-······--··-··········-······---·· 91 
5.3.6.1. Unification goals ........................................................................................... 91 • 
5.3.6.2. Goals defined in the program ··································-·······-··················-··-·- 93 
5.3.6.3. Goals not defined in Jhe program ................................................................. 93 

5.3. 7. An example of analysis .............................................................................................. 93 

• 5.4. lniCgrating analysis into the compiler ···-·······-···········-···················--·····-·····················-·· 94 

5.4.1. Enuy specialization ··········---·····-··-·····--·-··--·-·····--·--·-··-·--·-··--·····--··· 96 

5.4.2. Uninitialized register conversion ··--···················-········-·--------· .. ·--···-··-·- 96 

5.4.3. Head unraveling -··········-·······-·-··-····-··-·····-·--········---·-----·········---······-- 97 

6. Determinism ttansfonnation ----··-············-···-············--···-···--···-···--··-····-·············-·-··--·- 98 • 6.1. Head-body segmentation ·······················-·······-·--·····-··--····----·---···--·-··-·---···-·-·· 99 
6.2. Type enrichment .................................................... _ .......................... -................................. 100 

6.3. Goal reordering ....................................................................................................................... 102 

6.4. l>eterminism extraction "'ith test sets .•. : ............................................. -····-·-·······-·············· 103 

• 6.4.1. I:>efinitions .................................................................................................................. 104 

6.4.2. Some examples .......................................................... _............................................. 105 

6.4.3. The algorithm ..................................... _..................................................................... 106 



-vi-

Chapter 5: Compiling Kernel Prolog to BAM Code 

\.Introduction·········································································-···-··········-···--······--···············--········· 110 

2. The predicate compiler ···············································:·············-···· ... ············-···-·······-····················· 110 
2.1. The determinism compiler ............................ ;:........................................................................ Ill 

2.2. The disjunction compiler ........................................................................................................ Ill 

3. The clause compiler ............................................................................................................................. 114 

3.1. Overview of clause compilation and register allocation ........................................................ 115 

3.1.1. Consuuction of the varlist ································-·················-··········-·················-····· 116 
3.1.2. The register allocator ................................................................................................. 116 

3.1.3. The final result ........................................................................................................... 118 

3.2. The goal compiler ........................ ~ ....• :.................................................................................... 118 

3.2.1. An example of goal compilation ···················-·························---··········-····-········· 122 
3.3~ The unification compiler·····························-···-·········----·--··-·····-··--·-·-·······-·--····-· 123 

3.3.1. The unification algorithm ·····················---·------··-···----·---···-···-·····-·-·· 123 

3.3.2. Optimizations ······-·-············-·····--·-·----·---···---------·····------·····-- 124 
• 3.3.2.1. Optimal write mode unification ·-·-···--··-···--··------·····-···-·-··--··· 124 

3.3.2.2. Last argument optimization ··············----·--···············---·--··-··············· 125 

3.3.2.3. Type propagation ······-···············-------···-··---·-·-----·····--·-···-·· 126 

3.3.2.4. Depth limiting ·····················-···--···-···--···-··-······-··-·····-·-········-····-·· 127 

3.3.3. Examples of unification ··-······················-·---········-----····---·-··········--·-········· 127 

3.4. Enuy specialization ·····················-······-··········-·····--·--·······-···-···-·····-···--·-·····--···-····· 130 
3.5. The write-once transformation ······-·--·-·······-···--··-----··-·-·-··--·-·-·······-············ 132 

3.6. The dereference chain transformation ·---·-··-·---·----··-----·----·--·--·····---··--· 134 

Chapter 6: BAM Transformations 

1. Introduction ····················································-···-··········-··-·-----···---·····-···-··················-········· 137 

2. Definitions ·················································-··················----·-·-·····--······················--······················ 137 
3. The transformations ································-··········-··-·-············-········--·--·····-·---··········-·········-·· 137 

3.1. Duplicate code cli'llination ..................................................................................................... 138 

3.2. Dead code elimination ········-·····················-·-·-····-·-·---···-----··-·---···········-·············· 139 

3.3. Jump elimination ·························-·-·······-············--···-··-······---·--·---·············--·······- 139 

3.4. Label elimination ········-······················-···········------··--·--·---··---···-·······-·-·-········· 140 

3.5. Synonym optimization ·····-········-···················-·-----··---····-----·--···--···--·····-·· 140 

3.6. Peephole optimization -·······················--··-···-··--··---·-··-··------······--··-·--···--·· 141 

3.7. Detenninism optimization ··············--·······-····--·····--·······--·-··-·--·---·-·······-·--····-··· 141 

Chapter 7: EYaluation of the Aquarius system 
I. Introduction .....................................................•.... :............................................................................... 144 

2. Absolut.e performance .......................................................................................................................... 145 

3. The effectiveness of the datallow anal)•sis ····-···-···-···----····---······---·---·-··--··········-············ 148 

4. The effectiveness of the determinism transformation ··--··-··--··-··---···--··--··-········--···-..... 152 
S. Prolog and C ........................................................................................................................................ 154 

6. Bug analysis ......................................................................................................................................... 157 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



I • 
l 

I 

-vii-

Chapter 8: Concluding Remarks and Future Work 

I. Introduction ............................................................•.............•............................................................... J 59 

2. Main result ··························································-···~··········································································· 159 . 
3. Practical lessons ................................................................................................................................... 159 

4. Language design ...................................................... :........................................................................... 160 

5. Future work······································································································-·································· 161 

5.1. Dataflow analysis ·······················································--·························································· I 62 
5.2. Determinism ........................................................................................................................... 163 

References............................................................................................................................................. 164 

Appendix A: User manual for the Aquarius'Prolog compiler ·-···-···-··-····--···············-·············· 171 

Appendix B: Formal specification of the Berkeley Abstrad Machine syntax ·······-·-··-·····-··-- 179 

Appendix C: Formal specification or the Berkeley Abstrad Machine semantics ······-················· 184 

Appendix D: Semantics or the Berkeley Abstract Machine -···········-·······························-·········--· 203 

Appendix E: Extended DCG notation: A tool for applicative programming in Prolog ········--·· 213 

Appendix F: Source code or the C and Prolog benchmarks -----··--·····-·······-···-············-···-- 220 

Appendix G: Source code or the Aquarius Prolog compiler ···------·-·-··-·--------·-·····- 224 



.. You're given the fonn, 
but you have to write the sonnet yourself. 
What you say is completely up to you.'' 
-Madeleine L'Engle, A Wrinkle In Time 

1. Thesis statement 

Chapter I 

Introduction 

The purpose of this dissertation is to ~Jrovide constructive proof that the logic programming language 

Prolog can be implemented an order of magniwde more efficiently than the best previous systems, so that 

its speed approaches imperative languages such as C for a significant class of problems. 

The motivation for logic programming is to let programmers describe wluJt they want separately 

from how to get it. It is based on the insight that any algorithm consists of two parts: a logical specification · 

(the logic) and a description of how to execute this specification (the control}. This is summarized by 

Kowalski's well-known equation Algorithm = Logic + Control [40). Logic programs are Slatements 

describing properties of the desired result. with the concrol supplied by the underlying system. The hope is 

that much of the control can be automatically provided by the system. and that what remains is cleanly 

separated from the logic. The descriptive power of this approach is high and it lends itself well to analysis. 

This is a step up from programming in imperative languages Oike C or Pascal) because the system takes 

care of low-level details of how to execute the statements. 

Many logic languages have been proposed. Of these the most popular is Prolog, which was origi-

Rally created to solve problems in nawral language understanding. It has successful commercial imple-

mentations and an active user community. Programming it is weU understood and a consensus has 

developed regarding good programming style. The semantics of Prolog strike a balance between efficient 

implementation and logical completeness (42,82). It attempts to make programming in a subset of first-

order logic practical. It is a naive theorem pro~cr but a useful programming language because of its 

mathematical foundation, its simplicity, and its efficient implementation of the powerful concepts of 

unification (pauem matching) and search (backtracking). 
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Prolog is being applied in such diverse areas as cxpen systems. natural language understanding, 

theorem proving (57 J. deductive databases, CAD 1001 design, and compiler writing (22). Examples of sue-

ccssful applications arc AUNT, a universal nctlisttranslator (59), Chat-80, a natural language query system 

(81). and diverse in-house expcn systems and CAD IDOls. Grammars based on unification have become 

popular in natural language analysis (55, 56). Important work in the area of languages with implicit paraJ-

lelism is ba.o;ed on variants of Prolog. Our research group has used Prolog successfully in lhe development 

of rools for archirccwrc analysis 112, 16, 35}.,in compilarion (19, 73, 76}. and in silicon compilation III). 

Prolog was developed in the early 70's by Colmerauer and his associates (38]. Th.is early system 

was an inierprclcr. David Warren's work in the la1e 70's resulted in the first Prolog compiler [80]. The 

syntax and scmjlntics of this compiler have become the de facto standard in the logic programming com-

munity, commonly known as the Edinburgh standard. Warren's later work on Prolog implementation cut-

mina.ted in the development of the Wanen Abstract Machine (W AM) in 1983 [82], an execution modellhat 

has become a standard for Prolog implementation. 

However. these implementations are an order of magnitude slower than imperative languages. As a 

result. the practical application of logic programming has reached a crossroads. On lhe one hand, it could 

degenerate into an interesting academic subculture. with little use in the real world. Or it could flourish as 

a practical tool. The choice between these two directions depends crucially on improving the execution 

efficiency. Theoretical and experimental work suggests that this is feasible---:.that it is possible for an 

implementation of Prolog to usc the powerful featwes of logic programming only where they arc needed. 

Therefore I propose the following thesis: 

A program \\Titten in Prolog can execute as efficiently as its imple· 
mtntadon in an imptrath·e language. This relies on the development 
or four principles: 

(I) An instruction set suitablt f'or optimization. 

(2) Techniques to exploit the.determinism in programs. 

(3) Techniques to specialize unification. 

(4) A global dataflow analysis. 
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2. The Aquarius compiler 

I have tested this lhesis by constructing a new qptimizing Prolog compiler, lhe Aquarius compiler . • . 
The design goals of the compiler are (in decreasing ord~ of imponance): 

(I) High performance. Compiled code should execute as fast as possible. 

• (2) Portability. The compiler's output instruction set should be easily retargetablc to any sequential 

architecture. 

(3) Good programming style. The compiler should be wriuen in Prolog in a modular and declarative • 
style. There are few large Prolog programs that have been writlen in a declarative style. The com-

pilcr will be an addition tO that set. 
' 

I justify the four principles given in the thesis statement in the light of the compiler design: • 
(1) Reduce instruction granularity. To generate efficient code it is necessary 10 use an execution 

model and inStruction set that allows exlei\Sive optimization. I have designed the Berkeley Abstract 

Machine (BAM) which retains the good features of the Warren Absnct Machine (W AM) (82J, • 
namely the data structures and execution model, but has an insuuc:tion set closer to a sequential 

machine architecture. This makes it easy to optimize BAM code as well as pon it to a sequential 

architecture. • 
(2) Exploit determinism. The majority of ~cates wriuen by human programmers are in&ended 10 be 

executed in a deaenninistic fashion, that is, 10 give only one solution. These predicates are in effect 

case statements, yet systems 100 often c:ompile ahem inefficiently by using baclca-aclting to simulace • 
conditional branching. It is imponantiO replace baclctraddng by conditional branching. 

(3) Specialize unification. Unification is lhe foundation of Prolog. It is a general pauern-matching 

operation that can match objects of any size. las logical semantics correspond to many possible • 
actions in an implementation. including ~ing pamnesus. assigning values 10 variables, allocating 

memory, and conditional branching. Often only one of these actions is needed. and it is imponantiO 

• simplify the general mechanism. For example : of the most common actions is assigning a value 

10 a variable, which can often be simplified to a single load or store. 

• 



(4) Dataflow analysis. A global dataflow analysis suppons techniques 10 exploit detenninism and spc-

cialize unification by deriving infonnation about the program at compile-time. The BAM instruction 

. 
set is designed to express the optimizations possible by these techniques. 

Simultaneously with the compiler, our research group has developed a new archir.ccture, the VLSI-BAM. 

and its implementation. The first of several target machines for the compiler is the VLSI-BAM. The 

interaction between the architecture and compiler design has significantly improved both. This dissertation 

describes only the Aquarius compiler. A d~scription of the VLSI-BAM and a cosl/bcnefit analysis of its 

features is given elsewhere (34, 35}. 

3. Structure of the dissertation 

The structure of the disscnation mirrors the structure of the compiler. Figure 1.1 gives an overview 

of this structure. Chapter 2 summarizes lhe Prolog language and previous techniques for its high perfor-

mancc execution. Chapters 3 through 6 describe and justify the design of lhe compiler in depth. Chapaer 3 

discusses its twO internal languages: kernel Prolog. which is close 10 the source program, and the BAM, 

which is close to machine code. Chapter 4 gives the optimizing transformations of kernel Prolog. Chapter 

5 gives the compilation of keme~ Prolog into BAM. Chapter 6 gives the optimizing transformations of 

BAM code. Chapter 7 does a numerica} evaluation of the compiler. It measw-es its performance on several 

machines, docs an analysis of the effectiveness of its optimizations, and briefly compares its performance 

with the C language. Finally, chapter 8 gives concluding remarks and suggestions for further work. 

The appendices give de&ails about various aspects of the compiler. Appendix A is a user manual Cor 

the compiler. Appendices B and C give a formal definition of BAM syntax and semantics. Appendix D is 

an English description of BAM semantics. Appendix E desaibes the extended DCG now.ion, a tool that is 

used throughout the compiler's implementation. Appendix F lists the source code of the C and Prolog 

benchmarks. Appendix G lists the source code of lhe compiler. 
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4. Contributions 

4.1. Demonstration of high performance Prolog execution 

A demonstration that the combination of a new absuact machine (the BAM), new compilation tech-

niques. and a global dataflow analysis gives an average speedup of five limes over Quintus Prolog (58J. a 

high performance commercial system based on the W AM. This speedup is measured with a set of 

medium-sized, realistic Prolog programs. t:or small programs the dataflow analysis does beuer, resulting in 

an average speedup of closer lO seven times. For programs that use buill-in predicates in a realistic 

manner, 'the average speedup is about four times, since built-in predicates are a fixed cost. The programs 

for which dalaflow analysis provides sufficient information are competitive in speed wilh a good C com-
• 

piler. 

On lhe VLSI-BAM processor. programs compiled with the Aquarius compiler execute in 1{3 the 

cycles of the PLM (28). a special-purpose architecture implementing theW AM in microcode. Static code 

size is three times the PLM. which has byte-coded insuuclions. The W AM was implemented on SPUR, a 

RISC-Iike architecture with extensions for Lisp (8). by macro-expansion. Programs compiled with 

Aquarius execute in tn the cycles of this implementation with l/4 the code size (34 ). 

4.2. Test of the thesis statement 

A test of the thesis that Prolog can execute as efficiently as an imperative language. The results of 

chis rest are only paniaJJy successf'ul. Performance has been signi6cantly inaeased over previous Prolog 

implemenrations; however the system is competitive wilh imperative languages only for problems for 

which da&aftow analysis is able 10 provide sufficient infonnalion. This is due 10 lhe following faciOI'S: 

• I have imposed restrictions on the daaaflow analysis 10 make it practical. As programs become 

larger, these resuictions limit the quality of~ results. 

• The fragility of Prolog: minor changes in program text often greatly alter lhe efficiency with which 

lhe program executes. This is due to lhe under-specificatioa of many Prolog programs, i.e. their logi-

cal meaning rules out computation~ but the compiler cannot deduce all cases where &his happens. 



7 • 
For example. often a program is deterministic (does not do backtracking) even though the compiler 

cannot figure it out This can result in an enonnous difference in perfonnancc: often the addition of • . 
a single cut operation or type declaration reduces the time and space needed by orders of magnitude. 

• The creation and modification of large data objects. The compilation of single assignment semantics 

into destructive assignment (instead of copying) in the implementation, also known as the copy • 
avoidance problem, is a special case of the general problem of efficiently representing time in logic. 

A quick solution is to usc nonlogical ~uil.t-in predicates such as setarg I 3 (63). A better solution 

based on dataflow analysis has not yet been implemented. • 
• Prolog's apparent need for architectural support. A general-purpose architecture favors the imple-

mentatio~ 'of an imperative language. To do a fair comparison between Prolog and an imperative 

language, one must take the architecture into account. For the VLSI-BAM processor, our research • 
group has analyzed the costs and benefits of one carefuUy chosen set of architecwral extensions. 

With a 5% increase in chip area there is a 50% increase in Prolog perfonnance. 

• 
4.3. Development of a new abstract machine 

The development of a riew absuact machine for Prolog implementation, the Berkeley AbStraCt 

Machine (BAM). This abstract machine allows more optimization and gives a better match to general- • 
purpose architectures. Its execution flow and data suucwres are similar to the W AM but it contains an 

instruction set that is much closer to lhe architecture of a real machine. ll has been designed to allow 
0 

extensive low-level optimization as well as compact encoding of operations that are common in Prolog. • 
The BAM includes simple insuuctions (register-uansfer openations for a tagged architeCture), complex 

insuuctions (frequently needed complex operations), and embedded information (allows beUer D'311Slation 

to the assembly language of the target machine). BAM code is designed to be easily poned to general- • 
purpose architectures. It has been poned to several platfonns including the VL.Sl-BAM. lhc SPARC. the 

MIPS, and the MC68020. 

• 

• 
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4.4. Development of the Aquarius compiler 

The development of the Aquarius compiler, a fOmpiler for Prolog into BAM. The compiler is 

sufficiently robust that it is used routinely for large programs. The compiler has the following distinguish-

ing features: 

• It is written in a modular and declarative style. Global information is only used 10 hold information 

about compiler options and t)"pc declarations. 

• It represents types as logical formulas and ·uses a simple form of deduction to propagate information 

and ,improve the generated code. This extends the usefulness of dataftow analysis. which derives 

information about predicates. by propagating this information inside of predicates. 
' 

• It is designed to exploit as much as possible lhe type information given in the input and extended by 

the dataflow analyzer. 

• It incorporates gener.d leehniques 10 generate efficient deterministic code and to encode each 

occurrence of unification in the simplest possible form. 

• It supports a class of simplified unbound variables, called llllinitializtd variiJbles. whicb are cheaper 

to create and bind than standard variables. 

The compiler development proceeded in parallel with the development of a new Prolog system. Aquarius 

Prolog (31 ). For ponability reasons lhe system is wriuen compleaeJy in· Prolog and BAM code. The Prolog 

component is careful!)• coded to make the most of lhc optimizations offered by the compiler. 

4.5. Development of a global dataflow analyzer 

The development of a global dataftow analyzer as an integral pan of lhe compiler. The analyzer has 

lhe following propcnics: 

• It uses abstract inu:rpretation on a lauice. Abstract interpretation is a general technique lhat proceeds 

by mapping lhe values of variables in the program to a (possibly finite) set of tkscriptioras. Execu-

lion of the program over the descriptions completes in finite time and gives information about the 

e~ecution of the original program. 
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• It derives a small set of types that lets the compiler simplify common Prolog operations such as vari-

• 

able binding and unification. These types arc uninitiahzcd variables, ground terms. nonvariable 

. 
terms. and recursively dereferenced terms. On a representative set of Prolog programs, the analyzer 

finds nontrivial types for 56% of predicate arguments: on average 23% arc uninitialized (of which 

one third arc passed in registers). 21% arc ground, 10% arc non variables. and 17% are recursively 

dcrcfcrcnccd. The sum of these numbers is greater man 56% because arguments can have multiple 

types. 

It provides a significant improvement in performance. reduction in static code size. and reduction in 

thc·Prolog-specific operations of trailing and dereferencing. On a representative set of Prolog pro-

grams, ~~ysis reduces execution time by 18% and code size by 43%. Dereferencing is reduced 

from I I% to 9% of execution time and trailing is reduced from 2.3% to 1.3% of execution time. 

• It is limited in several ways to make it practical. lts type domain is small. so it is not able to derive 

many useful types. It has no explicit representation for aliasing. which occurs when lwo terms have 

variables in common. This simplifies implementation of lhe analysis. but sacrifices poaentially useful 

information. 

4.6. Development of a tool for applicative programming 

The development of a language extension to Prolog to simplify the implementation of large applica-

tivc programs (Appendix E). The exaension generalizes Prolog's Definite Clause Grammar (DCG) notation 

to allow programming with multiple named accumulators. A preprocessor has been wriuen and used 

extensively in the implementation of the compiler. 

• 
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Chapter 2 

Prolog and Its High Pe_rformance Execution . 
This chapter gives an overview of lhe features of lhe Prolog language and an idea of what it means 10 

program in logic. ll summarizes previous work in its compilation and lhe possibilities of improving its exe-

cution efficiency. It concludes by giving an overview of related work in lhe area of high perfonnance Pro-

log implcmenwuon. 

1. The Prolog language 

This section gives a brief introduction to the language. It gives an example Prolog program, and 

goes on to su"'!marize lhe data objects and control ftow. The synw of Prolog is defined in Figure 2.2 and 

lhe semantics arc defined in Figure 2.3 (section 2.1). Sterling and Shapiro give a more detailed account of 

both (62]. as do Pereira and Shiebcr (56] . . 
A Prolog program is a set of clauses (logical sentences) written in a subset of first-order logic called 

Horn clause logic. wflich means lhat they can be interpreted as if-statements. A predicotc is a set of 

clauses that defines a relation. i.e. all the clauses have the same name and arity (number of argwnents). 

Predicates are often referred to by the pair name I a r it y. For example, the predicate in_ tree /2 

defines membership in a binary tree: 

in_tree(X, tree(X,_,_)). 
in_tree(X, tree(V,Left,Right)) :- X<V, in_tree(X, Left). 
in_tree(X, tree(V,Left,Right)) :- X>V, in_tree(X, Right). 

(Here ••:-" means if, the comma'', "means and. variables begin wilh a capital letter, tree (V, L, R) 

is a compound object with three fields. and the underscore "_ .. is an anonymous variable whose value is 

ignored.) In English. the definition of in_ tree /2 can be interpreted as: ''X is in a tree if it is equal to 

the node value (first clause). or if it is less than the node value and it is in lhc left subtree (seeond clause), 

or if it is greater than lhe node value and it is in the right subtree (third clause)." 

The definition of in_ tree I 2 is directly executable by Prolog. Depending on which arguments 

are inputs and which arc outputs. Prolofs execution mechanism will execute the definition in different 

ways. The definition can be used to verify that X is in a given tree, or 10 insert or look up X in a ucc. 

tO 
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The execution of Prolog proceeds as a simple theorem prover. Given a query and a set of clauses, 

Prolog attempts to construct values for the variables in the query that make the query uuc. Execution 

proceeds depth-first. i.e. clauses in the program are uied in the order they are listed and the predicates 

inside each clause (called goals) arc invoked from left to right. This sUict order imposed on the ex.ccution 

make :>:olog rather weak as a theorem prover, but useful as a programming language, especially since it 

can be implemented very efficiently, much more so than a more general theorem prover. 

1.1. Oata 

The. data objects and their manipulation arc modeled after first order logic. 

1.1.1. The logi~al variablet 

A variable represents any data object. Initially the value of the variable is unknown, but it may 

become known by instantiation. A variable may be instantiated only once, i.e. it is single-ossignmem. 

Variables may be bound to other variables. When a variable is instantiated to a value, this value is seen by 

all the variables bound to it Variables may be passed as predicate arguments or as arguments of com

pound data objects. The lauer ~e is the basis of a powerful progcarnming technique based on partial data 

structures which are filled in by different predicates. 

U.2. Dynamic typing 

Compound data types are first class objects. i.e. new types can be created at run-time and variables 

can hold values of any type. Common types are atoms (unique constants, e.g. foo, abed), integers, lists 

(denoted with square brackets, e.g. (HeadiTailJ, (a,b,c,d] ), and structures (e.g. 

tree (X, L, R), quad (X, c, B, F)). Structures are similar to C structs or Pascal records-they have a 

name (called the functor) and a tilled number of arguments (called the ority). Atoms, integers, and lists are 

used also in Lisp. 

t l\ot 10 be COIIfuscd .,;th variables of type LOGICAL in Fonnn 
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s(X, Y, a) X=Z X=a 

! ! ! • Y=b • Y=b 

s(Z, b, Z) a=Z Z=a 

Figure 2.1 - An example of Wtification 

1.1~. Unification 

Unification is a paucm-matching operation that finds the most general common instance of two data 

objects. A fonnal definition of unification is given by Lloyd (42). Unification is able 10 march compound 

data objects of any size in a si~sfc primitive operation. Binding of variables is done by unification. As a 

pan of matching, the variables in the aerms are instantiated to make ahem equal. For example, Wlifying 

s (X, Y, a) and s ( z I b I z) (Figure 2.1) matches X with z. Y with b, and a with Z. The unified rmn 

is s (a, b, a). Y is equal to b, and both X and Z are equal to a . 

1.2. Control 

During execution, Prolog auempts to satisfy the clauses in the order they are listed in the program . 

When a predicate with more than one clause is invoked, lhe system remembers this in a choice poinl. If the 

system cannot make a clause true (i.e. execution fails) then it backtracks to the most recent choice point 

(i.e. it undoes any work done trying to satisfy that clause) and tries the next clause. Any bindings made 

during the attempted execution of the clause are undone. Executing the next clause may give variables dif-

ferenr values. In a given execution path a variable may have only one value, but in different execution 

paths I vamblc ml)' have different \'aluts. Prolog is a single-assignment language: if unification ltlemplS 
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to give a variable a different value then failure causes backllacking 10 occur. For example. trying 10 unify 

5 (a, b) and 5 (X, XI will fail because the consLants a and b arc not equal. 

There arc four features that arc used to manage the conuol flow. These arc the "cut" operation 

(denoted by " ! " in programs). the disjunction. l.he if-l.hen-else construct, and negation-as-failure. 

l.l.t. The cut operation 

The cut operation is used to manage backuacking. A cut in the body of an clause effectively says: 

"This clause is the correct choice. Do not try any of l.he following clauses in this predicate when back-

llacking.:· Executing a cut has the same effect in forward execution as executing true, i.e. it has no 

effect. But it ahers the backtracking behavior. For example: 

p (A) q (AI , ! , r (A) • 

p(A) :- s (A) • 

. 
During execution of p (A). if q tAl succeeds then the cut is executed, which removes the choice points 

created in q (A) as well as the choice point created when p (A) was invoked. As a result, if r (A) 

fails then the whole predicate p <A> fails. If the cut were not there. then if r (A) fails execution back-

tracks first to q (A). and if ll)at fails, then it backtracks funher 10 the second clause of p (A), and only 

when s (A) in the second clause fails docs the whole predicate p (A) fail. 

1.2.2. The disjunction 

A disjunction is a concise way to denote a choice between several alternatives. ll is less verbose than 

defining a new predicate that has each alternative as a separate clause. For example: · 

q(A) :- ( A•a; A•b; A•c ). 

This predicate returns the three solutions a, b, and c on backuacking. his equivalent to: 

q(a). 

q(b). 
q(c). 
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1.2.3. If-then-else 

The if-then-else construct is used 10 denote a selection between two alternatives in a clause when it is . 
known that if one ahcm:uive is chosen then the other will not be needed. For example, the predicate 

p ( Al above can be written as follows with an if-then-else: 

p (A) :- ( q (A) -> r (A) ; s (A) l • 

This has identical semantics as the first definition. The arrow -> in an if-then-else acts as a cut that 

removes choice points back to the point where the if-then-else starts. 

1.2.4. Negation-as-failure 

Negation· in Prolog is implemented by negation-as-failure, denoted by \ + (Goa 1) . This is not a 

true negation in the logical sense so the symbol \ + is chosen instead of not. A negated goal succeeds if 

the goal itself fails, and fails if the goal succeeds. For example: 

r(Al :- \+ t.(A). 

The predicate r (A) will succeed only if t (A) fails. This has identical semantics as: 

r (A) • t (A) , ! , fail. 
r(Al. 

In other words, if t (A) succeeds then the fail causes failure, and the cut ensures that the second 

clause is not tried. If t (A) fails then the second clause is tried because the cut is not exccu~ed. NoiC that 

negation-as-failure never binds any of the variables in the goal that is negated. This is different from a 

purely logical negation, which must return all results that are not equal co the ones that satisfy the goal. 

Negation-as-failure is sound (i.e. it gives logically correct results) if the goal being negated has no unbound 

variables in it 

1.3. Syncax 

Figure 2.2 gives a Prolog definition of the syntax of a clause. The definition does not present lhe 

names of the primitive goals that are pan of the syStem (e.g. arithmetic or symbol table manipulation). 

These primitive goals arc called .. built-in predicates." The)' arc defined in the Aquarius Prolog user 



clause(HJ head(H). 
clause ( (H: -B)) . head IHJ. body IBJ • 

head(Hl goal_term(H). 

body (G) . 
body(GJ 

control(G, A, Bl, body(AJ, bodyCBI. 
goal(GJ. 

goal(G) . \+control(G. 

control ((A; B), A, B). 
control ((A, Bl, A, B). 
control ( (A->8). A. B). 
control(\+ (Al. A, true). 

term(T) :- var(T). 
term(TJ :-goal term(TJ. . -

) , goal_term(G). 

goal_term(T) :- nonvar(TJ, functor(T, , A), term_args(l, A, T). 

term_args(l, A, _) ·- I>A. 
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te5m_args(I, A, Tl ·- I-<A, arg(I, T, X), term(X), Il is I+l, term_arqs(Il. A. T). 

\ Built-in predicates needed in the definition: 
functor (T, F, Al :- (fenn T has functor F and arity A). 
arg (I. T, XJ :- (Argumcntl of compoWld term Tis X). 
var (T) :- (Argument Tis an unboW\d variable). 
nonvar (T) ·- (Argwneru Tis a nonvariable). 

Figure 2.2 - The syntax of Prolog 

manual [3J ). The figure defines the syntax after a clause has already been read and convened to Prolog's 

internal fonn. It assumes that lexical analysis and parsing have already been clone. Features of Prolog that 

depend on lhe exact fonn of the input (i.e. operators and the exact formal of aroms and variables) are not 

defined here. 

To understand this definition it is necessary to understand the four built-in predicates daat it uses. 

The predicates functor CT, F, A) and arq (I, T, Xl are used to examine compound cenns. 

The predicates var (T) and nonvar IT) arc opposites of each other. lbeir meaning is SU3ightfor-

ward: they check whether a term T is unbound or bound to a nonvariable lelm. For example, va r (_) 

succeeds whereas v a r < f oo <_ J J doc!> not. 
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2. The principles of high performance Prolog execution 

The first implementation of Prolog was develo~d by Colmerauer and his associates in France as a 

by-product of research into natural language understan~ing. This implementation was an interpreter. The 

first Prolog compiler wa~ developed by David Warren in 1977. Somewhat later Warren developed an exe

cution model for complied Prolog. the Warren Abstract Machine (W AM) [82). This was a major improve

ment o'·er previous models, and it has become the de facto standard implementation teChnique. The W AM 

defines a high-level instruction set that corresponds closely 10 Prolog. 

This section gives an overview of the operational semantics of Prolog, the principles of the WAM, a 

summary of its instruction set, and how to compile Prolog into it. For more detailed information, please 

consult Maier 8; Warren (43) or Ait-Kaci [1). The execution model of the Aquarius compiler, the BAM 

(Chapter 3). uses data structures similar to those of the WAM and has a similar control ftow, although its 

instnJction set is different . 

2.1. Operational semantics of Prolog 

This section summarizes the operational semantics of Prolog. It gives a precise statement of how 

Prolog executes without going into details of a particular implementation. This is useful 10 separare the 

execution 'of Prolog from the many optimizations lhat are done in the W AM and BAM execution models. 

This section may be skipped on first reading . 

Figure 2.3 defines the semantics of Prolog as a simple resolution-based theorem prover. For clarity, 

the definition has been limi~ in the following ways: It does not assume any particular repesentat.ion of 

terms. It does not show the implementation of cut, disjunctions, if-then-else, negation-as-failure, or built-in 

predicates. It assumes that variables are renamed when necessary 10 avoid conflicts. lt assumes thal failed 

unifications do not bind any variables. It assumes also lhat the variable bindings formed in successful 

unifications are accumulated until the end of lhe computation, so lhat the final bindings give the computed 

answer. 

Tenninology: A goal G is a predicate call, which is similar 10 a procedure call. A ruol~nt R is a 

list of goals 1 G 1 • G 2 .... , G, ]. The query Q is the goallhat swu lhe execution. The progrmn is a list of 



function prolog_execute(Q :goal): boolean; • 
,·ar 

begin 

end; 

. 
B : slack of pair (list of goal. integer); t• the backtraCk stack •J 
R :list of goal; t• Lhe resolvent •t · 
i : integer; r index inw program clauses •J 

R := ( Q ); 
B :=empty; 
push (R ,I ) on B ; 
while true do begin 

end 

r Control step: find next~lause. •t 
if empty(B) then return falSe else pop B into (R, i ); 
if (R = ( )) then retum true; 
if ( i +I $; n) then push (R , i + 1) on B ; 

t• Resolution step: try to unify with the clause. •1 
r At this point, R = ( G 1 , ... , G. } and A; = (H; :-A; 1 , •••• A,.) •t 
t• Unify Lhe first goal in R with clause A;. •t 
unify G 1 and II;; 
if successful unification then begin 

end 

J• In R , replace G 1 by the body of A, •t 
t• If A; does n01. have a body, then R is shonened by one goal*/ 
R := [ Ail , ... , A..,, , G 2 , ••• , G. ]; 

push (R ,1) on B I* proceed to next goal*/ 

Figure 2.3 -Operational definition of Prolog execution 
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clauses 1 A 1 • A 2 , ... , A, ). The number of clauses in the program is denoted by n. Each clause A, has a 

head II, and an optional body given as a list of goals I A; 1 , A;2, ... , A..,, ]. 

Execution starts by seuing the initial resolvent R to con&ain the query goal Q. In a resolution-based 

theorem prover, the resolvent is transfonned in successive stepS until (1) it becomes empty, in which case 

execution succeeds, (2) all the clause choices are exhausted, in which case execution fails, or (3) the pro-

gram goes into an infinite loop. In a single tnmsfonnation step, a goal G is laken from the current resol-

vent R and unified with a clause in the program. The next resolvent is obtained by replacing G by the 

body of Lhc clause. 

This process is nondciCrministic, and much work has been done in the ~rca of aulomatic theorem 

proving to reduce lhc size of iu search space [7). To gea efficiency. the approach of Prolog is to restrict the 
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process in two ways: by always taking the firsl goal from R and by uying clauses in the order they arc 

listed in the program (Figure 2.3). If no successful match is found, then the program backuacks-a previ-

ous resolvent is popped off the backtrack stack and execution continues. Therefore the execution flow of 

Prolog is identical to that of a procedural language, with the added ability to backtrack to earlter execution 

states. 

The function prolog_execute(Q) returns a boolean that indicates whet11er execution was successful 

or not (Figure 2.3). If execution wa'i successful, then there is a set of bindings for the variables in Q that 

gives the result of the computation. As a definition, prolog;_executc(Q) faithfully mirrors the execution of 

Prolog. As an implementation, however, it is incredibly inefficient. For each clause that is uicd, it pushes 

. 
and pops the CDmplctc resolvent (which can be very large) on the backtrack stack. The backtrack stack 

grows with each successful resolution step. A practical implementation avoids much of this overhead. 

• The next section describes the W AM, an execution model that is much more efficient. In the W AM. 

the rcsolvents arc stored in a compact form on several stacks. Only the differences between successive 

resolvents are stored, so that memory usage is much less. The stack discipline is used to make backtraCk-

ing efficient. The W AM also defines a representatiOtt for data items dun allows an efficient implementation 

of unification. 

2.2. Principles of tht W AM 

The W AM defines a mapping between the terminology of logic and of a sequential machine (Figure 

2.4). Predicates correspond to procedures. Procedures are always wriucn as one large case statement 

Clauses correspond 10 the arms of this case statcmenL The scope of variable names is a single clause. 

(Global variables exist; however their use is inefficient and is discouraged.) Goals in a clause correspond 10 

calls. Unification corresponds 10 parameter passing and assignment. Tail n:cursion corresponds 10 ilCra-

lion. Features lhat do not map directly arc the single-assignment nature and altering backuacking behavior 

with lhe cut operation. 

The WAM is based on four ideal': use tagged pointers to represent dynamically l)'J)Cd data, oplimi1.c 

backtraCking (exploit dctermini!im by doing a conditional branch on the first argument), spccialilc 



Pro log hnperative language 

set of clauses --~-----• ... program 
predicate; set of clauses ..,. ~ procedure 

wilh same name and arity 

clause: axiom .. ..,.,._ __ _.., ... if statement; one arm of a nondeterministic 
case statement; series of procedure calls 

goal invocation .. ..,.,._ __ _.~ ... procedure call 

unification ..,. ~ parameter passing; assigrunent; 
dyn.:unic memory allocation: 
conditional branching 

backtracking ..... ..,..,_ __ __.~ ... continuation passing; 
execution state manipulation 

logical variable ..... ...,..,_ __ __. .... pointer manipulation 

tail recursion ..,. • iteration 

Figure 2.4 - Mapping between Prolog and an imperative language (according to WAM) 
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unification (instead of compiling a general unification algorithm, compile insuuctions &hat unify with a 

known term). and map the execution of Prolog to a real machine. The WAM defines a high-level insauc-

tion set to represent these operations. 

2.2.1. Implementation of dynamic typing with tags 

Data is represented by objects that tit in a register and consist of two pans: the tag field (which gives 

the type) and lhe value field (Figure 2.S). The value field is used for different purpo~s in different types: it 

gives the value of integers, the address of variables lnd compound 1Clms Oists and suuetures), llld it 

ensures that each atom has a unique value different from all ocher atoms. Unbound variables are imple-

mented as self-referential pointers (that is, they point to chemselves) or as pointers to other unbound vari-

ablcs. The semantics of unification allow variable~ to be unified together, so that they have identical values 

from chen on. In the implementation, such variables can point to other variables. Therefore reuieving lhc 

value of a variable requires following this pointer chain to its end, an operation called d~referencing. 
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heap 

Atom I tatm I Unique ID I tatm Name/Arity Main functor 

Integer (tint I Value 

Suui:rure 

Lis( 

·Variable --+-----....., ... tvar 

Figure 2.5 - Representation of Prolog ~erms in W AM and BAM 

2.2.2. Exploit determinism 

First argument 

Last argument 

Head of list 

Tail of list 
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It is often possible to reduce the number of clauses of a predicate that must be lricd. The WAM has 

in~tructions that hash on the value of the first argument and do a four-way branch on the tag of the first 

argument These instructions avoid the execution of clauses that could not possibly unify with the goal 

The four-way branch distinguishes between die four data ~)'peS-variables. amsrants (aroms and integers). 

lists (cons cells). and structures. The hashing instructions hash into tables of cons&ants and tables of sauc-

lUres. For example: 

week (mondayJ • 
week(tuesday). 
week(wednesday). 
week (thursday) • 
week (friday). 
week (saturdayJ • 
week (sunday) • 
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This is a set of seven clauses wilh constant argumenlS. If the argument X of the call week (X) is a con-

stant, then at most one clause can unify successfully wilh it. Hashing is used 10 pick that clause. If X is an • 
unbound variable then no such optimization is possible and aU clauses are aicd in order. 

2.2.3. Specialiu unification 

• Most uses of unification are special cases of lhc general unification algorilhm and can be compiled in 

a simpler way using infonnation known at compile-time. For example, consider the foUowing clause 

which is part of a queue-handling package: • 
~ queue(X.O) is true 
\ if 0 is a queue containing the single element X. 

queu'e (X, q (s (01, (XI C), C)). 

• A queue is represented here as a compound term. The complexity of this term is typical of reaJ programs. 

In ihe W AM. a unification in lhc source code is compiled in10 a sequence of high-level instructions. The 

compiled code executes as if the original clause had been defined as follows, with the nested term q /3 

• completely unraveled: 

queue(X, 01 :- O•q(A,B,C), A•s(O), B-(XIC). 

(The notation P-Q means to unify the two terms P and Q.) The compiled code is: • 
procedure queue/2 

get_ structure q/3, r Cll \ O•q< <- Start unification of q/3 
unify_variable r(2) \ A, 
unify_variable r (31 \ B, • unify_variable r ~~I \ C) 

get_stru.;.ture s/l,r(2) \ A•s ( <- Start unification of s/1 
unify_c:onstant 0 \ 0) 
get_list r (3) \ B• <- Start unification of list 
unify_value r COl \ (X 
unify_value r (4) \ I C) • proceed \ <- Return to caller 

(r (01 and r (1) are registers holding the argumenlS X and Q. and r <21. r <31 •... are temporary 

registers.) Unification of lhe nested structure is expanded into a sequence of operations that do special 

• cases of the general algorithm. These operations are encapsulated in lhe get and unify insuuctions. 

Unification has two modes of operation: it can lake apart an existing suucture or it can create a new one. 

• 



22 

In the WAM, the decision which mode to usc is made at run-time in lhe get instructions by checking lhe 

type of the object being unified. A mode ftag is set which affects lhe actions of lhe following unify . 
I 

instructions (up to the next get ). A more detailed overview of lhe W AM instruction set is given in sec-

tion 2.3 below. 

2.2.4. Map execution co a real machine 

The control flow of Prolog is mapped tO multiple stacks. The staek representation holds lhe resol-

vents in a form lhat makes each resolution step is efficient as a procedure call in an imperative language. 

The stack:based.sr.ructurc allows fast recovery of memory on backlracking. As a result, some applications 

do not need a gru;bage collector. 

A furlher optimization maps Prolog variables to registers. The variables in a clause are partitioned 

imo lhree .classes (tempv • .tr). permanent, and void) depending on lheir lifetimes. Void variables have no 

lifetime and need no storage. Temporary variables do not need to survive across procedure calls, so lhey 

can be stored in machine registers. Permanent variables are stored in environments (i.e. scaclc frames) local 

to a cl.!USC. 

2.3. Description of theW AM 

The previous section gave an overview of lhe ideas in the W AM, with a simple example of generated 

code. This section completes that description by presenting the da1a storage, execution swe, and instruc-

lion set of theW AM in full. It also gives a larger example of gencraled code and a scheme to compile Pro-

log into W AM. 

2.3.1. Memory areas 

Memory of the W AM is divided into six logical 8leaS (Figure 2.6): lhree stacks for the data objects, 

one stack to suppon unification, one stack 10 suppon the interaction of unification and backlr3Cking, and 

one area as code space. 

(1) The alobal stack. This stack is also known a.~ the hup, although it follows a stack discipline. This 

stack holds tenns (list~ and structures. the compound data of Prolog). 
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____ _.)..._ ___ _ 
r ~ 

r (tr) 

J t 

push-down 
stack 

Fagurc 2.6 - Data suuctures of WAM and BAM 

(2) The environment stack. This stack holds envirorunents (i.e. local frames) which contain variables 

local to a clause. Because of backtracking (conuol may mum lO a clause whose environment is 

deep inside the staek), this area does not follow a Strict staelc. discipline, however, convention has 

kept this naming. (The other staeks in the W AM do follow a stack discipline.) 

(3) The choice point stack. Also known as the backtrack stack, this stack holds choice points. data 

objects similar to closures that encapsulate the Qecution state for backtracking. 

(4) The trail. The trail StiCk is used to save locations of bound variables that have to be unbound on 

backtrackin~;. Sa,·ing variables is called 1rai/ing, and rescoring them 10 unbound is called detrailing. 
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N01 all variables that arc bound have to be uailcd. A variable must only be trailed if it continues to 

exist on backuacking, i.e. if its location on the heap or the environment is older than the most recent 

choice point This is called the trail condition. 

(5) The push-down stack. This ~tack is used as a scratch-pad during the unification of nested com-

pound terms. 

(6) The code space. This area holds the compiled code of a program. 

ll is possible to vary the organi1..ation of the memory areas somewhat without changing anything substantial 

about the ·execution. For example, some Prolog systems (including lhe Aquarius system) combine the 

' environment and choice point stacks into a single memory area. This area is of&en called the local stack. 

f 

Since the push-down staek is only used during general unification, it can be kept on the top of the heap. 

2.3.2. Execution state 

The internal slate of the W AM and the BAM is given in Table 2.1. The differences between W AM 

and BAM are indicar.ed in lhe table: The BAM adds lhe regi~r r (tmp_cp> for efficienl inledacing of 

Pro log predicates with assembly language. 1be W AM adds the ~gister r ( s) and the mode ftag mode 

for use by the unification instructions. The registers p <I) are not machine regisr.ers, but locations in the 

current environment, poin&ed to by r (e). 

Table 2.1 - Execution state of W AM and BAM 

Register Descri_ption 
r(eJ Current environment on the environment stack. 
r(a) Top of the environment stack (W AM only). 
r(b) Top-most choice point on lhe choice point slack. 
r(hl Top of the heap. 
r (hb) Top of heap when aop-most choice point was created. 
r (tr) Top of the trail stack. 
r(pc) Program counter. 
r (cp) Continuation pointer (return address). 
r (tmp_cpl Continuation pointer 10 im.edace with assembly (BAM only}. 
r(sl Structure pointer (W AM only). 
mode Unification mode flag (value is read or write, WAM only). 
r(O),r(l), ... Registers for argument passing and temporary storage. 
p(O),p(l), ... Location~ \n the current environment (pennanent variables). 
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2.3.3. The instruction set 

Table 2.2 contains the W AM instruction set, w,ith a brief description of what each instruction does. • 
The get_ ( ... I and unify_ ( ... 1 instructions echo the put instructions, so their listing is abbre· 

viated. v <Nl is shonhand notation for r CNl or p (NI. "Globalizing" a variable (sec the 

put_ unsafe_ va 1 ue instruction) moves an unbound variable from the environment 10 lhe heap to avoid • 
dangling pointers. 

Table 2.2 -The W AM ins auction set 

Loading argument regiSters (just before a call) • 
put_ var·iable v (NI, r (I) Create a new variable, put in v < N 1 andr(Il. 
put_ value v (N), r(Il Move v(N) tor(!). 
put unsafe value v(N), r (I I Move v(NJ to r (I 1 (and globalize). - -
put constant C, r (I I Move immediate value c to r (I 1 . 
put nil r(Il Move nil lor (I). 
put_structure F, r (!) Create functor F, put in r c I) . • 
put list r (I) Create a list pointer, put in r (I 1. 

Dnifying with registers and structure arguments (head unification) 

get_ (. • •) I r (II Unify ( ... ) with r CII. 
unify ( ... ) Unify ( .•. 1 with structure argument 

Procedural control • 
call Label, N Call a predicate. 
execute Label Jump to a predicate. 
proceed . Return from a predicate . 
allocate Create local stack frame. 
deallocate Remove local stack frame. • Selecting a clause (conditional branching) 

switch_on_term V,C,L,S Four-way branch on r c 0 1 's tag. 
switch_on_constant N, Tbl Hash table lookup of an atomic term in r ( o 1 . 
switch on structure N, Tbl Hash table lookup of a functor in r c 0). 

Backtracking (choice point management) 

try_me_else Label try Label Create a choice point. • 
retry_me_else Label retry Label Change retry address. 
trust me else fail trust Label Remove top-most choice point. 

2.3.4. An example of W AM code • 
Figure 2.7 gives the Prolog definition and lhe WAM instructions for lhc predicate append/ 3. fhe 

mapping between Prolog and WAM instructions is Str".tightforward: lhe switch instruction branches 10 

lhe right clause depending on the type of lhe first argument, the choice point (~ ry) instructions link lhe • 
clauses aogethcr, the get instructions unify with the head .arguments, and lhe unify insD'Uct.ions unify 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

with the arguments of structures. 

The same instruction sequence is used to take apart an existing structure (read mode) or to build a 

new structure (write mode). The decision which mode to usc is made in the get instructions. which set a 

mode flag. For example, if get_list r (0) sees an unbound variable argument, it sets the flag to 

write mode. If it sees a list argument, it sets the flag to read mode. If it sees any other type, it fails. i.e. it 

backtracks by restoring state from the most recent choice point. 

Choice point handling is done by !Jle try instructions. The try_me_else L instruction 

creates a choice point, i.e. it saves all the machine registers on a stack in memory. It is compiled before the 

first clause in a predicate. It continues execution with the next insuuction and backtracks to label L. (lbe 

try L instru:tion is identical to try_ me_ e 1 se, except that it continues execution at L and backuacks 

to the next instruction.) The retry _me_ e 1 se L instruction modifies a choice point that already exists 

by changing the address that it jumps to on backtracking. It is compiled before all clauses after the first but 

not including the last. The trust_me_else fail instruction removes the top-most choice point from 

the stack. It is compiled before the last clause in a predicate. 

2.3.5. Compiling into WAM 

Compiling Prolog into WAM is straightforward because lhere is almost a one-to-one mapping 

between items in the Prolog source code and WAM insuuctions. Figure 2.8 gives a scheme for compiling 

Prolog to W AM. This compilation scheme gencmes suboptimal code. One can optimize it by generating 

switch instructions to avoid choice point creation in some cases {73). 

The clauses of predicate p /3 are compiled into blocks of code that are linked together with try 

instructions to manage choice points. Each block consists or a sequence or get insuuctions 10 do the 

unification or the head arguments, followed by a sequence or put instructions 10 set up the arguments for 

each goal in the body, and a call instruction~ execute the goal. The block is surrounded by allo

cate and deallocate instructions 10 create an environment for permanent variables . 

The la.ft call optimization, or LCO (also called tail recwsion optiiiUzation, although it is applicable 10 

all predicates. noc just recursive ones) converts a call inslllJClion followed by 1 return into 1 jump, i.e. it 



append ( I J , L, Ll . 
appe:-~d((XILl), L2, (XIL3)) :- ·append(Ll, L2, L3). 

Prolog definition of append/3 

append/3: 
switch on term Vl, Cl, C2, fail 

Vl: try_me_else V2 
Cl: get_nil r(OJ 

ge~_value r(l),r(2) 
proceed 

V2: t~~st me else fail 
C2: get_list r(O) 

unify_variable r(3) 
unify_variable r(OI 

get_list r(2) 
unify_value r(3) 
unify_variable r(21 
execute append/3 

; Go to V 1 if r < 0 ) is a variable. 
; Go to Cl if r < 0) is a constant. 
; Go to C2 if r ( 0 ) is a list 
; Fail if r ( 0 l is a suucture. 
; Create a choice point 
; Unify r ( 0) with nil. 
; Unify r (l ) and r ( 2 ). 
; Return to caller. 

; Remove choice point 
; Start unification of r < 0 1 with a list 
; Load head of list into r ( 3 J • 
; Load tail of list into r ( 0 ) . 

; Start unification of r ( 2) with a list 
; Unify head of list with r < 3 1 • 
; Load tail of list iniD r ( 2 ) . 
; Jump 10 append/3 (last call optimization). 

WAM code for append/3 

Figorc 2. 7 -Compiling append/3 into WAM code 
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reduces memory usage on the environment stack. For recursive predicates, the LCO converts recursion 

into iteration, since the jump is to the first insuuction of lhe predicate. The W AM implements a generaliza-

tion of last call optimization called environment trimming lhat allows the environment to become smaller 

after each call. 

3. Going beyond theW AM 

Prolog implemencations have made great progress in execution efficiency with the development of 

lhe WAM (82). However, lhcse systems are still an order of magnitude slower than implementations of 

popular imperative languages such as C. To improve lhc execution speed it is necessary to go beyond the 

WAM. This section discusses lhe limits or the W AM and how the four principles of the Aquarius compiler 

build on lhe WAM to achieve higher performance. 
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choice 
point 

. 
p(E,F,G) ·- k(X,F,P), m(S,T), ••• 

p(A,B,C) :- q(A,Z,W), r(W,T,B), ••• , z(A,X) . 

28 

p (Q, R, SJ ·-
Original Prolog predjca1e 

. - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -

Ll: ~~y_me_else L2 

§] 1 . 
L2: retry_me_else L3 

code for 
clause2 

Ln: ~ trust .me else fail 

Compiled W AM CXIde 

allocate O'eale cnvironmem. 
(get argumerus) Unify with caller arguments . 

(put argumems)J-
Load arguments and call. 

call q/3 

(put argumems} 
Load arguments and call. 

call r/3 

(put arguments) 
deallocate Remove environment. 
execute z/2 Last call is a jump . 

A single mmpiled clause 

Figure 2.8 - Compiling Prolog into WAM 

3.1. Reduce instruction granularity 

The W AM is an elegant mapping of Prolog to a sequential machine. Its insauctions encapsula~e 

pans of the general unification algorithm. However,lhese pans are quite large. so that many optimizations 

are not possible. For eltamplc. consider che prcdica~e: 

p(bar). 

This is compiled a!;: 



get_constant bar, r(O) 
proceed 
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The get_c::onstant instruction encapsulates a seiies of operations: dereference r (0) (follow the 

pointer chain to its end), test its type, and do either read mode unification (check that the value of r < 0) is 

bar} or write mode unif1cation (trail r (Ol and store bar in its cell). All this generality is oflen 

unnecessary. For example, if the predicate p (X) is always called with a dereferenced atom, then 

unification reduces 10 a simple check that the value is correct. The other operations are superfluous. 

The Aquarius compiler's execution model, the BAM, is designed to retain the good features of lhe 

W AM wbilc allowing optimizations such as this one. ll retains data structures and an execution ftow simi-

1ar to the W AM. but it has an instruction set of finer granularity (Chapter 3). The compiler does not use the 

WAM during compilation, but directly compiles to the BAM. It is of fine enough grain 10 allow extensive 

optimization, but it also encodes compactly lhe operations common in Prolog. For example, it includes an 

explicit dereferencing instruction, which makes it possible ID reduce lhe amount of dereferencing 

significantly by only doing it when it is necessary and not in every instruction. 

3.2. Exploit determinism 

The majority of predicates written by human programmers are intended 10 give only one solution, i.e. 

they are deterministic. However, roo often they are compiled in an inefficient manner using shallow back-

tracking {backtracking within a predicate to choose the correct clause), when they are really just case state-

ments. This is inefficient since backtracking requires saving the machine state and restoring it repeatedly. 

3.2.1. Measurement of determinism 

Measurements of Prolog applications suppon these assertions: 

(J) Tick shows that choice point references constitute about half (45-60%) of all data references (69]. 

(2) Touati and Despain show that at least 40% of all choice point and fail operations can be removed. 

through optimization (70). 

The fatter result is espcx:ially interesting because it attempl~ ro quantify how often shallow backuadting is 
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optimizablc. It considers a choice point to be avoidabl~ if between the access of a choice point and its 

removal by a cut there arc no calls 10 non-buill-in predicates. no retwns. and only binding of variables that 

do not have to be restored on backtracking. Avoidable choice points do not have to be created because 

they are removed immediat.cly. For a set of medium-sized programs, on average the following percentages 

of choice point creations arc avoidable: 57% of the ones removed by cut. 43% of the ones removed by 

trust, and 48% of the ones restored by fail. The variance of these nwnbers is large, but the potential for 

optimi:t.ation when these situations do occur is significant. The Aquarius compiler is able to lake advantage 

. 
of these optimi1.ations and more, e.g. due lO the factoring uansfonnation (Chapter 4) it is able to compile 

the pa-;t it ion /4 predicat.c in Warren's quickson benchmark [30] into deterministic code. The optimi-

zations are synergistic, that is, doing them makes other improvements possible: 

(I) Less stack space is needed on the environment/choice point stack. Choice points and environments 

arc both stored on this stack, which means that often a clause's environment is hidden underneath a 

more recently created choice point When this happens the last call optimization is not able 10 

recover space. lf fewer choice points are creat.cd, then last call optimization is effective more often. 

(2) There are fewer memory references to the heap because binding a variable is postpOned until a 

clause is chosen . 

(3) There is less uailing because it is only needed for bindings that cross a choice point. 

(4) Garbage collection is more efficient. since the creation of fewer choice pointe; means that there are 

fewer starting points for marking . 

3.2~ Ramifications or exploiting determinism 

The goal of compiling deterministic predicates into efficient conditional banches affects a large pan 

of the compiler. Many of the aransformations done in the compiler are intended to increase the amount of 

determinism that is eac;ily accessible. This includes formula manipulation. facaoring, head unraveling. ~ 

determinism nnsformation (all in Chapter 4). the determinism compiler (Chapter 5), and the det.cnninism 

optimi:t.ation (Chapter 6) . 
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Through these transfonnations the compiler creates a decision graph 10 index the arguments of a 

predicate. Type information derived by dalaftow analysis is exploited 10 simplify lhe graph. The graph is 

created in an architecture-independent way through ~concept of the kst stt (Chapter 4). lntuitivdy, a 

leSt set is a set of Protog predicates that are mutually disjoint (only one can succeed at any given time) and 

that correspond to a multi-way branch in the architecture. 

3.3. Specialize unification 

The WAM unification instructions (get and unify) arc complex. They opera1.e in two modes 

(read m~e and write mode) depending on the type of the object being unified, they dereference their argu-

ments. and they yail variable bindings. It is beuer to compile unification directly into simpler instructions. 

In the Aquarius compiler, unification is compiled into the simplest possible BAM code laking the 

type information into account (Chapter 5}. Ofl.ell it is possible to reduce a unification to a single load or 

store. The use of uninitialized variables (see below} to simplify variable binding greatly improves the gen-

crated code. 

Uninitialized 
register 

Uninitialized 
memory 

Initialized 
variable 

registers memory 

~ value ignored 

CJ value important 

Figure 2.9 - Three categories of unbound variables 
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3.3.1. Simplifying variable binding 

A major source of inefficiency in W AM implem~ntations is that logical variables are often created as . 
unbound (i.e. as self-referential pointers) and then u~ified soon afterwards. Creating and unifying does 

much unnecessary work: it would be faster just to reserve a memory location and then write to it. The 

Aquarius compiler defines such a representation. called llllinitialized variables. Conceptually, uninitialized 

variables arc defined at two lrvcJs: 

(I) At the logical level, an uninitialized "Oaria~le is an unbound variable lhat is not aliased, i.e. there are 

no other variables bound to it. The dataflow analyzer (Chapter 4) uses this definition to derive unini-

tialized variable types . 

(2) At the ifnplementation level, an uninitialized variable is a location that is allocated 10 contain an 

unbound variable, but the location is not given a value. The kernel Prolog compiler (ChapterS 4, 5. 

• and 6) uses this definition to compile uninitialized variables efficiently. 

The location conlaining an uninilialized variable can either be a register or a memory word, resulting in 

two kinds of uninitialized variables, namely uninitialized regiSter and uninitialized memory variables. The 

first are registers whose conten~ are ignored. The second are poiaccrs lo memory locations whose contenlS 

are ignored. Standard unbound variables are called initialized variables; they are pointers to locations 

pointing to themselves. Figure 2.9 illustrates the lhree categories of Wlbound variables. 

Table 2.3- The cost of uninitializcd variables 

Type of variable Cost (VLSI-BAM cycles) 
For Unification For Backtracking 

Creation Bindi~g Trailing_ Detrailing_ 

Uninitialized Register 0 0 0 0 
Uninitializ.ed Memory I 1 0 0 
Initialized Variable 2 s 2 Oor4 

The dataflow analyzer derives both uninitialized register and uninitialized memory types. It is often 

able to determine that an argument is uninitialized; for a representative set of programs it finds lhat 23% of 

all predicate arguments an: uninitialil.cd. or these, two thirds have Wlinitialized memory t)'J)C and one 

third have uninitializcd register type. 
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Table 2.3 gives the minimum run-time costs on the VLSI-BAM processor Cor che three caregories of 

unbound variables. CoslS are given for unification suppon (creation and binding) and for backtracking sup-

pon (trailing and dctrailing). Binding an initialized variable is expensive because lhe variable must be 

dcrefercnced before tlle new value can be stored in the memory cell. Binding an uninitialized memory 

variable reduces to a single memory store operation. Binding an uninitialized register variable is free if it 

is created in the register tllat needs it. The cost of detrailing (restoring a variable to an Wlbound state on 

backtracking) is zero for uninitialized vari<!blcs. For initialized variables it depends suongJy on lhe effec-

tivcness of the compiler in generating deccrministic code. his 0 cycles if lhe variable does not have to be 

unbouncton backtracking, and 4 cycles otherwise. 

3.4. Dataflo"~-analysis 

The Aquarius compiler implements a dat.allow analyzer lhat is based on absuact interpretation. It 

translates lhe program to one in which predicate arguments range over a finite set of values. Each of lhe 

values corresponds to an infinite set of values (i.e. a type) in lhe original program. The analyzer derives a 

small set of lypes-uninitialized, ground (lhe argument contains no unbound variables), nonvariable (the 

argument is not an unbound variable) and recursively dereferenced {the argument is dereferenced. i.e. i1 is 

accessible without pointer chasing, and if it is compound, lhen all ilS arguments are recursively derefer-

enced). These types have been chosen carefully to be useful during compilation. 

Dataflow analysis by ilself is not enough. The rest of lhe system must be able to usc the information 

derived by the analysis. The techniques to exploit dererminism and specialize unification in the Aquarius 

compiler have been developed in tandem with che analyzer for this purpose. ln addition, the fine insuuc-

lion granularity of the BAM is designed to support these optimizations. 

4. Related work 

First a survey is given of work that is related lO the four principles of the Aquarius compiler. Then 

an overview is given of Prolog implementations that are interesting in some way. 
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4.1. Rtduct instruction granularity 

t 
Tamura et at (39,65) have done fundamenta1 wotk at IBM Japan in reducing the grain size of com-

piled operations for Prolog. Their compilation is done- in three steps. The first step is to compile Prolog 

into W AM. In the second step the intermediate code is translated into a directed graph. Each WAM 

instruction becomes a subgraph containing simple operations such as case selection on tags. jumps. assign-

menlS, and dcrcfcrcncing. The graph is optimized lhrough rewrite rules. Case selections based on a tag 

. 
vaJuc. never-selected cases, redundant tests. ~;ase statements with only one branch. and unreachable 

instructions arc eliminated. Known values are propagated. These rewrites are applied several times and 

the resulting graph is then translated back into intennediate code. In the third step the intermediate code is 

translated into a PL.8 program which is sent to a high-quality PL.8 optimizing compiler (3). Perfonnance 

resullS are gi,•en for a few small programs and are quite good. There are sevetal problems in their 

apprbach. They still use the W AM as an intermediate language, and compiling is prohibitivdy slow 

• • because their system is experimental. Without compile-time hints their performance drops significantly. 

4.2. Exploit dtttrminism 

Significant improvements over lhe W AM are possible to avoid choice point aeat.ion in deterministic 

predicates. The W AM indexes on only lhc first argument and saves all regiSterS in choice points. Turk 

{721 describes several optimizations that reduce lhe time necessary to restore machine state when back· 

tracking. In f74 ), I describe a compilation scheme that attemptS to take advantage of the fact that most Pro-

1og predicates are deterministic. Choice point creation and moves to and from choice points are minim-

ized. Clauses are compiled wilh multiple enuy points and predicateS are compiled as decision IReS. The 

rechniques used in lhe Aquarius system are inspired by this work. Carlsson (lS) measures lhe performance 

improvement of a scheme for creating choice points in two parts. saving only a small pan of the machine 

swe first. and postponing saving lhc remainder until later in lhe clause when it can be de&ennined lhal lhc 

head unification and any simple testS have succeeded. Implemented in the SICStus Prolog system, this 

reduces execution time by 7-IS% on four large programs. 

Rc:ccndy dtere have appeared scvetal commercial Prolog-like lallguages (Trilog)' and Turbo Prolog) 
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that generate efficient code for programs annotated with type and de&cnninism dcclaralions. In this regard 

Trilogy [79) is notcwonhy because it gives a logical semantics lO programs wriucn in a Pascal-like nota

tion. Typed predicates that arc annotated as being deterministic are compiled inw efticient native code. 

The achievement of Trilogy is reassuring; since many predicates in standard Prolog are intended 1.0 be exe

cuted in a deterministic way. with some analysis it should be possible to obtain the same efficiency for 

standard Prolog. 

Several systems have generalized l.h.c first argument indexing of the W AM. BIM_Prolog (4) can 

index on any argument when given appropriate declarations. SEPIA [29) incorporates heuristics to decide 

which predicate arguments are important for detenninistic selection. It uses the first .. indexable" argu

ment of a pr~icate. If there are several possibilities it first uses the argument where it is more likely that 

fewer clauses will be selected. 

• Several papers describe fast implementations of the cut operation. Bowen et al [91 implement cut by 

adding a register that holds the address of the most recent choice point before entering the predicate. This 

register is updated by each ca 11 and execute insuuction. Cut is implemented by moving this regis

ter to the WAM's choice point register r (b). Marien and Demoen [46) implement cut in a similar 

fashion. These schemes suffer from having to do an additional register move for each procedure call, 

unless a different call instruction is used for predicates with and without cuL The scheme implemented in 

the Aquarius compiler does not slow down procedure calls and does not need an additional register. 

4.3. Specialile unification 

Significant improvemenL~ over the W AM are possible for unification. Twit [72] describes several 

optimizations related to compilation of unification, co reduce the overhead of explicitly maintaining a 

read/write mode bit and remove some superfluous dereferencing and tag checking. Marien [44} describes a 

method 10 compile write mode unification that use~ a minimal number of memory operations and avoids all 

superfluous derefcrencing and tag checking. In (75). I build on lhis work by introducing a simplified nota

tion and extending it for read mode unification, but my scheme suffers from a large code size expansion. 

The Aquarius system modifies this technique to limit lhc code size e,~tpansion at a slight execution time 
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cost. Meier (48) has developed a technique lhar generalizes Marien's idea for bodl read and write mode 

and achieves a linear code size, also with a slight ex~ution time cost This technique is implemented in . 
the SEPIA system (29). 

Beer 151 hao; suggested the use of a simplified representation of Prolog variables for which binding is 

much faster. He introduces several new tags for this representation, which he calls uninitialiud variabl~s. 

and keeps track of them at run-time. He shows that both dereferencing and trailing are reduced 

significantly. This idea was a suong infhtcnc<: on the Aquarius compiler. At the Prolog level, logical 

semantics· are preserved, but at the code level there is now a coherent integrated use of destrUctive assign-

ment for values that fit in a register. My scheme is different from Beer's-it uses the same tag for bolh 

uninitialized aR~ standard Prolog variables. The analyzer finds uninitialized variables at compile-time and 

the compiler determines when it is safe to use dcsttuctive assignment to bind them. 

4.4. Dataflow anaiJSis 

R. Warren et aJ [84) have done the most comprehensive work measwing the practicality of global 

dataflow analysis in logic programming. Their paper describes two dataftow analyzers: (I) MA3,the MCC 

And-parallel Analyzer and Annotator, and (2) Ms, an experimental analysis scheme developed for SB-

Prolog. MA3 derives aliasing and ground types and keeps track of the structure of compound terms. while 

Ms derives ground and nonvariable types. The paper concludes that both dataflow analyzers are effective 

in deriving types and do not increase compilation time by too much. My dataflow analyzer differs &om 

both MA3 and Ms in three ways. First, the analyzer works over a different domain. Second, it avoids 

problems with aliased variables by deriving only limited type information for them. Third, it is integrated 

into a compiler which has been developed to take full advantage of the types it derives. 

For correctness, it is imperative to consider the effects of variable aliasing on dataflow analysis. 

Aliasing occurs when two variables are bound IO.tcrms that have variables in common. Finding accurate 

aliasing information is an important topic in cuiTent research ( 18, 36). However, aliasing complicates the 

implementation of dataflow analysis. My anal)•zcr considers only unaliascd variables as undidatcs for 

unbound variable type!i. Mca.o;uremcnts of lhc analyzer show lhat unaliased variables occur often enou~h 
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10 make the analysis wonhwhile. This conservative u-caunem of aliasing simplifies the implementation. 

since it is not necessary to explicitly represent and propagate aliasing information. Of course. it also 

reduces the effectiveness of the analysis. Thus aliasing needs to be studied funher. 

Marien et al [45) have performed an interesting experiment in which several small Prolog predi-cates 

(recursive list operations) were hand-compiled with several levels of optimization based on information 

derivable from a dataflow analysis. The analysis was done by hand at four levels: The first level derives 

unbound ·~ariablc and ground modes. The. second level also derives recursively defined types. Thl! third 

level also derives lengths of dereference chains (pointer chains that must be followed at run-time). The 

founh level also derives liveness information for compound data structures and is used 10 determine when 

they are last ~sed so that their memory may be recovered (compile-time garbage collection). Execution 

time measurements show that each analysis level improves speed over the previous level. This experiment 

shows that a simple analysis can achieve good results on small programs. 

4.5. Other implementations 

This section gives an overview of interesting Prolog implementations that are related to this dissena-

lion in some way. Most exist1ng implementations of Prolog. both on general-purpose and special-purpose 

machines, are based on the Warren Abstract Machine fW AM) or are derived from it. The general-pu;'])Ose 

and special-purpose approaches are presented separately. The first subsection describes some important 

software implementations and their ideas. The second subsection summarizes some important architcc-

tures and their innovations. 

4.5.1. Implementing Prolog on general-purpose machines 

As far as I know. the earliest WAM compiler was my PLM compiler, completed and published in 

August 1984 {73].t The compiler was interesting as it was itself written in Prolog. unlike many later Prolog 

compilers. The first commercial implementation of the WAM was Quintus Prolog. announced in 

November 1984. 

: 'The PLM oornpilcr is still a¥ailahlc from u,. bul is now obsolc1c and n01 ~commended far cum:n1 ~search won.. Our 
n:scarc:h croup capec:ts to n:lcaK soon • cumplc1c l'rolo~ syStem based on lhc Aquarius compiler. 
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Among the highest performance commercial implemenLations available today are IBM Prolog, 

Quintus Prolog 1581. BIM_Prolog 14), and ALS Prolog 121. There are three significant implemenLations of . 
Prolog available IOday that were developed at research institutions: SICStus Prolog (63). SEPIA (29J •. and 

SB-Prolo~; (83). All of these systems arc ba'icd on extensions of the WAM (except possibly IBM Prolog. 

of which I have little information) and compile toW AM-like instructions which are either emulated on the 

Largct machine- or macro-expanded to native code. Some of these systems (e.g. SB-Prolog and IBM Pro-

log) arc able to compile special cases of deterministic programs into emcienc code. 

4.5.1.1. Taylor's system 

Independently of this research, Andrew Taylor is implementing a high performance Prolog compiler . 
for the MIPS processor (67}. The compiler includes a dataflow analyzer that explicitly represents type, 

aliasing, dereference chain lengths, and trailing infonnation [66). His preliminary results indicate that it is 

of comparable performance to the compiler presented jn this dissertation. Running a set of small bench-

mark programs on the MIPS R2030 processor, the system is 24 times faster than compiled SICStus Prolog 

version 0.6 and the code size is similar to that of the KCM. 

4.5.1.2. IBM Prolog 

IBM Prolog accepts mode declarations, implements more general indexing than the W AM, does a 

limited global analysis (however, it does not derive any types), and generates high performance native 

code. It is able to compile some kinds of deterministic programs with conditional branches. 

4.5.1.3. SICStus Prolog 

SICStus Prolog was developed at the Swedish Institute of Computer Science in Stockholm. A back-

end module was written· for it by Mats Carlsson which generates native code avoiding the superfluous 

memory references of a naive WAM translation (14.44). It is comparable in performance to Quintus Pro-

log when no built-in predicates arc used . 

... .......... - _____________ _ 
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4.5.1.4. SB-Prolog 

SB-Prolog was developed at SUNY in Stony Brook. It recognizes a specia! case of~.~ general tech

niques for extracting determinism discussed in this dis~tion: it recognizes when amhmetic lest.s lhat arr 

each other's opposites appear, and compiles a conditional branch. It also incorporates a simple partial 

evaluator which is used for macro expansion and a simple dataflow analysis scheme has recently been 

developed for it (84j. 

4.5.2. Implementing Prolog on special-purpose machines 

In the past, because the W AM was regarded as the best way to implement Pro log, the performance 

gap between ~ial-purpose architectures and general-purpose architectures was large. Much of the effort 

in high performance Prolog implementation was put in10 architecture design. and in particular in hardware 

support for the W AM instructions. This dissertation shows lhat a better understanding of Prolog execution 

narrows the performance gap. The implications of lhis development for lhe future of special-pwpose 

architectures are discussed in the VLSJ-BAM paper [34) and swnmarized in this section. 

4.5.2.1. PLM 

The first special-purpose Prolog architecture that was built is the PLM (Programmed Logic 

Machine), due to Dobry et al r26-28). Its design was inspired by a proposal of Tick & Warren [68]. The 

PLM implements the W AM in microcode with a 100 ns clock cycle. It was built on wire-wrap boards and 

ran a few small programs in 1985. Spin-offs of this project included the VLSI-PLM single<hip implemen

tation (60] and the Xenologic X-1, a commercial coprocessor for Sun workstations. 

Several papers have compared the number of cycles needed by the PLM to that of generaJ-pwpose 

architectures. These ratios are valid .neasurements of the effect of the PLM's architecunl support for 

WAM implementation. Mulder & Tick 1511 and Pau & Chen (54) have compared the performance of the 

PLM {28). a microcoded implementation of the WAM, to a macro-expanded W AM on the MC68020 pro· 

cessor. They lind that lhc MC68020 needs 3 10 4 times the number of cycles as the PLM to execute lhc 

WAM. Pau and Chen lind that static code size on the MC68020 is about 20 times the PLM. 
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4.5.1.1. SPUR 

Borriello et at (8) have implemented a macro~xpandcd WAM on the SPUR processor (Symbolic 

Processing Using RlSCs). They lind that the SPUR takes about 2.0 times !he number of cycles as the PLM 

and that static code size is about 14 times the PLM. These numbers include local optimizations imple· 

mentcd by Chen and Nguyen [20] that improve the original numbers by about 10%. 

4.5.1.3. PSI-II and PIM/p 

In the context of the FGCS (Fifth Generation Computer System) project, researchers of ICOT (the 

Japanese 'Institute for New Generation Computer Technology) have designed and built several sequential 

and parallel arfhitectures for logic programming [64, 7 J ]. One of the more interesting sequential machines 

is lhc PSI-II (Personal Sequential Inference machine II) (52] a microcoded implementation of the WAM 

whi~h executes at speeds similar to the PLM. The processing elements of the PIM/p (Parallel Inference 

Machine) architecture are currently the highest performance sequential logic machines at ICOT. They exe-

cute at two to three times the speed of the PLM. 

4.5.1.4. KCM 

Benker et al [6] describe a special-purpose Prolog machine, the KCM (Knowledge Crunching 

Machine). which is based on an extended W AM. Its instruction set consists of two parts: a general-purpose 

instruction set, and a microcoded Prolog-specific instruction set. It has a cycle time of 80 ns and executes 

in about 1/3 the nwnbcr of cycles of the PLM. Its code size is about three times greater. The KCM project 

was done together with the development of a Prolog system and environment called SEPIA (see previous 

section). About60 KCM machines were consuucled and delivered to the ECRC member companies . 

4.5.1.5. \'LSI-BAM 

Holmer et at (34) describe a single-chip microprocessor with extensions for Prolog. the VLSI-BAM 

(VLSI Berkeley Abstract Machine). h is a pipelined load-store processor with a cycle time of 33 ns. It 

ukes about 1/3 the number of cycles to run programs as lhc PLM and its code s.ize is about throe times 
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greater, results similar to the KCM. However.they are achieved largely through the effon of the compiler. 

The goal of t.hc BAM project is to find the minimal extensions to a general-purpose architecture to suppon 

a high performance Prolog implement.ation. The rationale for the VLSI-BAM architecture is that existing 

general-purpose architectures arc designed to execute imperative languages like C and do not have ade

quate suppon for Prolog. The compiler described in this dissenation was developed simultaneously with 

t.hc archuccturc, and interaction between t.hc two designs has significantly improved both. 

The BAM project has determined that a small amount of architectural suppon (5% increase in chip 

area) gives a large performance boost (50% performance increase) for programs lhat use Prolog-specific 

features~ The suppon docs not interfere with the general-purpose architeclUre, so it is possible for future 

gencral-pu~sc machines to incorporate this suppon for high performance symbolic computing. The sup

pan is designed specifically to suppon the logical variable, dynamic typing, unification, and backuacking. 

A language that uses an)' of these features can benefit from it 
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Chapter 3 

The Two Representation Languages 

1. Introduction 

This chapter defines the two languages used by the compiler co represent prognms: kernel Prolog, a 

simplified fonn of Prolog. and lhe Berkeley Abslract Machine (BAM), a low-level insuuction set and exe-

cution model that is close to a standard sequential processor. Kernel Prolog is an internal language chat is 

not accessible to the user. BAM is the outputl3nguage of the compiler. 

2. Kernel Prolog 

The first representation language in the compiler is kernel Prolog, a simplified, canonical form of · 

Prolog. The syntax of kernel Prolog is given in Figure 3.1. This should be compared with the definition of 

fuli Prolog syntax given in Chapter 2. The control ftow of kernel Prolog is simpler, a set of internal pimi-

tives is defined lhat are only used inside the compiler •. and a case statement is defined. Kernel Prolog does 

not have nested disjunctions, if-then-else, cut, negation, or arithmetic expressions. Each predicare is 

represenred as a single term ~H: -D) containing a head H with distinct variable arguments and a body D 

that is a single disjunction (an OR choice). Each alternative of the disjunction is a conjunction, i.e. an 

AND sequence of goals. Unifications in th·.~ head of the original predicate are represenred as CAplicit 

unifications in the arms of the disjunction. Disjunctions, negations, and if-then-else forms in the original 

predicate are convened into dummy predicates. Cut and arithmetic expressions arc convened inao simpler 

internal built-in predicates. 

For example. the predicare: 

4 (bJ. 
a(X) :- ( 0 is X mod 2 -> e(X) f (X) ) • 

is represented as follows in kernel Prolog: 
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predicate((H:-0)) :- head(H), disjunction{D). 

head(H) :- goal_term(H). 

disjunction(fail). 
disjunction((C;D)) ·- conjunction(C), disjunction(D). 

conjunction(true). 
conjunction((G,C)) :- goal(G), conjunction(C). 

goal (G) . 
goal (G) . 
goal (G) . 

case_goal(G). 
internal_goal(G). 
external_goal(G). 

case_goal('Scase' (Name,Ident,CB)) :- test_set(Name, Ident), case_body(CB). 

case body('Selse' (Dll :- di~junction(Dl. 
case=body((~·Stest'(T,D);CB)) :- test(T), disjunction(D), case_body(CB). 

external_goal(G) :- goal_term(G), \+case_goal(G), \+internal_goal(G). 

term (T) . var (TJ • 
term(T) . goal_term(T). 

goal_term(T) ·- nonvar(T), functor(T, , AI, term_args(l, A, Tl. 

term_args(I, A, _) ·- I>A. 
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term_args(I, A, T) • I-<A, arg(I, T, X), term(X), Il is I+l, term_args(Il, A, TJ. 

\Predicates defined in"tables: 
internal goal(G) :- (0efinedinTable3.1). 
test_set (Name, Ident) :- (Defined inTable4.JJ). 
test (T) :- (Dclined in Table 4.1 1}. 

\ Built-in predicates needed in the definition: 
functor(T, F, A) :- (TcnnThasfunctorfandarityA). 
arg(I, T, X) :- (ArgumcnllofcompoundtennTisX). 
var (T) :- (Argument Tis an unbound variable}. 
nonvar (T) :- (Argument T isa nonvariable). 

Figure 3.1 - Syntax of kernel Prolog 
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a(Xl ·- X•b, true 

) . 

'Sd' (X), true 
fail 

'Sd' {Xl :- ( 'Scut_load' (Z), 'Sd2'"(X, Z). true 
; fail . ). 

• 

• 

• 

• 

• 

• 

'Sd2' (X, Zl :- • Smod' (X, 2, 0>. • Sc:ut' (Z). e (XI, true 
f (X), true 
fail 

J • 

. 
All predicates that start with the character • $ • are created incemally. Cut is implemented with the two 

built-ins ·,• Scut_load' (X) and • $cut • (X). The arithmetic expression 0 is X mod 2 is 

replaced by a call to an explicit arithmetic built-in • $mod' (X, 2, 0). lbe if-then-else is replaced by a 

call to the dummy predicate • Sd' (X). All dummy pr dicates are given Wlique names. 

Kernel Prolog has many advantages over standard Prolog. lbe scope of variables is not limited 10 a 

single clause. but is extended over the whole predicate. Many optimizations are easier to ~or eumple • 

dataflow analysis and determinism extraCtion. Compilation to BAM code and register allocation are 

simplified. 

. 
The following two sections describe the internal predicates or kernel Prolog and how standard Prolog 

is convened to kernel Prolog. 

2.1. Internal predicates of kernel Prolog 

The kernel Prolog fonn of a program contains predicates &hat are not pan of standard Prolog and &hat are 

invisible to the user. The inaemal predicates always begin with lhe character ' $ • • They are of lhrec 

kinds: 

(I) Internal built-in predicates (Table 3.1). 1bese arc classified into three categories depending on 

their use: (I) implementation or cut. (2) ty~ checking. and 0) arithmetic. They are expanded into 

• BAM insuuctions before being output. so the user never sees them. 

(2) A case statetaent. This conuol structure is designed to express dc:lcnninistic selection in Prolog. 

Chapter 4 describes how the case stllemcnt is aeated. It is vanslated directly imo conditional 

t 
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Table 3.1 - Internal built-ins of kernel Prolog 

Buill-in Description 

'Scut load' (X) Load the choia point register r (b) into X. -
'Scut' (X) Make the choice point pointed to by X the new top of the 

choice point s~ck. 

'Sname_arity' <X, Na, Arl Test that X has functor Na and arity Ar. This only does a 
check; it never binds X. 

'Stest' (X,T) General type-checking predicate that tests whether the type of 
X is in the set T, where T c {unbound variable, nil, non-nil 
atom, negative integer, nonnegative integer, float. cons, suuc-
lure}. 

' Sequal' (X, Yl Test that X andY arc identical simple tcnns. 

'Sadd' ISl, S2, D) Integer addition D t- S l+S2. 
'Ssub' ISl, S2, D) Integer subtraction D t- S l-S2. 
'S~ul' (Sl, S2,D) Integer multiplication D t- St•S2. 
'Sdiv' (Sl, S2, D) Integer division D t- S l/S2. 
'Smod' (Sl,S2,D) Integer remainder D t- S I mod S2. 

' 'Sand',(Sl,S2,D) Bitwise integer "and" D +- Sl "S2. 
'Sor' (Sl, 52, D) Bitwise integer "or'' D t- S I v S2. 
'Sxor' (Sl,S2,D) Bitwise integer exclusive-or D t- S I e S2. 
'Ssll' (Sl,S2,Dl Logical left shift D t- S I «S2. 
'Ssra' (51, S2, D) Arithmetic right shift D t- SI»S2. 
'Snot' (S, Dl Bitwise integer negation D +-not S. 

branches in the BAM code and has the following syntax: 

where: 

'Sease' (Name,Ident,CaseBody) 

CaseBody - 'Stest' (Test, Code) 

'Selse' (Code) 
) . 
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CaseBody is a disjunction of 'Stest' goals, tenninated with an 'Selse' goal. Code is 

any valid kernel Prolog disjunction. Name and Ident identify lhe test set, and Test is a Pro-

log predicate (Table 4.11). Test is the test that is valid along the branch. For eumple, for lhe 

hashing function it will be the goal X•a where a is lhe atom or structure used in that direction. 

(3) "Dummy" predicates. Kernel Prolog does not allow control suucturcs (i.e. disjunctions. if-then-

else, and negation) in clauses. but only calls. The control suucturcs arc cntnsformed into calls to 

dummy predicates, which arc predicates that exist only inliidc the original predicau:. Dummy prcdi-

cates are created wilh unique names that are ocrived from the predicate they are conaained in. 
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2.2. Con,·erting standard Prolog to kernel Prolog 

The first stage of compilation is a sequence of :five source transformations that convens raw input 

clauses into kernel Prolog. An input predicate in standard ProJog is ltansformed imo a rree lha1 contains a 

kernel Prolog form of the original predicate and a set of dummy predicates in kernel fonn created during 

the transformation. Care is taken to put the predicate in a form lhat maximizes oppon.unities for detennin-

ism extraction. The five transformations arc: 

. 
(I) Standard form transformation. Com~rt the raw Prolog input to a convenient standard notation . 

This docs several housekeeping tasks: it properly terminates conjunctions (with true} and disjune-

tions (with fa i 1). and it converts negation-as-failure into if-then-else . 

. 
(2) Head unra,·eling. Rewrite the head of each clause as a new head and a list of unification goals such 

that all the arguments of the new head are distinct variables and the head unifications are unification 

goals . 

(3) Arithmetic transformation. Compile arithmetic expressions to internal arithmetic built-ins. 

(4) Cut transformation. Implement cut by converting all uses of cut and if-then-else to internal cut 

built-ins . 

(5) Flattening. At this point all complex control has been convened to disjunctions. Conven nested 

disjunctions to dummy predicates. 

2.2.1. Standard form transformation 

Tbc standard fonn of a clause is intended to simplify its syntax so lhat uaversing it is as simple as 

possible. The standard rorm satisfies the rules in Table 3.2. These rules are ignored in the presentation of 

most of the examples in this disscnation because they make the examples less readable (although they arc 

always satisfied in the compiler). 

2.1.2. Head unr~neling 

Unraveling the head of a clause consists of rcwriling it as 1 new head and putting 1 series of 

unification goals in the clause's body so lhat all the head's arguments arc distinct variables and all the head 
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Table 3.2- Standard form of a clause 

Rule Description 

I Conjunctions and disjunctions arc right assoclative. • 
2 ConJunctions have no internal true and arc terminated by true. 
3 Disjunctions ha"e no internal fail and are terminated by fail. 
4 Single goals instde dtsjunctions arc considered as conjunctions (and therefore rule 2 applies). 
5 There ts no negation (it is converted to if-then-else). 
6 ArgumcnL~ of if-then-else arc considered as conjunctions (and therefore rule 2 applies). 
7 {A->8) as a goJI m a conjunction is converted to (A->8;fai1). • 
R The first argument of all umfy goals is a variable. 

uniftcattons arc unification goals in the body._ 

If this is not done correctly then much opportunity for later optimization is lost. From me predicate's • 
type form'ula, the compiler knows which head arguments are nonvariable and which head arguments arc 

unbound. Unif~tion goals arc created lhat satisfy two constraints: 

(1) Maximize the number of nonvariablc arguments that are unified aogethcr. Put these unifications first • 
in the unraveled clause. 

(2) Minimize the number of unification goals that contain unbound variables. Put these unifications last 

in the unraveled clause. • 
For example, consider the claus~: 

:-mode((a(A.B,C):-nonvar(A),nonvar(B),var(C))). 

a (A, A, AI :- atomic (A), ••• • 
The type declaration says that me first two arguments arc nonvariablcs and the mird argument is an 

unbound variable. The argument A appears three times in me head. Therefore there are three ways 10 

• unravel this clause: (a(X,Y,Z) :-X•Y,X•Z). (a(X,Y,Z) :-Y•X,Y•Z). and (a(X,Y,Z) :-

Z•X, Z•Y). Considering the mode declaration, the head is transformed iniO the 6rsl of the three unraveled 

versions: 

• 
a (A, 8, C) :- A•B. A•C, atomic (A)_, ••• 

The first unification A•B is of two nonvariables. The second unification A•C is of a nonvariable and an 

unbound variable. Thi!' satisfies bolh constraints. • 

• 
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• 
expression((X is ExprJ, Code) ·- expr(Expr, X, Code, lJJ. 

expr (V, V) --> (var (VJJ, I 

expr(A, A) --> (integer (1>.) ), ! . • expr(l>.+B, C) --> expr(A, Tal, expr(B, Tb), (' Sadd' (Ta, Tb, CJ l . 
expr(A-B, C) --> expr(1>., Tal, expr(B, Tb), (' Ssub' (Ta, Tb, C) l . 
expr(l>.•B, C) --> expr(A, Tal. expr(B, Tb), ('Smul' (Ta,Tb,C)}. 
expr (1>./8, C) --> expr (1>., Tal. expr(B, Tb). ('Sdiv' (Ta,Tb,C)). 

• Figure 3.2 -Compiling an arithmetic expression 

2.2.3. Arithmetic transformation 

' • The is /.2 predicate is translated into incemallhree-argument arithmetic built-ins (Table 3.1). Fig-

ure 3.2 gives a simplified but fully functional version of the algorithm used 10 compile expressions. It han-

dies ~iuary expressions containing the four basic arithmetic operations. For example. the caD: 

• expression(X is 23•(Y+Z), Code) 

gives the code: 

Code • ('$add' (Y,Z,T), 'Smul' (23,T,X)) 

• The full algorithm handles all the arithmetic primitives or Table 3.1 and does panial conscant folding. 

2.2.4. Cut transformation 

• The cut operation modifies control flow by removing all choice points C!Qted since entering lhe 

predicate containing lhe cut. including the choice point of &he preclicale icself. Cut is implemented by 

means of a source nnsfonnation. It requires no support from the archileclure except the ability 10 access 

• and modify the regisrer r Cb) • which points 10 the most recent choice point 

The cut transfonnation is given in Figure 3.3. A call to Lhe built-in 'Scut_load' <XJ is put at 

lhc entry of a predicai.C containing a cut This built-in moves the r (b) register to X. which nwks lhe 10p 

or the choice point saac:k on entry 10 the predicate. The argument X is passed 10 the predic:ai.C ·s body. Each 

occurrence or cut in chc bOdy is replaced by a call to the buill-in 'Scut' (X). This buill·in loads r (b) 



procedure cut_transfonnation; 
var P' : list of clause; 
~~n . 

ror each predicate p in the program do begin 
if P contains a cut then begin 

end 
end 

end; 

r At this point P = [ C 1 ••••• c .. ) (list of clauses) and C. =(II, :- 8,) •t 
Add the argument X to all H, in P; 
Replace each occurrence of" ! " in P by 'Scut' <X>: 
P':=P; 
Add the predicate P' to the program; 
II := (new head with same functor and arity as aU H; ); 
H' := (I I with the additional argument X); 
P :=[(H :-'Scut_load' (X).H')) 

Figure 3.3- The cut ttansfonnation 

from X. which restores the original top of the choice point stack. For example, consider the predicatc: 

P q, ! • r. 
p s. 

This is transfonned into: 

p :- 'Scut_load'JX), p' (X). 

p'(X) :- q, 'Scut'(X), r. 
p' (X) :- s. 
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Compilation theil continues in the usual manner. This method is simple and efficient. Variations of it have 

been implemented in other Prolog systems (4, 13,45). This method differs from these variations in that the 

compiler does not always store lhe value of r (b) on the environment stack, but. puts it in a predicate 

argument X. It is stored in an environment only if lhe clause is compiled wilh an environment. 

2.2.5. Flattening 

At lhis point. all lhe complex control in a predicate (disjunctions, if-then-else, and negation-as-

failure) has been translated to disjunctions. Rattening replaces the disjunctions by calls to dummy predi· 

cates. For example, lhc definition: 
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a(X,Y) :- ( b1(X,A) b2(X,B),t(Bl ), d(Y,A). 

is transfonned into: 

a(X,Y) :- 'Sflatten_a/2_1'(X,Al. d(Y.A). 

'Sf latten_a/2_1' (X, A) ·- bl (X, A) . 
'Sflatten_a/2_1' (X,A) • b2(X,B), t(B). 
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Compilation then continues in the usual manner and the dummy predicate • Sflatten_a/2_1' (X, A) 

is compiled as in-line code. The dummy predicale is creaa.ed with a unique name derived from the namc:: of 

the original predicate. The argument list of lhe dummy predicate is the incerscction of the set of variables 

used inside the disjunction and the set of variables used outside it. In lhis example dle argument list is me . 
intersection of. (X, Y, A} and (X, A, B}. which is fX,A) • 
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3. The Berkeley Abstract Machine (DAM) 

The foundation of the efficiency of the compil~r is its execution model, the BAM. The BAM has 

been designed to suppon all compiler optimizations .and 10 malce the system easily ret.argetabJe 10 lhe 

VLSl-BAM and general-purpose machines. The design evolved by interaction with the development of lhe 

compiler, the architeeture design of the VLSJ-BAM processor, and the requirement of ponability 10 other 

architeeturcs. The BAM was developed in tandem with the VLSI-BAM processor, but the two instruction 

sets are quite different. The VLSI-BAM is·coqstrained by its hardware implementation; the BAM evolved 

by looking at the requirements of Prolog and is designed to allow a great deal of low-level optimiz.ation. 

The Aquarius compiler uses a simple output language and not an existing high-level language such 

as C or an exisiing low-level language such as an assembly for a particular machine. There are several rea

sons for this: 

(I) Choosing an existing bnguage requires choosing representations for tags and data suuctures, and 

writing frequently used Prolog-specific operations as subroutines. This is undesirable for two rea

sons: First, the VLSI-BAM is one of the target machines and its architecture has a more abstract 

representation for tags ~d Prolog-specific oper.uions chan general-purpose processors. Second, 

these representations are not necessarily the best for all machines. 

(2) Choosing an existing high-level language is unsatisfactory for the VLSI-BAM processor since the 

only compiler for it is currently the Aquarius compiler. 

(3) An unpredictable fac10r is introduced when doing perfonnance evaluations. The performance on dif

ferent machines varies depending on the sophistication of the implementation of the existing 

language. It is not always easy 10 detcnnine the perfonnance of lhe existing bnguage from inspec

tion of its source code. 

The syntax and semantics of the BAM is presented at several levels of detail, from a discussion of its 

features in English down to a detailed formal specification of its semantics in Prolog. The body of the 

dissen.ation defines the data types of the BAM, gives an ovetView of its instruction set. and justifies the 

choice of instructions. Appendices B and C give formal specifications of BAM synw and semantics, and 

• 
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Appendix D gives a concise but complete English description of BAM semantics. 

This se.ction has four pans. The first pan presen~ the data types of the BAM. The socood part swn

marizes the BAM insuuction set The instruction set .consists of four pans: simple insuuctions (tagged 

load-store architecture). complex insuuctions (Prolog-specific operations), pragmas (embedded informa

tion to allow better translation to a real machine). and user instructions (intended to allow the complete 

run-time system to be written in BAM). The third pan justifies the complex insuuctions. The founh part 

justifies the insuuctions needed to implement ~nification by showing how they are consuuaed from a 

unification algorithm given a few simple assumptions about the archil.ecture. 

3.1. Data types jn the BAM 

The data types of the BAM are classified into two groups: the types used during execution and the 

type~ used to represent instructions (Table 3.3). The BAM has four data types that are used during eJr.ecu· 

tion: words. natural numbers. symbolic labels, and mappings. These are denoled as the set of all words W, 

the set of natural numbers N, the set of mappings M, and the set of symbolic labels L. A word is a pair 

T-N where Tis the tag and N is the WJI~- A natural number is a nonnegative integer. A mapping·(not 

shown in Table 3.3) is a correspondence between a set of objects and their values (which are often words). 

A symbolic label marks a position in the program. 

Several definitions in Table 3.3 require some clarification. Sets are'deno\Cd by bold capitallew:rs, 

variables by capit.allettcrs, and constants by lower case letters. Addressing modes are deli~ recursively, 

with a base case consisting of regiSieiS and atomic 1ennS, and a recursive case consisting of lhree pans: t.ag 

insertion (T- x), indirection ((X]), and offset ( (X+N) ). The BAM uses only a subsel of the infinite set of 

addressing modes defined here. Of all the internal registers of the BAM. only the argument registerS 

r ( I ) , the heap pointer r (h) , and the backtrack pointer r (b) are visible in the instruction set. Appen· 

dix B gives a precise definition of instruction synlaX including the addressing modes that are ICtUally used. 

The meaning of the instructions is defined informally in section 3.2 and formally in Appendix C. 

A ~ can be of arbitr.tf)' size. A tenn that fits completely in a register is callc:d simple. All 01her 

tenns are called comporutd. A register cannot store all possible aenns, but it can conlain encoded informa· 

.............. -..... ·---------------
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Table 3.3 - Types in the BAM 

Types used during execution 

Name . Definition 
' • Word w :: ( T"N I T eT, "naturai(N)) u A 

Symbolic label L :: { fa i 1 } u { F /N • 1 < F /N, I) I atom(F} " natwai(N) " natural{l) ) 
Natural number N 
Atomic term A :: ( tatm"V I atom(V) v (V=(FIN) "atom(F} "naturai(N))) u 

{ v I imegcr(V) l u l t f 1 t-v I ftoat(V) } 

Types used to represent instructions • 
Name Definition 

Tag T = {tva r. t lst. tst r. tatm, tint, tpos, tneg, tflt} = T, u T., 
Pointer tag T, = {tvar, tl~t •. tstr) 
Atomic tag T., = (tatm.tint,tpos.tneg,tflt) 
Condition c = (eq,ne,lts,les,gts,ges} 
Equaljty condition C~ = (eq. ne} • 
Arithmetic operation E = (add,sub,mul,div,mod,and,or,xor,sll,sra} 
State registe~ Rs = (r(h),r(b),r(e),r(hbl,r(pc),r(cp),r(tmp_cp),r(trl} 
Argument register R., = ( r (I) I natural(l) } 
Permanent register R, = I P <Il I natural(l) } 
Addressing mode X = A u R. u R, u ( r ( h l , r (b l } u ( T- X 1 T e T, " X eX } 

{[X) I X eX J u ( X+N I X eX" naturai(N)} 
u • 

Instruction I (fhe set of BAM insuuctions is defined in section 3.2 and Appendix B) 

lion about a tenn. The tag of a term stored in a register is the information about the term that is indepen-

dent of the term's location in memory and can be obtained without doing a memory reference. The val u.e • 
of a term in a register tells where to find the rest of the term. A register is partitioned into two fields which 

contain the tag and the value of a term. 

The encoding of information in tags is designed to simplify common operations. It is similar to the • 
encoding used in the WAM (Figure 2.5). Atoms are represented as immediate values with a tatm tag. 

Jntcgers arc represented as themselves, and are considered to have tint, tneg, or tpos tags for the 

conditional branches that look at tags. Unbound variables are represented as pointerS with a tvar tag • 
that point to themselves or anolher unbound variable. SuuctureS and lists are represented as pointerS with 

tags tstr or tlst. They point to a contiguous block of their arguments on the heap. lbe main functor 

and arity or a structure are stored there encoded in a single word. The main fWlctor and arity of a list (cons • 
cell) are not stored since they arc known implicitly. 

The BAM defines five mappings to represent and access all data structures used during execution 

(Table 3.4). These mappings arc the Register Sel, the Heap, the Trail, the Code Space, and the label Map. • 
An infinite number or argument and permanent registers is a'iSUmcd lO exisL or all registers. only the heap 

• 
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Table 3.4 - Run-time data sUllctures of the BAM 

Name Definition 
Register Set (R,uR.,uR,)-. w 
Heap w-. w 
Trail N-. w 
Code Space N-. I 

• ubcl Map L-. N 

pointer r (h) and the backtrack pointer r (b) are made explicit in the ins1ruction set The others are 

implicit in its execution. Environments and choice points arc represented as register sets that are s10red in 

• registers r (e) and r (b), respectively.· Pn?Jog tenns are stored in registers, on the heap, and on the 

trail. Compound terms are stored on the heap as sequences of words in the same manner as is done in the 

W AM (Figure 2.5). For all types except atoms, the value field of a word is a natural number that indexes 

• into the heap, ~nd therefore points 10 terms on the heap. For atoms, lhe value field is the symbolic atom 

itself. The correspondence between tags and Prolog data types is given in Table 3.5. 

Table 3.5 - Correspondence of tags with Prolog data types 

• Tag Data type 
tvar An unbound variable or a general pointer. 
tstr Pointer to a structure-a compound term with a functor and fixed number of arguments. 
tlst Pointer to a cons cell-a compound term consisting of two parts, a head and a tail. 
tatm Ana10m. 
tpos A nonnegative integer. 
tneg A negative integer. 
tint An integer. • 
tflt A floating point number. 

The following descriptions clarify the correspondence between BAM types and Prolog types: 

• (1) The value corresponding to a pointer tag is an index into an array of words. This is normally imple-

mented as an address. 

(2) The value corresponding to a tatm tag is a symbol that uniquely identifies an atom or lhe main 

• functor of a structure. ll is a Prolog atom or a Prolog structure of the form FIN where F is a Prolog 

atom repre!ienling the functor and N is a nonnegative integer representing the arity. For com:ctnesS. 

the assembler and run-time system muSl guarancce an exact correspondence between this symbol and· 

• the con~ents of the run-time symbol table, so that the built-ins name/2, functor/3, arg/3, 

and • .• /2 all work correctly . 

• 
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(3) The value corresponding co a tpos or tneg tag is a nonnegative integer lhal represeniS lhe abso-

lute value of the integer represented by the word. • 
(4) The value corresponding to a tint tag is an integer that represeniS the value of the integer 

represented by the word. 

(5) The value corresponding to a tflt tag is a lloating point number chat represents the value of the • 
number represented by the word. 

Nothing is assumed about how these types·~ represented on a reai machine. When the BAM is wgetod 

co a real machine lhen the n:presencation of types on lhe machine must be defined. The representation of • 
types changes with different target machines. different versions of the system, and even different programs . . 
The Implemen1;3tion Manual [31] discusses how to port the BAM. Symbolic labels are pointers co code. · 

Since mappings can be of any size, they are pointers to data StaCks in memory. The representation of a .. • 
worA depends on the encoding used 10 represent tags on the machine. the word size of the machine. and on 

the encoding of Prolog atoms into unique bit pauems. For the VLSI-BAM processor, all four types are 

mapped inco 32 bits and words consist of 4 bit tags and 28 bit values. • 
Table 3.6 -Notation for arguments of BAM instructions 

Argument Type 
X, Y, z Addressing modes, elements of X. Most insuuctions use a subset of all possible 

addressing modes. • 
L, Ll, L2, L3 Branch destinations. element<; of L. 
N A natural number. element of N. 
A A Prolog atom, element of A. 

Tag A tag value, element ofT. 
Eq An equality condition, element of c •. • Cond A condition, element of C. 
Op An arithmetic operation, element of E. 
RegList A list of registers used in choice point management 

RegList e { (<Xo,O:J ••••• a.,] lneN,a;e (i,no) ). 

3.2. Ao overvi~· of the BAM • 
The BAM uses types and data SUUClUres similar to lhe W AM. It has registers and stacks similar co 

the W AM and uses a similar execution strategy. However, the insuuaion set is complcu:ly different. The • 
BAM has a load-score instruction set &hat is extended with aagged addressing modes and a few primitive 

Prolog-spcci6c insauaions. A summ&r)' of lhc addressing modes and instructions is given in Tables 3.6 

• 
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through 3.10. All insuuctions use only a subset of the addressing modes given in Table 3.3. The insttuc-

tion set includes: 

• Simple instructions (Table 3.7). These arc s.imple register-transfer level operations for a tagged 

architecture. They include move, push, conditional branch, and arithmetic. These insuuctions are 

• used to implement many cases of unifiattion and many built-in prediattes. 

• Complex instructions (Table 3.8). There are five frequently-used operations defined as single 

•• instructions: dercfcrencing (following a pointer chain 10 ilS end),lrailing (saving a variable's address 

so it can be restored on backuacking}, gener.aJ unification (when lhe compiler cannot simplify the 

general case). choice point handling (saving and restoring state for backtracking), and environment . 
• handling (creating and removing local stack frames) . 

• Embedded information (Table 3.9). This allows a better translation to the assembly language of the 

• target machine. This information is expressed in two ways: (1) with pragmas, which resemble 

• instructions but arc not executable, and (2) by extcnding instructions with additional argumenlS. An 

example of (I) is the tag pragma, which gives the tag of a load or a SIOre, e.g.: 

pragma(tag(r,(l).tvar)). \ Register r(l) contains a tvar tag. 
move([r(l)],r(O)). \Load register r(O) from register r(l)-• 

By giving the tag at compile-time, this avoids tag masking on a ·general-purpose processor and 

allows the load to be done in a single cycle. An example of (2) is: 

• unify(r(O),r(l),?,nonvar,fail). \Register r(l) is nonvariable. 

This gives no information about r ( 0) but says lhat r ( 1 ) is nonyariable. This allows the 

unification 10 be done more efficiendy because no check has 10 be done whether r < 1) is unbound . 

• • User instructions (Table 3.10). The BAM language is extended with several instructions, regislel'S, 

and t.ags that arc never output by the compiler, but arc intended for usc only by a BAM as.c;cmbly 

programmer. This allows the non-Prolog component of the run-time system to be written completely 

• in BAM assembly. The.c;c insuuctions arc described in Ap~.ndix D . 

• 
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Table 3.7- Simple insuuctions 

Instruction Meaning 

equal(X,Y,Ll Branch tot if X and Y are not equal. • move(X,Yl Move X lOY. 
push(X,Y,N) Push X on stack with stack pointer Y and post-incremenl N. 
Op(X,Y,Z) Perform the arithmetic operation Op on X and Y and store the 

result in Z. Trap if an operand or the result is not integer. 
adda(X,Y,Z) Full-word non-trapping add of a word X and an offset Y, giving 

a word Z. • pad(N) Add N to the heap pointer. 

switch(Tag,X,Ll,L2,L3) Three-way branch; branch lOLl, L2, L3 depending on whether 
she tag of X is tvar, Tag, or any other value. 

test(Eq,Tag,X,L) Branch to L if the tag of X is equal or not equallO ·Tag. 
hash(T,X,N,L) Look up X in a hash table of length N located at L If X is in 

the table lhen branch 10 the label in the table, else fall through. • ' Te {atomic, structure}. 
pair (E, Ll A hash table entry.· E is eilher an atom or a pair functor/arity. 
jump(C?nd,X,Y,Ll Jump lo L if the arithmetic comparison of X and Y is true. Trap 

if an operand is not integer. 
jump(Ll Jump unconditionally lO L. 
label (L) L is a branch destination. • . procedure(Name/Arity) Mark the beginning of a procedure. 
call (Name/Arityl CaJllhe procedure Name/Arity. 
jump(Name/Arityl Jump lO the procedure Name/Arity. 
return Return from a procedure call. 
simple_call(Name/Arityl Non-nestable call used to interface with routines wriuen in 

BAM assembly. • 
simple return Non-nestable rewm used for routines wriuen in BAM assembly. 

3.3. Justification of the complex instructions 

The execution of Prolog requires five complex operations: dereferencing, trailing, Wlification. back- • 
tracking, and environment management These operations are represented as single instructions in the 

BAM. In the WAM, derefcrcncing, trailing. and unification are done implicitly by many instructions even 

when they arc not needed. Making them explicit aUows the compiler lO minimize their use as much as pos- • 
sible by doing them only when they are really needed. 

The complex instructions could be expanded into sequences of simple instructions; however, this 

expansion is not done at the BAM level but is delayed lO the machine level. There arc two reasons for this: • 
(I) Some machines may implcmcm pan or all of a compte~ instruction directly. Expanding it imo sim-

pie instructions is therefore premature since it would make this harder to detect For example, the 

VLSI·BAM processor has suppon for some compte~ instructions (e.g. derefcrencing, trailing, and • 
unification). 

• 
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• Table 3.8- Complex instructions 
Instruction Meaning 

deref (X, Yl Dereferenae X and store result in Y. 
trail IX) Push X on the trail stack if the trail condition is satisfied. 
unify(X,Y,Tx,Ty,LJ Gencr.ll unification of X and Y. branch to l if fail. Trailing is 

done by this instruction. The extra parameters Tx. Ty e ( "?, 
var, nonvar} give information to improve the uanslation. • 
They are not needed for correcllless. 

unify_atomic(X,A,Ll Unify X with the atom A and branch w l if fail. No uailing is 
done by this instruction. 

allocate IN) Create an environment of size N on the local stack. 

I 

I 

• deallocate(N) ·ReiJlOVe the top-most environment from the local stack. 

choice(l/N,Regtist,LJ Create a choice point containing t'te registers lisccd in 
Reg List and set the retl)' address 10 L. 

choice!I/N,RegList,L) Restore the argument registers listed in R.egList from the 
(I<I<N) current choice point, and modify the retry address 10 L. 
choice(~/N,RegList,fail) Restore the argument regiscers listed in R.egList from the . current choice point, and pop the current choice point from the • choice point stack. 
fail Restore the machine state (except the argument registers) from 

the most recent choice point, restore 10 unbound all variables 
on the crail that were bound and trailed since the aeation of 
this choice point, and uansfer control to 1he retry address . 

move (r (b), X) Move the backtrack pointer 10 X. This must be done at the en-• tty of any predicate containing a cuL 
cut (X) Malee the choice point poinled to by X the new 10p of 1he 

choice point stack . 

• 
. 

Table 3.9- Embedded information (pragmas) 
Instruction Meaning 

pragma(align(X,N)) The contents of location X are a multiple of N. 
pragma(tag(X,Tag)) The contents of location X have tag Tag. 
pragma(push{term(N))) A tenn of size N is about to be cr-...ated on the heap. 
pragma(push(cons)) A cons cell is about to be created on the heap. 

• pragma(push(structure(N))) A sb'Ucture of arily N js aboullO be crealed on lhe heap. 
praqma(push(variableJ) An unbound variable is about to be created on the heap. 
pragma(hash length(NJ) A hash table of leng1h N is about 10 be created. 

(2) For best perfonnancc, optimizations should be done at all levels. The BAM level makes cenain 

• optimizations easy, e.g. the determinism optimization in Chapter 6. Keeping 1he complex operations 

as single instructions allows them 10 be optimized directly. For example, if a variable is dercfer-

cnced twice then the second dereference can be removed. This is much harder to detect if lhe 

• dereference instruction is expanded imo a loop . 

It is best 10 avoid assumptions aboul the characteristics of the aarget machine. In the cases where such 

assumptions would be useful, the BAM uses pragmas to give the infonnalion without compromising the 



lnstruClion 
ord(X,Yl 
val (T, X, Y) 
jump_reg (R) 
jump_nt(Cond,X,Y,L) 

Op_nt(X,Y,Z) 

trail_bda(Xl 

Table 3.10 - User instructions 

Mcanif!S 
Extract me value of X and move it toY. 
Create the wordY from the tag T and lhe value X. 
Jump to address stored in register R. 
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Jump to L if the full word comparison of X and Y is uue. 
Never trap. 
Perform lhe full word arithmetic operation Op (except mufti
ply and divide) on X and Y and store the result in Z. Never 
lr3p. 
Push address X and the value stored there on the trail stack if 

.the trail condition is satisfied. This is a special trail instruction 
for.backlr3ckablc desuuctive assignment. 

machine independence. The translator is free to use or ignore this information. 

3.4. Justification of the instructions needed for unification 

This section constructs the BAM instructions that contain the required instructions and addressing 

modes to suppon unification. ll lUms out that both simple and complex instructions are necessary 10 sup-

port unification. The instructions are constructed starting from an algorithm for unification and a very gen-

eral intermediate language. The algorithm is decomposed into specialized instructions depending on the 

fonn of the data known at compile-time. 

The two starting points arc (I) an algorithm for unification (a specification of a unification algorithm 

is given in Appendix C), and (2) a very. general insuuction seL The method proceeds in a lOp-down 

manner by decomposing the unification algorithm into specialized insuuctions depending on information 

about the form of the data known at compile-time (Figure 3.4). 

This method is inspired by Kursawe [41) and Holmer (32). Kursawe applies partjal evaluation and 

specialization in a top-down manner starting from a Prolog program and obtains an insuuction set resem-

bling the W AM. Holmer describes several techniques for the automatic design of instruction sets, of which 

decomposition is one. To go beyond the W AM ir is necessary ro make assumptions about the archil.eelure, 

a step that Kursawe does not lake. The design of the BAM starts with a general instruction set thal does 

make these assumptions. 

The choice of what genentl insU"UCtion set to SWt with is imponant. h is not useful 10 SW1 with an 

insuuction set that ha~ too little expressive power, for example one with a limited set or addressing modes. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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• 
Unification 

• Algorilhm 

"J General Specific 
Intermediate 

/ 
Intermediate 

Language . Language • 
Decomposition 

• Figure 3.4 - Decomposition of unification 

because the required addressing modes ~ not yet known. Prematurely decomposing complex inslructions . 

• into simple ones side-steps the results . 

The following assumptions are made: 

(J) The architecture is sequential and of Von Neumann design with multiple registers . 

• (2) The basic data element is a word, which is large enough 10 con&ain an address. A regislcr holds one 

word. 

(3) The instructions ha,·c three parts: 

• • An action. Some sample actions are data movement (move, push), conditional branching 

(equal), and general wtification (unify). Other imponant actions are multi-way branching 

(switch) and several Prolog-spccific operations (de ref, trail) . 

• • A set of arguments. Unification acts on two operands, so typically two arguments are 

sufficient. 

• • A set of destination addresses. Depending on the outcome of lhe action, con1r01 continues at 

one of the destinations. The size of the set and the meaning of its members depends on lhe 

action. The address of the next insuuction in the instrUction S1ream is an implicit member of 

• 
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lhe set. 

(4) Arguments are referenced with multiple addre~ing modes. An infinite set of addressing modes are • 
' 

defined in Table 3.3. The insU1Jctions derived in lhis section will need only 6nite subseL For cl~ty, 

Table 3.11 gives some abbreviations useful for lhis subset 

• Table 3.11 -Useful abbreviations 

Notation Meaning 

Disp a positive heap displacement (bounded by the size of a tenn). 
Offset a nonnegative .offset in10 a structure (bounded by lhe arity). 
Imm an immediate value; an atom or a numeric constant. 
Var a variable local co a clause, i.e. r ( I ) or p ( J) . • 
Arg denotes Var or (Var+Offset J. 

Construction of the instruction set proceeds in the following steps. The data representation has already . 
been fixed (siction 3.1). The existence of two forms of unification (read mode and write mode) and lhe • 
need for dcreferencing and a lhree-way branch is shown. The insuuctions required for read mode and 

write mode arc constructed. Finally, the effects of variable representation (in registers or on the environ-

ment) on the instruction set are discussed. • 
3.4.1. The existence of read mode and write mode 

The compilation of the unification T 1 = T 2, where T 1 and T 2 are two arbitrary tenns, is reduced 10 • the compilation of V = T where at compile-time V is a variable and T is any tenn. At run-time there are 

lwo values of V that result in different actions of the unification aigorithm: 

(I) V is an unbound variable, in which case T is consuucted on lhe fly and bound to \' (this is called • 
writ~ mod~). To satisfy the standard definition of unification, when T is bound 10 V a check needs 10 

be done (the occur check) that T does not contain V. Following Prolog implementation convention. 

this check is ignored for efficiency reasons. • 
(2) v is a nonvariablc term, in which case it is checked lhatlhe form of V matches T, and the algorithm 

is invoked recursively for the term's arguments (this is called read mod~). 

• 

• 
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3.4.2. The need for derderencing 

Unifying two unbound variables makes one point to the other. Doing this several times leads 10 

pointer chains, with the common value of all the variables in a single location at the end of the chain. To 

get a variable's value, the pointer chain is followed 10 its end, an operation known as dcufucncing. It can 

be provided as an addressing mode or as a separate ins1ruction. Making it an instruction avoids repeated 

dereferencing. Therefore the following instruction is added: 

deref(Varl,Var2) 

First V~rl is moved to var2. Then the tag of Var2 is checked. If it is an unbound variable (tvar) 

it reads mCI'OOf)' and a loop is entered replacing Va r2 by the referenced value while its tag is tva r and 

its pointer pari is different from Var2. A two-argument dereference is chosen over a single-argument 

dereference because it allows a more compact representation of write-once variables (Olapter 5). 

It is assumed in what follows that \' and T are dereferenced when necessary, in particular that both 

the trail and unify instructions are always given dereferenced arguments. 

3.4.3. The need for a three-way branch 

The code for a unification V = T consists of three pans: (1) a check whether V is an unbound vari

able or a nonvariable for choosing between write mode and read mode unification, (2) the instructions for 

read mode unification. and (3) the instructions for write mode unification . 

The tag field is available directly for the check of (I). The check has three possible results: the tag of 

V matches a known tag (read mode), the tag is an unbound variable tag (write mode), or the tag is neither 

(failure). This implies the following three-way branch: 

switch(Tag, Var, VarLbl, TagLbl, FailLbl) 

If the tag of Var is tvar (an unbound variabic) then jump to VarLbl. If the tag of Var matches 

Tag then jump to TagLbl. Otherwise jump to FailLbl. The failure addre.~ is explicit instead of 

implicit to allow the implementation of fast incremental shallow backltaCking . 
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3.4.4. Constructing the rtad mode instructions 

The general case of read mode unification is V;:: T, where at compile-time V is a variable oc an . 
argument of a compound term, and T is a term. The ~rst argument of each instruction is the value of V. 

Two locations arc possible for its value: 

Var 
(Var+Offsetl 

V is a variable 
V is an argument of a compound term 

The abbreviation Arg is used to denote one 9f these two addressing modes {Table 3.11). The second 

argument and the action are detennined by the compile-time knowledge of T. The possibilities are: 

(I) Tis pan.ially or wholly known at compile-time. The possible infonnation known about Tis: 

• T i$ an unbound variable that has not yet been initialized, e.g. because it is the first occurrence 

in the clause. V is moved directly to T. 

• Tis an unbound variable. V is stored toT's location in memory. 

• T is atomic. Unification reduces to a check that T and V have the same atomic value. If the 

values do not match the unification fails. 

• T is compound. Unification reduces to a check that V has the correct functor and arity, fol-

lowed by a unification of its arguments with T's arguments. If V's arguments are loaded into 

registers then the unification can be compiled recursively. It follows that arbitrarily deep nest-

ing of addressing modes is not necessary if one instruction is added: 

move([Var+Offset], Var) 

(2) Nodling is known about T at compile-time. The unification or V and T ~uires a general 

unification. 

The following table of primitive instructions summarizes the action and both arguments: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Action Argumcm \' Argument T Explanation 
move Arg Var T is an unbound variable that has not yet 

been initialized. 
move Arg (Var] i is an unbound variable that has been 

initialized. 
equal Arg Var T is atomic or compound and its main 

functor is noc known aL compile-time . 
equal Arg Tag·rnun T is atomic or compound and its main 

functor is known at compile-time. 
unify Arg Var Nothing is known about T at compile-

time. 

The insuuctions equal and unify both'can. fail, so they have a failure address as third argument. The 

equal insuuction compares its arguments and jumps to FailLbl if they are not equal. 

General unification (unify) is the most complex instruction. If the unification fails it jumps 10 

Fa i lLbl. This instruction can be implemented using only the other instructions. However, it seems that 

one additional insa-uction is useful: a multi-way branch with a different destination for each possible &ag 

. value. If there are many possible tags this implies the exis~ence of a jump &able in memory, so that the 

insuuction must do a memory reference before it can branch. Instead of using this instruction, another 

approach is to use a multilevel tree based on the three-way branch. Both approaches are viable since gen-

etal unification is used rarely in real programs. According 10 measurements done by Holmer for severaJ 

large programs [33], general unification takes about4% of lhe tolal execution time of the VLSI-PLM [61]. 

More than 95% of these calls have arguments that are not compound tenns of the same type and therefore 

do not need the recursive algorithm . 

3.4.5. Constructing the \\Tite mode instructions 

The general case of write mode unification is V = T, where V is known 10 be an unbound variable at 

run-time and T is a tenn. Assume that lhe ierm T is created on a staek (called the Map) wilh a minimal 

number of move insuuctions. This assumption forces us to derive lhe form that a compound term has on 

the heap. The following are lhe possible values of words of a compound l.enn: 

Var 
Tag· Imm 
Tag· (r (h) -Disp) 

a variable (assumed initialized) 
a simple subterm of T 
a pointer to a compound subterm of T 

These are the source addr.:ssing modes for the move insll'Uctions. A variable Var does not have to be 
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dereferenced when it is stored on the heap because its value is not read. The destination of the move 

instruction is a location on the heap. This location can be addressed either by a displacement addressing 

mode offset from the heap pointer r (h). i.e. [ r O~l -Disp). or by an auto-increment addressing mode, 

i.e. a push instruction. The BAM uses the auto-increment addressing mode. for these reasons: 

(I) Preliminary studies using exhaustive search [32) show that with the VLSI-BAM microarchitecture 

the optimal way to create structures in write mode is by means of the idiom "load register, load 

register. double-word push··. i.e. tw~ registers are loaded and then pushed in a single instruction. 

(2) Instruction encoding is compacter, i.e. a push does not need a displacement field. 

(3) In the VLSI-BAM architecture the push instruction is given a displacement field anyway. This 

allows .~fficient implementation of uninitialized variables. For example, a cons cell whose cdr is · 

uninitialized can be created with a single push that has a displacement of 2. 

(4) In the VLSI-BAM architecture the use of a push instruction allows a cache optimization: when push· 

ing a diny line it is not necessary 10 flush the line first [17). This optimization was first done in the 

PSI-II architecture [52). 

To summarize. 10 create a tenn on the heap it is sufficient to choose from the following set of three instruc-

lions (where r (h) is the stack pointer and l is the inaement): 

push (Var. r (h) , 1) 
push(Tag"lmm, r(h), 1) 
push(Tag·(r(h)-Oisp), r(h), 1) 

It is also necessary to bind the term to V. This requires us 10 consider the fonn an unbound variable can 

take. There are t,;o possibilities: 

( 1) V has not yet been initialized, e.g. because it is the first occurrence in the clause. The term is moved 

directly to V. 

(2) V has been initialized; it points to a location in memory. The aerm is stored in this location. 

These two possibilities result in the following two instructions: 

• 

• 
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• 
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move (A, Var) 

move (A, {Var ll 

store directly to a variable 
(variable is not initialized) 

store to variabl~'s location 
(variable is initialized) 
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The addressing mode of the argument A depends on whether lhc tenn is compound or simple, and if it is 

simple, whether it is an atom or a variable. This results in three possible values for A: 

Var 
Tag· Imrn 
Tag· r (hi 

a simple term (variable) 
a simple term (nonvariablel 
a compound term (on the heap) 

In addition to the above instructions, it is also necessary to initialize the first occurrence of a variable. One 

way to do this is: 

move {tvar· (r (h) -Disp), Var) 
push(Var, r(h), ll 

With these instructions it is possible to create a term of size n on the heap inn pushes, a great improve-

mcnt over the W AM. which requires n +I -1 stores, I -1 dereference operations, and I -1 trail checks • 

where I is the number of functors in the tenn. This idea was first proposed by ~ Marien [44). 

3.4.6. Representation of variables 

Assume that the execution model represents variables local to a clause in an environment. or stack 

frame. There is a dedicated register r (e). called the environment poinler, that points to the current 

environment in the environment stack. Variables local to a clause are stored either in registers or in an 

environment. so the notation Var deno&es one of the following two addressing modes: 

r(l) 

p(J) 

a variable in a register 
a variable on the environment stack 

where p (J) is implemeniCd ac; an offset into the environment, i.e. as ( r (e) +J'] for some J'. This 

implies that double indirection is possible:: the addressing mode (Var+Offset 1 is {p (Jl +Offset l 

when v a r is an environment variable:. The double: indirection is avoided by including one instruction: 

move (p (J l , r (I I I 
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Table 3.12- Data movement insuuctions for unification 

Read mode Write mode 

move(Arg, Var) push ivar, r (h), 1) 
move(Arg, {VarJ) push(Tag-Imm, r(h), 1) 

push(Tag-(r(h)-Displ}, r (h), 1) 
equal(Arg, Var, F) 
equal(Arg, Tag- Irrun, F) move(Var1, Var2l 

move (Tag- Irrun, Var) 
unify(Arg, Var, F) move(Tag-(r(h)-Disp), Var) 

move(Tag-r(h), Var) 

. move (Var1, (Var2J) . 
move (Tag- Irrun, [Var]) 
move (Tag- r (h), (Var]) 

Table 3.13 - Conuol tlow and other instructions for unification 

swit£h(Tag, Var, VarLbl, TagLbl, F) three-waybranch 
jum~ (Lbll join read and write mode paths 
deref(Var1, Var2) dereferenceapointerchain 

3.4.7. Summary of the unification instructions 

This section summarizes the BAM insuuctions necessary to suppon unification. Tables 3.12 and 

3.13 present the instructions. 1lley use only a small finite subset of the addressing modes of Table 3.3. 

The following typical insuuctions iUusuate the meaning of the notation: 

rnove(tatm-axe,r(3)) 

rnove((r(3)+5],r(4)) 

equal(r(2),tatrn"cat,F) 

unify(p(2),p(3),F) 

switch(tatrn,r(3),V,T,F) 

Move the atom axe into register r ( 3) . 

Move the word located at address r ( 3 1 + 5 into 
r ( 4). 

If r (2) is equal to the atom cat then fall 
through, else jump to label F. 

Unify the term located in p ( 2 > with the term locat
ed in p ( 3) • Jump fO label F if the unification 
fails. 

If r (31's tag is tvar then jump 10 label V. If 
r (3) •s tag is tatrn then jump to label T. Other
wise. jump 10 label F. 

• 
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Chapter4 

Kernel transformations 

1. Introduction 

Four optimizing transfonnations are done on the kernel Prolog representation of programs: fonnula 

manipulation, factoring, global dataflow analysis. and determinism exlr.lction. The goal of the transforma

tions is to reduce a single ~ebic: The total execution time of all unifications in the program. This metric is 

approximated by the number of unifications and by the size of the tenns being unified. The chapter first 

describes. the representation of types as logical formulas in the compiler. This is followed by a description 

of each of the fqur transfonnations: 

(I) Formula manipulation. The compiler implements a set of primitive uansformations to replace Pro

Jog code and types (both are represented as logical fonnulas) with simpler versions lha1 have identi

cal semantics. The simplicity of a fonnula is defined as the number of goals in the fonnula Thest' 

transformations are done whenever there is a possibility that the code is lOO complex. i.e. upon read

ing in a program and after other tranSformations such as the detenninism transformation (see below). 

(2) Factoring. This transformation groups sets of clauses in a predicate together if they have head 

unifications in common. This reduces abe number of head unifications and shallow backtracking 

steps . 

(3) Global dataflow analysis. This stage analyzes the program, annowes it with types, and restruCtures 

iL The analyzer uses abstract interpretation to determine the types of predicate arguments. 

(4) Determinism transformation. This stage rewrites the program to make its dclenninism explicit. i.e. 

it replaces shallow bactuaclcing by conditional branching. Many of the other ttansformations in this 

chapter are chosen to make this transfonnation possible more often. The transformation converts the 

predicate into a series of ncsled case SLatements. Sometimes this is only partially successful; cenain 

branches of the case statements may still retain disjunctions (OR choices) that could not be converted 

into detenninistic code . 
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To improve readability. lhc examples in this chapter are given in scandard Prolog nocal.ion. It is understood 

that they are represented internally in kernel Prolog. 

2. Types as logical formulas 

Throughout the compiler, type information about variables is represented with logical formulas. 

During compilation, any information learned is added lO the formula, and deduction based on the formula 

simplifies the generated code. It is a simple and powerful approach to avoid doing redundant operations at 

run-time. For example, if a variable is derefcrenccd once, then it should never be dereferenced again. 

Types in ,the compiler are defined as follows: 

Definition T: Given a predicate f In with main functor f and arity n, a type off In is a 1enn 

(f(A 1,A2. ···,Aft):- Formula) where the A1,Jh, ···,A. ate n distinct variables and 
Formula is a logical formula (i.e. a Prolog lenn). 

For example, the type (range (A, B,C) :-integer (A) 1 var (B) 1 integer (C)) says that the first 

and third arguments of range /3 are integers and the second argument is an unbound variable. The com-

piJer recognizes aU Prolog type-checking pmlicates in lhe type fonnula Appendix A gives a lable of the 

types recognized by lhe compiler. In addition to lhesc types, sevcral other typeS ate recognized that do not 

correspond lO Prolog predicates. These types inrroduce distinctions between objects lhal depend on 1.he 

implementation and are indistinguishable in the language, for example, the difference between an integer 

and a dereferenced integer, and the difference between an unbound variable lhat is not aJiascd 10 any other 

and an unbound variable that may be aliascd. The following types are RCOgniz.ed that do DOl exist as Pro-

log predicates: 

lnccmal Type Description 
uninit(X) X is an uninitializ.ed memory argument 
uninit_mem(X) X is an uninitiaJiz.ed memory argument 
uninit _reg(X) X is an uninitialized register argument 
unbound(X) X is of one or the types uninit_mem(X). 

uninit reg (X) ,or var (X). 

deref (X) X is dereferenccd, i.e. it is accessible without follow-
ing any pointers. 

rderef (X) X is recursively dereferenced, i.e. it is dereferenccd, 
and if it is compound then all its arguments arc recur-

~ 
sively dcrcfcrcnced. 

• 

• 
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• 
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These types should not be given by the programmer since incorrect code or a significant loss of 

efficiency may rcsuh if lhcy arc used incorrectly. For_example, declaring an argument of a predicate to be 
' 

of uninitializcd register type, i.e. lhe argument is an output that is passed in a register, may cause a large 

increase in stack space used by the program if that predicate is the last goal in a clause, because last call 

optimi1.ation is not possible in that instance. The safe approach is co leave the usc of lhese rypes up to the 

compiler . 

TI1e usc of logical formulas to hold infonpation during compilation can be conuasted wilh lhe usc of 

a symbol table in a compiler for an imperative language. t Representing types as logical fonnulas has two 

. 
advantages over a symbol table: {I) They are more flexible during compiler developrnenL The kind of 

' 
information st4>rcd in a symbol table must be known when the compiler is designed. Formulas can contain 

kinds of infonnation lhat are not known during the compiler's design. (2) They lend themselves to power-

ful.symbolic manipulation such as deduction. Improving lite deductive abilities leads to beuer code 

without ha"ing to chan£e any other pan of the compiler. The disadvantage of this representation is that its 

manipulation is siO\\'. Future versions of the compiler could use a representation that is faster in the com-

moncascs . 

Type fonnulas arc used in the following ways in lhe compiler: 

(I) Representing type information known about a set of variables. For example, lhe formula 

( v a r c x > , at om c Y > > means that X is an unbound variable and Y is an acorn. The user manual 

(Appendix A) lists lhe types recognized by the compiler. 

(2) Using a primitive form of deduction to simplify the generated oode. For example, asswne lhe for-

mula is (list (X), var CY) ,de ref (Z), •.. ). To compile a run-lime check that X is a non-

variable, the compiler first checks whether this formula implies nonvar (X) • This is true because 

list (X) imp1ics nonva r (X) , so no run-time check is necessary. 

(3) Updating the type fonnula when new information is learned. After compiling a goal. lhc formula is 

updated to repre~nt the new knowledge that is gained. For example, after e~ecuting lhc arilhmetic 

t Of counc. bach the anemhlcr and lhc Nn·\unc system usc s&andard symbol tables. 
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expression X is A+B it is known that X is an imeger, so the formula is extended with 

integer (X). e 

In most cases, logical formulas are immutable. e.g. when a variable X is known 10 be a list (represen&.ed as 

1 is t < x 1 ). lha1 fact remains true forever. This is not crue for all types. The types used to denote unbound 

variables (e.g. var (X) and uninit (X)) become faJse as a result of an instantiation. This is aJso crue • 
of the swdard order comparisons (e.g. X@<Y. X@>Y. and so forth) and the types de ref (X) and 

rderef (X). The compiler is careful10 ~e this into account when updating the type formula. 

• Table 4. I -Primitives to manipulate logical formulas and Prolog formulas 

Primitive Dcscrietion 

F 1 implies F 2 Implication: Succeeds if it can detennine that there 
does not exist an assignment to variables in F 1 and . 
F 2 that causes both F 1 and not(F 2) to succeed. 

F 2 := simplify(F 1) F 2 is a simplification ofF 1• • 
F 2 := subsume(F. F J) F 2 is a simplification ofF t. given that F is uue. 

F 2 := update_formula(F .F 1) F 2 is the result of removing information contr.ldicted 
by F from F 1 and adding F to F 1• 

3. Formula manipulation • 
The compiler implements a set of primitive tnlnsformations 10 manipulate formulas. They are swn-

marized in Table 4.1, where F, F 1, and F 2 are logical formulas. Each of lhese primitives has two versions: • 
a pure logical and a Prolog version. The logical version is used 10 manipulate types (see previous section). 

II assumes the formula has a purely logical meaning. i.e. that the operational concepts of execution order of 

goals, number of solutions, and backuacking behavior are not importanL The Prolog version is used 10 • 
manipulate kernel Prolog code. It assumes the formula must keep Prolog's operational semantics. 

Implication is implemented to work well with most combinations of Prolog predicates Lhal are used 

in type declarations. The following examples all return with success: • 

• 

• 
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Table 4.2- Examples of simplification 

Formula Simplified formula 
logical 

(true ; true) true 

(p, fail) fail 

(!, p ; q) (p ; q) 

. 
atom (X) implies nonvar (X) 
X<Y ilt!plies integer (X) 
X<S implies X<lO 

Prolog; 

(true ; true) 

(p, fail) 

. .< ! , p) 

uninit (XI implies deref (X) 
functor (X, _, 0) implies atomic (X) 
(X•=a; X= .. bl implies atom (X) 

Comments 

The Prolog version is unchanged 
unless the compiler option 
same_number_solutions is 
disabled. 

The Prolog version is unchanged 
unless the compiler can deduce that 
p has no side effects (read I write 
or assen I retract). 

Cut is logically identical to true. 
but it must be reuined since it 
modifies backuack behavior in the 
entire clause containing iL 
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Simplification is done on standard Prolog, on kernel Prolog, and on type formulas. Table 4.2 gives some 

examples to illustrate the difference between logical and Prolog semantics. A single function simplify(F) 

handles both logical and Prolog semantics (Figure 4.1). For conciseness. the definition of simplify(F) uses 

the compound tenns (A, Bl, (A; Bl. (A->B). and <\+(A)) both as selectors (to choose the branch 

of lhe case Statement) and consuuctors (in the calls to simp_srep(F )). Tables 4.3 and 4.4 define pan of the 

definition of simp_step(F ). the primitive simplification step. The complete definition contains about SO 

rules. The functions subsume(F, F •> and updare_fonnula{F. F •> are implemented in a similar way . 

(unction simplify(F : formula) : formula; 
b~gin 

~nd; 

case /*decompose the fonnula •1 
F = (A, Bl :return simp_step( csimplify(A), simplify(B)l ); I* and •J 
F = (A: B) :return simp_step( (simplify(A);simplify(B)I ); I* or •t 
F = (A->Bl :return simp_step( Csimplify(A)->simplify(B)) ); I* implies •J 
F =\+(AI :return simp_step( \+ (simplify(A)) ); /*negation •J 
othuwise :return simp_step(F); 
fnd 

Figure 4.1 -Simplification of a fonnula 
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Table 4.3- Simplification rules (pan of simp_step's definition) 

Rule Condition 10 apply this rule 
Input formula Output formula : • 
(true, A) A (none) 

(A, true) A (none) 

(true;A) true semantics(prolog) "' no_side_effects(A) " diff_sol "' no_bind(A) 
(true;A) true semantics(logical) 
(A,faill fail semantics(prolog) " no_side_effeclS(A) 
(A, fail) fail semantics( logical) • 
(fail,A) fail (none) 

(faiL A/ A (none) 

(A->true;B) A seman.tics(prolog) "' succeeds(A) "' deterministic(A) 
(A->true;Bl A semantics(logical) " succeeds(A) 

A fail semantics{prolog) "' fails{A) ,.. no_side_effects(A) 
A fail semantics(logical) ,.. fails(A) • 

Table 4.4 ~The conditions for applying simplification rules 

C-ondition Description 

semantics($) Simplify according to semantics S where S e {prolog,logical). 
no_side_effects(A) Formula A does not have side effects when executed. • 
deterministic( A) Formula A gives only one solution when eJtecuted. 
no_bind(A) Formula A does not bind any variables. 
diff_sol Relax semantics of Prolog to allow a different number of solutions. 
succeeds( A) Formula A always succeeds when executed. 
fails(A) Formula A always fails when executed. • 

4. Factoring 

Factoring is based on the operation of finding the most-specific-generalization. or MSG. of two 

• terms. Factoring collects groups of clauses whose heads can be combined in nonlrivial fashion using the 

MSG operation. The advan1age of factoring is that it reduces the number of unifications performed during 

execution. Figure 4.2 defines the MSG in terms of unification. Given two terms T 1 and T2. tonsider the 

• set M of all terms that unify with both of them. The MSG of Ta and T2 is the unique clement T,. of M 

which unified with any other element U of M gives T,... lntuitively,1his says that T. contains the maximal 

common information of T, and T 2· 

• 
The MSG (also called anti-unification) is the dual operation to Wlification. Given two terms, 

unification finds a term that is a more inSiantiatcd case of each of the two, i.e. the most general common 

instance of the two. The MSG is a term of which each of the two is a more inSiantiated case. For example, • 
consider the two compound terms s (A, x, Cl and s (A, B, y). Unifying these two terms results in 

s (A, x, yl. l1lc MSG of the two terms is s (A, B, C). Unification may fail, i.e. the most general unifier 

• 
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function msg(T1 • T2 : cenn): l.Cnn; 
var 

begin 

end; 

M : set of tcnn; 
T,.,. U: term; 

M := { T I T unifies with T 1 and T unifies with T 2 ) ; 

FindT,..eM suchlhat'VU eM :Wlify(U,T,..)=T .. : 
recurn T,. 

Figure 4.2- The most specific generalization 
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is the emp'ty set. Finding the MSG never fails. In the worst case, the generalization of the two lel11lS is an 
~ 

unbound variable, which represents the set of all tenns. For example, consider the two atomic cenns x 

. 
and y. Unifyiag these two results in failure, whereas the MSG is an unbound variable. 

Another way of viewing the MSG operation is as an appoximal.ion to the union of two sets. Every 

cenn corresponds to a set by instantiating the variables in the term to aU possible ground values. In general • 

the union of two of lhesc sets does not correspond to any term. The MSG finds lhe smallest superset of the 

union that is represenled by a term. A similar property holds of unification: it finds the largest subset of the 

intersection that is represenled by a cenn . 

For all arguments of the predicate, the factoring uansfonnation finds the largest contiguous set of 

clauses whose MSG is a compound cenn. This set is used to define a dummy predicale and the definition of 

the original predicace is modified to call the dummy predicate. The algorithm is given in Figure 4.3. As an 

example of factoring, consider the predicate: 

h((xi_J). 

h((yl_)). 
h((J) • 

The lists in the heads of the first two clauses are combined: the MSG or ( x 1_1 and ( y 1_1 is (_I_). 

The result afcer factoring is: 



procedure factoring: 
var 

begin 

end: 

M: tenn: 
C; , C ', : clause: 
x • PIt : list of clause; 
a , i • p , q : integer; 

f'or each predicate P in the program do begin 

tnd 

t• At this point P = ( C 1 • C 2 ••••• C,. ) (list of n clauses) •t 
t• and C; = (H; :- B;) (Each clause has head H, and body 8,) •t 
for a := I to arity(P) do begin· . 

tnd 

Partition P such that each contiguous group x = ( c, . c,.1 ..... c, ] (J Sp Sq Sn) 
satisfies exacUy one of the two properties: 
1. Either p =q {x contains only one clause). or 

' 2. x is the largest group for which M = ..,SG (argument a of H;) is compound . .. , 
for each contiguous group x do if p < q tben begin 

I'* Create the dummy predicate P" •t 

end 

for i := p to q do begin 
C'; :=C;; 
Remove M from H ';; 
Add all variables in M as arguments to H '; 

end; 
P. := r c·, ..... c·, J; 
I'* Create the call to the dummy predicate •t 
H := {new head with same functor and arity as P and M in argument a); 
H • := {new head with same functor and arity as P .); 
for i ::: I to arity(P) do if i ~a then begin 

Make argwnent i of H and 11. identical 
tnd; 
Replace 1t in P by the single clause C" = (H :- H J 

Figure 4.3-The factoring U'aRSfonnation 

h((AIB)) :- h' (8, A). 

h((J). 

h' (8, X) • 

h' (8, y). 
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Factoring reduces the number of unifications done at run-time in t~'O ways: {l) compound tenns arc only 

created once during predicate execution, instead of being repeated for each clause {e.g. the list t A 1 B J in 

&he example). and (2) chc arJ;wnents of compound terms become predicate arguments. which more often 
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allows the dctenninism transfonnation to conven shallow backtracking into detenninistic selection (e.g. lhe 

value of lhe second argument of lhe predicate h' determines lhe correct clause directly without any 

superfluous unif•cations). The following heuristic is used: 

Factoring Heuristic: For each argument in a predicate, factor lhe largest set of contiguous 
clauses whose MSG is a compound tenn. Repeat this operation until no more factoring is pos
sible. 

This heuristic needs refinement in some cases to avoid superfluous choice point creation which may slow 

down execution. The savings of multiple suucture creation (how many fewer unifications are done) should 

be weighed against how much deterministic selection is possible in lhe dummy predicates. 

If the compiler option same_order_solutions is enabled (the default) then the operational 

semantics is that of standard Prolog. i.e. the order of solutions returned on bacltuacking is identical to that 

of standard Prolog. Disabling the option relaxes the semantics of slandard Prolog by also factoring non-

contiguous clauses whose MSG is a compound term. This may change the ordering of solutions on back-

tracking. This option allows experimentation wilh variations of standard Prolog semantics . 

To illustrate how factoring can reduce lhe amount of shaUow baclttracJcjng, consider lhe following predi-

cate, which is part of a definition of quickson: 

partition([YIL),X, (Y1Ll).L2~ :- Y-<X, 
partition((YILJ,X,Ll, (YIL2)) -- Y>X, 
part. it ion ( r 1 • -. ( 1 • () ) -

partition(L,X,Ll,L2). 
partition(L,X,Ll,L2). 

The first argument of the first two clauses can be factored, resulting in: 

pardtiord(YIL],X,Ll,L2l ·-partition' (L,X,Ll,L2,Y). 
partition(!),_,[],()). 

partition' (L,X, (YILl),L2,Y) ·- Y-<x. partition(L,X,Ll,L2). 
partition' (L,X,Ll, (YIL2l.Yl ·- Y>X, partition(L,X,Ll,L2) • 

(In the c-ompound term [Y 1 L) the rightmost variable L is kept in lhe same argument position and lt.c 

other variable Y as put at the end of the goal.) l)le transfonnation results in only a single unification of 

[ Y 1 L J instead of two in the original definition. In the dummy predicate the comparisons 'Y•<X and 

Y> x usc arguments of the predicate, not arsuments of a compound term. This makes it possible lO compile 

partition /4 with a conditional branch instead of with shallow backtracking. 
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S. Global dataflow analysis 

It is difficult to obtain infonnation about a p~gr:un by executing it in its original fonn, since the • 
range of possible behaviors is potenually infinite, and even simple properties of programs may be undccid-

able. To get around this problem, the idea of abstract int~rpretation is to uansfonn the program imo a 

simpler fonn which allows practical analysis. After l.hc analysis the inverse ttansfonnation gives infonna- • 
tion about the original program. The fundamentals of a general method based on this approach and its 

mathematical underpinning are explained by ~ildall [37] and Cousot & Cousot [23). Marriou and Sander-

gaard [47) give a lucid explanation of the basic ideas. This method has been studied extensively and • 
developed into a practical tool for Prolog (18, 21.24, 25,49,50. 53,66,67, 76,84). 

' 
The four sections that follow summarize the relevant pans of the theory of absuact interpretation, · 

present my application of it to Prolog, describe the analysis algorithm in detail, and discuss the integration • 
of the algorithm into the body of the compiler. In Chapter 7 an evaluation is done of the effectiveness of 

the algorithm. 

• 
S.l. The theory of abstract interpretation 

The transfonned program should mimic the original faithfully. This is made rigorous by introducing 

the concept of descriptions of data objects. Let E be the powerset, i.e. the set of all subsets, of a set of data • 
objects, and D be a partially ordered set of descriptions. Then an abstract interpretation is defined by the 

following conditions: 

(I) £, :£-+£, D, :D-+D • 
(2) a:£-+D,y:D-+£ 

(3) a andy are monotonic. • 
(4) 'v'deD :d =a(y(d)) 

(5) 'v'eeE :c ~y(<x(e)) 

(6) VdeD :E,.(y(d))~y(Dr(d)) • 

• 
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The opera10r Ep in l.he first condition describes a single step of the execution of the program P as a state 

transfonnation. Symbolic execution of the ttansfonned program is described by the operator Dp. Except 

for •he conditions given above, the choice of Ep and Dp is completely free. The choice is guided by 

several trade-offs. for example: (I) speed versus precision of the analysis, (2) complex icy versus confidence 

in the correcUlCss of the analysis. 

As an example of £p (from Cousot & Cousot [23}). consider a program in an imperative language 

represented as a graph where each node is ;1 simple statement such as an assignment or a conditional. Let 

an t!nvironment be defined as a correspondence between each variable in the program and a possible value. 

Then fofeach edge of the graph a set of possible environments (called a contt:Xl) is given. Initially they are 

all unknown . • 1\n application of Ep transforms all contexts to their new values reached after one execution 

step. 

. For Prolog, a natural choice is to identify £, with the standard operator T" : 1!• ~ 28
• which 

describes its procedural semantics. In this case£ is 28
•. where Bp is the Herbrand universe of the program 

P. i.e. the set of all ground goalst that can be constructed using predicatcs. functors, and constants of the 

program. r, does a single "forward chaining .. SteP to find the conclusions lhat can be inferred from a 

given set of ground goals. Fonnally. T, maps any I ~ Bp into T p (I)= {A e Bp : A :- At. · · · • Aa is a 

ground instance of a clause in P and {A t. · · · ,A,. } ~I ) . In other words, an application ofT, transfonns 

a subset of Bp into a new subset containing the new goals inferred from the program's clauses given the 

old goals. The mt!aning of a program P is defined as lfp ( Tp) (where lfp = the lca..;t tixpoint operator) . 

This is the set of all ground goals that can be derived from the program clauses. For example, consider the 

following program: 

nat (0). 

nat(s(Xl) :- nat(X). 

which Slates that nat <XI is true if X is zero or X is the successor of a nalural number. The program's 

meaning is: 

t ~ •~ called •·a•om··· in malhanalicalloaic. To aYOid confusion with lhc •om data IYJIC in Proloc.lhis disscna
lion uses lhc J>roluc tcrmiiiUIIJG~ . 
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I nat(O), nat(s(O)), nat(s(s(O))), nat(s(s(s(O)))), ••• I 

which represcnlS the set of natural numbers. • 
The second and third conditions introduce the operators a (the abstraction function) and l (the con-

cretization function). The operator a:£ -+D determines the description corresponding 10 a particular set 

of data objecLS. The operator y:D -+£ determines the set of data objects conesponding to a particular • 
description. 

. 
The founh and fifth conditions ensure that a and l behave correctly with respect to each Olher. Con-

• dilion four means that in going from descriptions to data objects and back no information is lost.. Condition 

five means that in going from a data object 10 a description and back that the resulting set of data objects . 
includes the original data objecL The sixth condition is known as the sof~n~ss criterion. It is necessary 10 

• ensure that the symbolic execution (through D1 ) mimics the execution of P accwately (through E, ). In 

oth~r words, the abstract interpretation gives descriptions that include all the data objects that the execution 

of the original program gives. 

• To illustrate what the conditions mean consider the abstract domain of signs of real numbers. The 

data objects are real numbers .. Let there be three possible signs for numbers: + (positive).- (negative), and 

0 (zero). The set of descriptions D describes the possible states of a set of reals, so it contains all combina- • lions of the three signs: 

D = { {). {0), {+}, {-), {+,-}. {-.0), {+,0}. (+,-,0}} 

According to the second condition a maps a set of reals onto its signs, and l maps a set of signs onto a set • 
of reals. For example: 

a({-5))=(-) 

• a((-3,5})=(+.-1 

y((+))= ( rE R,r>O} 

The founh condition says that going from a sign to a set of rcals and back will give the same sign. The • 
fifth condition says that going from a set of reals to a sign and bad: will give a set of reals that includes the 

• 
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original seL So for example: 

{+} = o.(y( {+))) 

since: y( (+})=the set of positive reals, whose sign is {+).and: 

(5} cy(o.((5})) 

since a( ( 5)) =(+),andy((+)) is the: set of positive reals, which contains 5. In order 10 explain condi-

tion six, consider the: equation 27x37. Here£,. is multiplication of reals. and D,. is the corresponding 

operation in the abstract domain of signs. The multiplication corresponds to { +) x { + 1 i.Ji the abstract 

domain. The result of the absuact multiplication should be { +). since 27 x 37 = 999. which is positive. 

Condition six is a formalization of this requirement 

Dataflow· analysis is done by transforming lhe original program ovu the domain E described byE,. 

10 a new version ovu lhe domain D described by D,. Then y( lfp ( D, )) {Jfp = the least fix point operator) 

. 
gives a conservative estimate: of. the required infonnation. Much work has been done in discovering useful 

domains D for particular applications and efficient algorithms for finding .fixpoints of D, {10,53]. 

5.2. A practical application of abstract interpretation to Prolog 

The implemenwion of abstract inte:pretation presented in this dissertation uses a very different £, 

from lhe one suggested in the previous section by the: formal definition of Prolog's procedural semantics. 

The choice of E,. used in the Aquarius compiler closely follows execution on a machine. Consider a pro-

gram wilh n predicates P;. The doto objuu are lhe n -blples (T 1 • T 2 • • • • • T.) where each T; is a functor 

of same name a.ld arity as P, and the arguments ofT; are terms constructed using data functors and atomic 

tmns in lhe program and possibly containing unbound variables. £ is the powerset of these data objects. 

The tkscription.f are the n -blples (L 1 • L 2 • • • • • L.) where each L; is a functor of same name and arity as 

P; and che arguments of L; are constrained 10 be on a given finite lattice. D is the set of these descriptions. 

A ltUiict is a partially ordered set in which every noocmpty subset has a least upper bound (denoted as lhc 

lub) and a gn:a[est lower bound (dcnored as the ~Jb). Each of the elements of lhe lattice conesponds to a 

set of possible values in the original program. This lattice is called an arg~nl ltutict. since it is used 10 

represent the possible values of a predicate argumcnL A prtdicott IDttict (such as L,) is lhc Cancsian 
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product of the lauiccs of all the predicate's arguments. 

The operator £,. that mirrors execution of the program corresponds to a single resolution step. It is a 

transformation of a set of data objects and an execution state 10 another set of data objects and a new exe

cution state. following Prolog's depth-first execution semantics, that is, its left-to-right execution of goals 

in a clause. and its top-to-bouom selection of clauses in a predicate. The operator Dp that mirrors execu

tion of the program over the descriptions is similar. except that the arguments arc lattice values. 

If the conditions of abstract interpretation hold. then the least fixpoint of the symbolic executio;, over 

the lattice is a conservative approxill13tion to the global infonnation, in other words the set of values that a 

variable can have during execution is a subset of what is derived in the analysis. 

The thr~' sections that follow describe the lattice used by the analysis algoriuun. The first section 

introduces and defines the lattice elements and the types with which they correspond. The next section 

giv~s an example to show how 10 derive the types. The last section summarizes the propenies of the types 

that are used by the algorithm. 

5.2.1. The program lattice 

Dataflow analysis for Prolog differs fro•n that of statically typed languages because it does not check 

types, but it infers them. The most important information that can be deduced about an argument is 

. whether it is used as an input or an output argument of a predicate, i.e. lhe mod~ of the argumenL Af~r the 

mode is determined, it is uscfuiiO find its type, i.e. lhe set of values lhat it can have. The remainder of this 

chapter refers only to lhe type of an argument, in the assumption that lhis implies the mode as well. I have 

expcrimen~ with four lauices of varying complexity in the analyzer, and the lauice that is currently 

implemented has been chosen to give the most information while keeping analysis fast. 

During the analysis lhe algorithm maintains two lattices for each predicate in the program. These 

lattices correspond to the ~nrry and ~xir types of the predicate, i.e. the value of the variable valid upon 

entering the predicate and upon successful exit from the predicate. The lattice describing the entire pro

gram is the Cartesian product of the predicate lauices. 
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II 

_. any value is possible 

any_.-

• ~ 
nonvar rderef 

/""'- _ recursively de referenced 

/""" /~ ~-
ground nonvar+ uninit 

""- rderef " / . 

_ uninitializtd 

• ground+ 
rderef 

' _ IM empty set of values 
'- ...,. - (ur.reachablt argwnenz) 

impossible 

• Figure 4.4- The argument lattice 

• The argument lattice of the entry and exit types in the current analyzer is shown in Figure 4.4. In this 

• tauice, any (the top element) denotes the set of all values, impossible (the bouom element) denotes 

the empty set (i.e. this predicate is unreachable during execution), uninit denotes the set of uninitial· 

ized variables (unbound variables that are not aliased; see Chapter 2), ground denotes lhe set of values 

• that are ground (i.e. the term contains no unbound variables), nonvar denoteS the set of nonvariables, 

rderef denotes lhc set of values lhat arc recursively dereferenced (i.e. the tum is deseferenced. which 

means that it is accessible without any pointer chasing, and if it is compound then aiJ iu arguments arc 

I recursively dc:refcrenccd), and ground+rderef denote." the set of valu~ lhat arc ~h ground and 

recursively dercfcrenccd. 

S.l.l. An example or cenerating an uninitialized variable type 

This section gives a simple example of the generation of uninitialized variable types to give an idea 

of what absttact interpretation docs and to illustnlte the argument lattice. Uninitialized variables arc gcn-

eBted whenever lhe analyzer deduces that an unbound variable cannot be aliascd to another. For example, 

consider the followins program fragment 



pred( ... ) :- •..• goal(Z), .•. 

goal(Xl :- X-s(Y). goal(Y). 
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If Z is the first occurrence of that variable in the pr.ed < ••• 1 clause then it is considered a candidate 

uninitialized variable. This is possible because it is certainly not aliased 10 any olher variable. In the 

definition of goal {XI. if X is uninitialized then the argument Y of the Sllucture s {Y) may be con

sidered uninitiaJized as well. This Y is passed on as an argument to goal (Y). lllerefore both caUs of 

goa 1 (X 1 are with an uninitialized argum~nt.. so it is consistent to give the argument X an uninitialized 

variable type. 

lt may happen mat elsewhere in the program there is a call of goal <XI where X is not uninitial

ized (for example it may be a compound term, or it may be aliascd). In that case, the assumption that X is 

uninitialized is invalidated. This may invalidate assumptions about other arguments of other predicat.es, so 

it i~ necessary 10 propagate this information. For correctness, it is necessary to iterate until the lease 

fix point is reached. At that point symbolic execution of the program does not change any of the derived 

types. 

5.2.3. Properties of the lattict elements 

The example given above already gives an inkling of the relevant propenies of ground, uninitialized, 

and recursively dereferenced variables that simplify the analysis. Here is a more complete list of these pro

pcnics: 

• The property of being ground, uninitialized, or recw-sively dereferenced propagates through explicit 

unifications. The propagation is bidirectional: 

(I) If X is ground, uninitialized, or recursively dereferenced, then after executing an explicit 

unification with a compound term (e.g. X•s (A, B)), all of its variables (e.g. A and B) are 

ground, all of the new variables (e.g. A and B) are uninitiali7.cd, or all of the new variables are 

recursively dercfcrcnced. 

(2) In the other direction, if all the variables in the compound u:rm arc ground, then X is ground. 

If all the ''ariablcs are recursively dereferenccd, then X is recursively derefcrcnccd if it was 
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previously uninitializcd. 

t 
• The property of being ground is independent of_aliasing. For example, if X is ground, then it remains . 

ground after executing the unification X=Y. This is not uue of recursively dereferenced or uninitial-

ized variables. 

• An uninitiali1.cd variable is not aliased to any other variable. Lattice calculations for uninitialized 

variables do not affect each other. 

it 5.3. Implementation of the analysis algorithm 

Previous sections have inttoduced the ideas underlying the algorithm, the program lattice used by the 

algorithm, an.example of how types are derived. and the properties of the lauice elements. This section . 

gives a more complete explanation of the algorithm. The presentation swtS with an overview of the data 

r~resentation. h then describes the algorithm, and finally it gives a detailed example of analysis. 

• Table 4.5 -The components of the variable set VS 

Name Description 

s The set of variables encounrered so far in the clause. This set 

is important because any variable encountered in a goal that is 
not. in this set is known not 10 be aliased to any other, i.e. it is a 
new variable, and therefore it is both uninitialized and derefer-
enced. 

G The set of variables lhat are ground. These variables arc 
bound 10 terms that contain no unbound variables. 

N The set of variables bound 10 a nonvariible term. This set is a 
supcrsct of G. 

u The set of variables that are uninitialized. A variable becomes 
uninitialized if it is unbound and known ftOl 10 be aliased co 
any other variable. The symbolic execution enforces this cron-
strainL This set is disjoint with N. 

D The set of variables that are recursivdy dereferenced. A vari-
able is recursivdy dereferenced if it is bound 10 a term that is 
dereferenced, i.e. it is accessible without any pointer chasing, 
and if it is compound then all its arguments are recursively 
dereferenccd. This set is a su~t of U. 

5.3.1. Data representation 

During analysis the types arc represented in two ways: 

(I) As Ialli« dement~. For each predicate, there arc two suuctures conLaining a lattice element in each 
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argument. These structW"es represent the entry and exit types of the predicate. For example, the 

predicate concat /3 has two structures which could have lhe values: 

entry: concat(any,9round,uninitJ 
exit: concat(ground.ground,any) 

This says that upon entering conca t /3 the second argument is ground and lhe lhird argument is 

uninitialized. When the predicate is exited the first two arguments are ground. 

(2) As sets of variables. Type informa!ion can also be stored as a set for each type that contains the 

variables of that type. 

These two different representations each have their advantages. The lattice representation makes it easy 10 

cakulate the l~b (least upper bound). The variable set representation makes it easy 10 symbolically execute . 

a clause. i.e. to propagate and update information about variables' types through the clause. Functions are 

provided 10 conven between the two representations (Figure 4.1). For the lattice in figure 4.4, there are 

five sets of variables which are updated during the symbolic execution of a predicate. Conceptually they 

are pan of a 5-tuple VS = (S, G, N, U, D) that holds the current type information (Table 4.5). 

5.3.2. E'·olution of the analyzer 

The cwrent analyzer was preceded by lluee simpler vetsions. The lauice of the first analyzer 

represented only entry types and had three elements: impossible, uninit, and any. The second 

analyzer added the ground type in che entry lattice and an exit lattice of the same suucturc. The third 

analyzer added the rderef type lO these lattices. The current (founh) analyzer added the nonvar 

type. Despite not using a representation for variable a1iiSing, the lhird and founh analyzers are able co 

derive many nonaivial rderef and nonvar types. The added types are independent, i.e. each version 

of the analyzer does no beuer than previous versions on types that previous versions also derive. 

The choice or what lattice types lO add was. done by inspcaing the compiled code of programs and 

by deciding what types were easy to derive in the Context of the structure of lhe existing analyzers. Types 

were added that are pn:sem in many programs. Measun:mcnlS show that having an exit lauice and doing 

back propagation (sec below) are essential features 10 derive good ground, rderef, and nonvar 
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types. A numerical evaluation of the efficiency of the analysis (the percentage of arguments for which 

types arc derived) and the effect of analysis on execution time and code size is given in Chapter 7. 

For the next version of the analyzer the added types r 1 is t. (recursive list. i.e. the term is either nil 

or a cons cell whose tail is a recursive list). integer, and ( (nonvar+deref) or uninit.) (the 

t.enn is either a dcrcfcrcnccd non variable or uninitialized) are contemplated. 

type varsct =(set, set, set. set. set); r 5-J.uple •J 

var Program : set of predicate; 
L~"'? : mapping predicate -+ lattice; 

• L~.;.; : mapping predicate -+ lauice; 
P : predicate; . 

procedure analysis: 
var £ : set of predicate; 

\!S : varset; 
begin 

end: 

£ := { P I arity(P) = 0 ) u (declared enuy points); 
Initialize L~"'? with the types of the declared enuy points; 
Initialize L~.;., to impossible for all predicate arguments; 
while£ ~ 0 do begin 

end 

for each predicate P e E do begin 
VS := lattice_to_ varset(L~,.,,.,. (P ), P ); 
VS := updatc_exit(VS, predicate_analyze(P, VS ), P) 

end; 
£ := { P I L~..,,.,.[P) has changed or 3GeP :L~ .. ,(G) has changed) 

Figure 4.5- The analysis algorithm: top level 

5.3.3. The analysis algorithm 

The analysis algorithm is presented at three levels of detail. An English-language desaiption is 

given of the basic ideas. A detailed pseudocode definition (Figures 4.S through 4. 7) describes che complete 

algorithm at a high level of abstraction. Appendix G gives the implemenwion in the compiler. 

The algorithm maintains entry and exit lattice elemenlS for each predicate argument in the program. 

Analysis proceeds by U3versing the call graph starting from a set of entry points that have known types. 

The enuy points include all predicates of arity 0 and any cnuy declarations siven by the programmer 

(Appendix A). The U3versal is repeated until there ate no more chan{!cs in the lattice values. &hat is, until a 



funclion prcdicatc_analyzc(P :predicate; VS : ~arset): varset; 
var F : formula; ' 

VS, :array (I .. n] of varsct; 
G, :goal; 
i . 1 : integer; 

begin 

end; 

r At this point P = ( C 1 , ••• , C,. ) (list of n clauses) •t 
for each non-active clause C; E p do begin r Symbolic execution of clause C; ., 

r Al this point C; = (G; I •...• G ... ) (conjunction of n; goals)., 

end; 

VS, := VS; 
for j := I ton; do begin ·r Symbolic execution of goal G;j •t 

if (G,, is a unification) then begin 

end; 

VS; := symbolic_unify(VS;, G;i) r Figure 4.8 •t 
end else if G;j E Program then begin r G;i is defined in the program •t 

L_, [G;i 1 := lub(L*"''Y [G;i ), varseuo_lauice(VS;. G;i )): 
if non-aponLntiality constraint then begin 

VS; := update_exit(VS;. predicate_analyz.e(G;i, VS; ), G;i) 
end 

end else begin r G;i is not defined in the program •t 
F := varset_to_type(VS;. G;i ); 
G* :=enay_spccialize(G;j,F); 
VS; := update_exit(VS,, exit_ varsct(G. ), G;i) 

end 

l'S1 := back_propagate(VS;, C;) r To obtain more precision •t 

" return rl VS; r Merge the exit values of all VS; •t 
'"'' 

Figure 4.6- The analysis algorithm: analyzing a predicate 
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fixpoina is reached. With suitable conditions (i.e. all type updating is monotonic and types are propagated 

COITeclly) this fix point is the least fixpoint and the resulting types give accurate information about the origi-

nai program. When a goal is encountered during a traversal three things are done: (1) the goal's enuy lat-

tic:e type is updated using lhe cumru value of VS, (2) if the goal's definition is pan of the program then the 

definition is entered, and (3) upon return, the new value of VS is used 10 update the goal's exit lauice type. 

A conec:t value of VS is mainaained at all times during the uaversal of a goal's definition. 

The definition of the algorithm in Figures 4.5 through 4.7 leaves out some details bul is a faithful 

description of the analysis. The two conditions non-Gcli~ and non-upontntiality are explained in the nexl 

section. The rotlowing sections describe what happens in symbolic execution or a predicate (including 

back propagation) and symbolic eKCCution of a goal. 
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function update_exit(VS I . vsl: varset; G :goal): varset; 
var VS : varset.; ' 
begin 

end; 

r Calculate new VS from old VS 1 and exit VS 1 •t 
VS .nonvar := VS 1.nonvar u VS 1.nonvar; 
VS .ground := VS 1.ground u VS 1.ground; 
VS .rdercf := (VS 1.rderef ,.... VS 1.ground) u VS 2.rdercf; 
VS .sofar := VS 1.sofar u vars(G); 
VS .uninit := VS 1.uninit - vars(G ); 
r Calculate new exit lattice., 
L~uriG 1 := lub(Lcs.ir [G), 'var~t_to_lauice(VS, G }); 
return \IS 

function lub(L 1 • L 1 : lattice): lattice; 
return (least upper bound of L 1 and L-z): . 
function lauice_to_varset(L : lauice: G :goal): varset; 
return (varset corresponding to L using variables of G); 

function varset_to_lattice(VS : varset.; G :goal): lattice; 
return (lauice corresponding 10 VS using variables of G ); 

function back_propagatc(l'S : varset; C :clause): varset; 
return (improved exit varset from VS qsing unification goals of C); 

function varset_to_type(VS : varset; G :goal): formula; 
return (type formula corresponding to VS using variables of G); 

function entty_specialize(G :goal; F :formula): goal; 
return (specializod entry point or G when called with type F); 

function exit_varset(G :goal): varset; 
return (exit varset stored for the known goal G); 

Figure 4.7- Utility functions needed in the analysis algorithm 

5.3.4. Execution time of analysis 

8R 

This section shows that the average analysis time for programs lhat contain only linearly recursive 

predicates (i.e. no clauses contain more than one recursive c:aU) and chat have bounded arity is proportional 

to lhe size of the program. The analysis time T -'76is is proportional to lhe time of each iteration T;wr and 

lhe number of iterations N., needed to reach lhe least fixpoint: 

For programs that con&ain on I)' linearly recursive prcdicaiCS, lhc time of each i&eration is: 

..... ···-····· .... ----~-------~-~----------------------
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where S is the lOcal number of goals in the program and A is the maximum number of times a predicate is 

lravcrscd. (Programs with non-linearly recursive predicates are discussed below.) This is 1rue because the • 
algorithm traverses each clause at most once in an iteration. h assumes that the symbolic execution of a 

goal whose definition is not traversed is a constant time operation. A predicate is craversed only if the 

current cnll)' type is worse than the previous worst entry type. The numJ,cr of times this situation can • 
occur is bounded by the depth of the en1ry lattice of the predicate. which is proponionalto the maximal 

arity in the program. Therefore: 

n n. 

S = L L Icngtll (C;,) • 
i=l j=l 

, 
A = 0 (max arity (P,)) 

• •=J 

where the program conl.ains n predicates. and each predicate P; concains n, clauses C;i. The arity of a • 
predicate is denoted by ariry(P;) and the number of goals in a clause is denoted by lengch(C;j). The 

number of iterations is uivially bounded by the depth of the program lauice: 

• N,lc, = 0 ( DIDUJI) 

where DIDIDl is given by: 

.. 
Dto14t = L 2·4·arity(P;) • •=I 

In this equation. 2 counts the entry and exit lattices. arity (P,) is the number of arguments in the prcdiccne 

lattice, and 4 is the depth of each argument lattice. This bound on N,,.r is wildly pessimistic. For most real 

• programs Ni.tn is bounded by a small constanL All the benchmark programs satisfy N;,.,, ~1 (Chapter 7). 

However. there exist pathological predicates P .. for which N ,_ = e ( arity (P .. ) ). For example, consider lhe 

program: 

• 
main :- a(9,a,_,_._,_,_,_,_,_,_). 

a(O,_,_,_,_,_._,_,_,_,_). 
a(N,A,A,C,O,E.F,G,H,l,J) :- Nl is N-1, a(Nl.A,C,D,t,F,C,H,l,J,A). 

The anal)'7.cr requires I 0 passes to deccnninc chat all arguments of a /ll arc ground and derdcrcnccd • 
upon exit. .. 

• 
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To summarize these resuhs, lhe worst~e and average case tow execution times of analysis for programs 

without non-linearly recursive predicaaes are: 

T .-Jysu.-~• = O(A ·S ·Drollll} 

If lhe arity is bounded, lhen lhe average execution time of analysis is proportional to l.he program's size. 

For programs that contain non-linearly recursive predicates lhis result needs to be amended. There is 

a arade-off between precision and execution time of lhe analysis. If not enough predicates are traversed 

then analysis information is lost. If too many predicates are traversed tt.en analysis time becomes too long. 

Two constraints.are used to prune the traversal of the call graph: 

(J) The non-active consuainL A clause that is in the process of being traversed is called an activ~ 

clause. During recursive calls of predicate_analyze. the algorithm maintains a set of the active 

clauses and will not traverse an active clause twice. 

(2) The non-expon~ntialiry consaraint. Traverse a predicate (i.e. call predicate_analyze) only if one of 

two conditions hold: (a) The entry type has changed since the last araversal of the predicate, or (b) At 

least one of the predicate's clauses is active. 

Condition (a) is understandable: it is needed to ensure lhat an updated type is propagated correctly. The 

rationale for condition (b) is more subtle. If it did not hold, then the exit types derived by lhe analysis 

would be significantly worse because the base case of a recursive predicate may not be reached during lhe 

araversal. Running the analyzer both with and without this condition shows this to be true for most pro

grams. 

The problem wilh condition (b) is lhat it leads to an analysis time that is exponential in the number of 

non-linearly recursive clauses in a predicate. For many programs this is not serious. However, it occurs 

often enough lhat it should be solved. One of the benchmark programs, the nand benchmark, has this prob- . 

lem. A beucr condition is needed to replace condition (b). ll mu.~t (I) ensure that the base case of all 

rccur5ive predicates is reached (for good exit t)'JlCS), and (2) not result in Lime exponential in the number of 

non-linearly recursive predicates. 

----------------------------------- ---- -
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5.3.5. Symbolic e"ecution of a predicate 

The hean of the dataflow analysis algorithm is ~e symbolic execution of a predicate (Fi~ure 4.6) . • . 
Each clause of the predicate is traversed from leflto right. During the uaversal the 1ype infonnation is kept 

in the variable set VS. Symbolic execution of the predicate consists of four steps: 

(1) For each clause of the predicate, translate the lattice entry type of the predicate into the variable set • 
VS, and stan traversing the clause. 

(2) Symbolically execute each goal in the clause and update VS. 

• (3) At the end of each clause, back propagation improves VS by deducing information that only 

becomes available at the end of the clause. For eumple, consider the clause: 

a(X) :-X•[YIL], b(Y, L). • 
If both Y and L are in the ground set G of VS at the end of the clause then this is also uue of X 

because of the unification X= ( Y 1 L). Back propagation is used to improve the exit types for 

ground, recursive dereference, and non variable types. Measurements show that it is a necessary step • 
to get good exit types. 

(4) At the end of the predicate, combine the variable sets of all clauses by intersecting their correspond-

ing components. Conven the result back to the lauice representation and update the exit type for the • 
predicate. 

5.3.6. Symbolic execution of a goal • 
Symbolic execution of a goal is done in three ways, depending on whether the goal is a unification, the goal 

is defined in the program, or the goal is not defined in the program. 

• 5.3.6.1. Unification goal'i 

Symbolic execution of unification is defined by the function symbolic_unify{VS, X=n in Figure 4.8. 

which convens VS = {S, G, N, U, D) into VS • = (S ·, G '. N ', U •• D '). These equations use the utility rune- • 
lions of Table 4.6. For each component of VS, any equation in Figure 4.8 with a uue condition can be 

• 
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Table 4.6- Utility functions of a ccnn T 

Notation Definition 

vars(T) The set of variables in the tenn T. 

dups(T) The set of variabl~ that occur at least twice in the cenn T. 

Mw(T) = vars(T) - S The set of all variables in T that have not occurred before. 

old(T) = vars(T) ("' S The set of all variables in T that have occwred before. 

deref{T) = vars(T) - (S - U) The set of all variables in T lhat are candidates to be recursively 
dereferenced. This is lhe same as new(T) u (vars(T) n U), i.e. 
new(T) supplemented with the variables in T that are uninitialized. 

S' = S u vars(X=T) 

G , = { g u vars (T) 

N , {NuG'u(X) 
= NvG' 

if XeG 
otherwise 

if nonvar(T) or (var(1) and TeN) 
otherwise 

U' _ {U v new(T)- old(1)- (Xj- dups(T) if (XES or Xell) 
- U- vars(X=T) otherwise 

D'= 

D u deref (I) u (X) 
D uderef(I) 
D u deref (T) - (X} 
D("'G 

if (XES or XeU) and old ("I) c (D u U) 
if (XES or Xe U) or Xe (D n G) 
if dups (1) = 0 and XeD and old (1) c U 
otherwise 

Figure 4.8- Symbolic unification VS' := symbolic_unify(VS, X=T; 

used. In practice. if more chan one condition is satisfied. an equation giving more infonnation (i.e. the 

resulting set is larger) is used firsL These equations are listed first. For eumple. the first equation of D' 

gives a larger set. so it is preferred over the others. If both X and T are va -,:. 'es. lhen lhe algorilhm 

switches X and T is to sec if one of the more desirable <".quations is satisfied before attempting one of lhc 

lesser equations. 
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Table 4. 7 - Conditions for the lattice enlty type 

Name Condition 

c,""""" vors(X) c G , • c..,, var(X) 

Cold X e (dups(P) u S - U) 

Crdlr<f (vars(X) n S) c D 

c"""""' (X eN) 

• Table 4.8 -Calculation of the lattice entry type 

c.,.,Wtd c..,, Cold C..ur6/ c_,. .... , Lattice value 

yes - - yes - ground+rderef 
yes 

. ground - - .no -
no no - yes - nonvar+rderef • no no - no - nonvai: 
no yes no - - uninit 
no yes yes yes yes nonvar+rderef 
no yes yes yes no rderef 
no yes yes no yes nonvar 
no yes yes no no any • 

5.3.6.2. Goals defined in the program 

Symbolic execution of a goal with a definition is done by symbolically executing the definition. 

Information is kept about the pan of the call graph lhat has already been traversed, so lhat analysis will not • 
go into an infinite loop. The function varset_to_lauice(VS, P) is defined by Tables 4.7 and 4.8. For each 

argument X of P, first deaermine the values of the five conditions in Table 4.7. Then use these conditions co 

look up the lauice value for the argument in Table 4.8. • 
5.3.6.3. Goals not defined in the program 

· · Examples of goals lhal are not defined in the program being analyzed are built-ins and library predi- • 
caaes. Symbolic execution of these goals is done in two pans. First, entry specialization replaces the ~oal 

by a faster enuy (section 5.4.1). Second, the type declarations duu the programmer has given for lhe entry 

are used to continue the analysis. If there are none, then worst-case assumptions arc made. • 
5.3.7. An example of analysis .. 

The following program is interesting because it is mutually recursive: • 

• 



• incl 

Table 4.9- Analysis of an example program 

2!A,B,C) inc! 3(A,E,C,OJ - -
A B c A B c D 

Start 

entry~ I impossible impossible impossibl~~imPossible impossible impossible impossible 

exit impossible impossible impossible impossible impossible impossible impossible 

• After pass 1 --
ent'?' I rdcref uninit I,Lt'l ·'~~· 

t 
uninit rdu~f rd~r~f uninit 

ClUl nonvar rdcrcf nonvar rderef any grounll nonvar 

After pass 2 

entryll rderef uninit uninit I uninit rderef rderef uninit 
exit nonvar rderef nonva,.- rderef any nonvar nonvar • After pass 3 

en~~ I , rderef uninit uninit I uninit rderef rderef uninit 
cxn nonvar rderef nonvar rderef any nonvar nonvar 

• mai~ :- incl_2([A,B), C, 0) • 

incl_2 ( [). C, {C)). 
incl_2({AIE], C, D) . inc1_3(C, A, E, 0). 

incl_3(C, A, E, {AID]) incl_2(E, C, 0). 

' ,. 
The predicates incl_2/3 and incl_3/4 are exaacted from a definition of set inclusion. Three 

analysis passes are necessary to reach the fixpoint (Table 4.9). The enoies lhat have changed with respect 

to the previous pass arc in ita{ics. The final typeS are given in Table 4.10. Most of the correct types are 

• determined after the first pass. A single exit type of incl_3/4 is corrected in the second pass. This is 

necessary because the third argument of incl_3/4 is the same as the first argument of incl_ 2/3. 

Table 4.10- Final results of analysis 

• incl_2(A,B,Cl 

enuytype: rderef(A),uninit(B),uninit(C) 
exit type: nonvar(A),rderef(B),nonvar(C) 

incl_3(A,B,C,O) 

entry type: ~ninit(A),rderef(B),rderef(C),uninit(O) 

• exit type: rderef(A),nonvar(C),nonvar(O) 

5.4. Integrating analysis into the compiler 

• Derivins type information is only the beginning. The analyzer must be integrated into the compiler 

to cake ach·antage of the t)'PC information. The dataflow analysis module icseff does four source cransfor· 

mations (Figure 4.9) before pa~~ing the result to the ne:u stage, which docs detcnninism cxu-.sction. The 

• 
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types 

inputs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 

entry 
specialization 
(~place goals) 

kernel Prolog 

enuy 
specialization 

j , 
dal.aflow 
analysis 

si>ecializ.ed entties I 
, 

derived 
types 

• with specialized enaies wtinitializ.ed 
~gister 

conversion ·~------------------------~ 

derived types with 
uninitialized register modes "---...-! type 

updating 

updated 
head 

unraveling ~----------------------------------------~t~s 

kernel Prolog 
with unraveled heads 

outputs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
kernel 
Prolog 

Figure 4.9- Integrating analysis into the compiler 

following source ltansfonnations are done in the dataflow analysis module: 

types , 

(I) Entry sptdalization. Determine a fast enuy point for each occurrence of a call whose definition is 

not in the program being analyzed and continue analysis with this enuy point 

(2) Uninitializtd register tonvtrsion. Conven uninitializecS memory types to uninitialized register 

types when it results in a speedup. h is done when an argument can be mumcd in a register without 

giving up last call optimization. 

(3) Head unraveling. Unravel the heads or an clauses again in the light of the derived type infonnation. 

For example, the head a (A, A, A) can be unraveled in three different ways, namel)' 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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(a(A,S,CI :-A=B,CcB) or (a(A,B,CI :-A=C,B=C) or (a(A,B,C) :-B•A,C•A). If 

both A and 8 arc nonvariables and C is unbound, then the first or third possibilities allow lhe com-

piler to do argument selection. Unraveling is already done during the conversion 10 kernel Prolog, 

but it must be done again after dataflow analysis since the new types may allow it to be done better . 

(4) Type updating. Supplement the type declarations given by the programmer (if any) by the derived 

types. All inconsistencies arc reponed and compilation continues with the corrected types. 

The first three of these transformations arc·discussed in more detail in the following sections . 

5.4.1. ~ntr~· specialization 

During, analysis, a fast emry point is determined for each call whose definition is nOl in the program 

being analyzed (i.e. each dangling call}. For example, the call sort (A, Bl is replaced by the entry point 

'~sort *2' (A, Bl if 8 is uninitialized. Analysis continues with the types of the fast entry poinL The 

program is unchanged until the end of analysis, so the determination of the fast entry poim is repeated in 

each analysis iteration whenever a dangling call is encountered. This mechanism is intended to speed up 

execution of built-in predicates and library routines, but it is also available to the programmer. 

The fast entry point is determined by calculating the type formula corresponding to the variable set 

\'S with the function varset_to_type(\'S, G) (Figures 4.6 and 4.7). This type formula is used to traverse 

the modal entry tree for the goal. The modal entry tree is a data strUcture that contains a set or entry points 

and lhe types lhat each requires (Appendix A). Entry specialization is also done in rhe clause compiler, 

and a detailed example or the use of lhe modal entry tree is given in Olapter S (scclio~ 3.4). 

5.4.2. Uninitialized register con,·ersion 

OfiCn an uninitialized memory type can be convened 10 an uninitialized register t)'P':. The compiler 

uses four conditions to guide the conversion process. Define a survi"c goal a'i one that docs not alter any 

temporary register!' (except for argumcnL" with uninitialized register type, which arc ou&pulS). A goal that 

potentially alLCrs temporary registers is a non-siUVi~ goal. The compiler maintains a table of survive 

goals. With these definitions the four conditions for a predicate P arc: 
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(I) All arguments of P with uninitialized memory type are candidates 1.0 be convCiled. 

(2) A candidate argument of P must occur at most once in the body of each clause of P. In each clause • 
where it occurs. the argument must be in the last non-survive goal or any swvive goal beyond il 

(3) For each clause of P. if the last goal G is a non-survive goal. then the candidate argument of P must 

be in the same argument position in G as in the head of P . This is necessary to avoid losing the • 
opportunity for las! call optimi7.ation (LCO): if the argument positions are different then a move 

instruction is needed between the last call and the return. If the last goal is a survive goal then the 

condition is unnecessary because it is not as important to re&ain LCO: a survive goal can never be • 
mutually rccursi\"C with the predicate it is part of. 

' 
(4) Often the last goal G has candidate arguments that are not candidate arguments of P, so they have 1.0 

be initialized when returning from G. This has two disadvantages: P loses LCO and P must allo- • 
cate an environment (which may not exist otherwise). The solution ro this problem involves a nde-

off: is it better to have LCO in P and fewer uninitialized register arguments in G, or to have no LCO 

in P and more uninitialized register arguments in G? The compiler recognizes a class of predicares • 
G for which the first is true: Define a fast predicate as one whose definition contains only built-ins 

and survive goals. If G is fast then reduce the set of G 's candidate arguments lO include only those 

that arc candidate arguments of P . • 
A uansitivc closure is done until all four conditions arc satisfied. These conditions can be relaxed slightly 

in several ways. However, even with the existing conditions it is possible 1.0 conven about one third of all 

uninitialized types into uninitializcd register types (Chapter 7). The third and fourth conditions are not • 
needed for correcUJCss, but only for execution speed. 1be third condition ensures that LCO is notlosl The 

fourth condition speeds up the chat_parscr benchmark by 1% and was added after code inspection 

discovered cases where the usc of uninitialized registers slows down execution. • 
5.4.3. Head unraveling 

This uansfonnation repeats lhe head unr.tvcling cransformation (Chaplcr 3) with lhc information • 
gained from dataflow analy!ii!i. Thi.'> increases the opponunitics for determinism cxcraction. For example, 

• 



• 

• 

• 

• 

• 

• 

• 

98 

before analysis the clause: 

a (X, X. Xl. 

is transformed to the following kernel Prolog by malc~g the head unifications explicit (i.e. ..unraveling'' 

the head unifications): 

a(X,Y,Zl :- X•Y, X•Z. 

If analysis derives that X is unbound and both Y and Z are nonvariable, then the above expansion hides the 

detcnninism by twice unifying an unbound variable with a nonvariable. Unraveling the head unifications 

again after analysis results in: 

a(X,Y~Z) :- Y•Z, X•Y . 

In this version. the nonvariables Y and Z are unified together. beuer exposing the del.Crministic check thal 

is done, and the unbound variable X is only unified once. 

6. Determinism transformation 

This section groups four transformations that expose the determinism inherent in a predicate. The 

pwposc of the first three transformations is 10 make the determinism in the predicate easily visible. so that 

the fourth transformation. deccnninisrn extraction. is as successful as possible in generating case state

ments. The following lransformations are done in order: 

(I) Head-body segmentation. By separating the heads of clauses from the clause bodies. this roduces 

the code expansion caused by type enrichment and determinism extraction. 

(2) Type enrkhment. This adds types to predicaces for which global analysis is not able 10 dclenniile 

e the type. The compiler creates different versions of the predicase assuming different input types. 

• 

This increases c:ode size, but improves performance since ofren a prcdicale is def.cnninistic at run

time even though this could not be detected at compile-time . 

(3) Goal reordering. This reorders aoals in a clause 10 expose more determinism. Tests (such as arith

metic relations) are moved to the left and predicates guar.miCed to succeed (such as unifications with 

uninitialil.ed variables) are moved to the right. 
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(4) Determinism extraction with test sets. This transformation convens the predicale iniO a nested 

case Slatement that makes its determinism explicit, so that a straightforward compilation to BAM 

code is possibl_e. 

6.1. Head-body segmentation 

This transformation reduces the code expansion resulting from enrichment and determinism exU3C· 

lion. A predicate is split into a new predicate and a set of clause bodies. The new predicate contains only 

the goals of the original predicate that are useful for determinism extraction, i.e. all explicit unifications and 

tests (inc~uding type checking and arithmetic comparisons, see Table 4.11) in each clause starting from the 

head up to the f!rst goal that is not in this category. The rest of the clause bodies are separated from lhe 

predicate. This is done to avoid code duplication in determinism extraction, since the same clause may 

occur in several leaves of the decision tree. 

For example, the predicate: 

p(A,Bl :-

is transformed into: 

p(A,Bl :-

( var(A), p(A), q(A,C), t(C,D), ~(D,B) 
A•b, r(A), s(A) 

l . 

( var(Al, 'Sdl'(A,Bl 
; A•b, 'Sd2' (A) 
). 

'Sdl' (A,B) :- p(A), q(A,C), t(C,D), ~(D,B). 

' $d2' (A) :- r (A) , s (A) • 

The new predicate consists only of chose pans of &he original predicate that are useful for exnc:ting deter-

minism. The determinism e.~tuaction is free to c:rc.ate a decision tree from the new predicate without wony-

ing about duplicating the clause bodies at lhe leaves of the tree. The separated clause bodies an: compiied 

once only, and the BAM transformation stage (Chapter 6) merges them with the decision tree, thus cn:ating 

a decision graph. 
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The decision exactly where 10 split the clause bodies depends on sever.tl factors. All goals in lhe 

body are classified into two kinds: goals that arc useful for extraCting deLCrminism (called "aests"), and 

other goals. Then the split follows these rules: (I) Only those tests all of whose variables are in the head 

become pan of the new predicate. (2) If the length of the clause body is less than a given threshold, lhen 

all of it becomes part of the new predicate. 

Head-body segmentation interacts with type propagation. It of &.en occw-s that a clause body is called 

from several leaves in l.hc decision aree wi~ different types. In that case, it is compiled wil.h a type that is 

the intersection of the types of the entry points. A complication arises when one of the leaves considers a 

variable to be uninitialized, and another leaf docs not. In that case, the first leaf jumps to a piece of code 10 

initialize the variable, and only afterwards jwnps 10 the clause body . . 

6.2. Type enrichment 

By looking at the type or l.hc value of one or more arguments it is possible 10 reduce the set of 

clauses that have to be tried. Often the dataflow analysis is able to derive sufficiently sa-ong types so that a 

good selection can be done, i.e. a de&erministic predicate can be compiled efficiently. However, if the 

types given for the predicate are weak then a source transfonnation is done 10 enrich them. The enrich-

ment consists of adding a test to check at run-time whether an argument is a variable or a nonvariablc, and 

10 branch to different copies of the predicate in each case. 

The number of arguments that arc enriched is given by l.he argument S of lhe compiler option 

select _1 imi t ( s) . Define a good predicate argument as one that is an argument of a unification not 

known 10 succeed always, i.e. in the unification neither argument is known lO be unbound. AD argwnent is 

known lO be of a given type if the type is implied by the type formula. Whether or not enrichment is done 

is based on the following heuristic: 

Enrichment Heuristic 1: If the number of good arguments known 10 be nonvariable is less 
than the selection limit S, then choose the lOwest numbered good argument that is not known 
to be nonvariablc. Otherwise choose only the first argument, if it is a good argument and it is 
not known to be non variable. 

This heuristic is applied recursively on enriched predicates. The default selection limit is always S= 1. 

This default is justified gi,ven that (1) a selection limit S=l already generalizes the first argument selection 
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of the WAM, and (2) compilation time and object <:ode size increase rapidly with the selection limit. Even 

with S=l. the smuce transformation occasionally results in some duplicate code being generated. This is 

removed by the BAM transformation stage. When S= I the heuristic is simpler. 

Enrichm~nt H~uristic 2: If there exist no good arguments known to be nonvariablc, then 
choose the lowest numbered good argument that is not known to be nonvariablc. Othcrw1se 
choose the first argument, if it is a good argument and it is not known to be nonvariable. 

This heuristic generalizes the first-argument selection of the WAM, i.e. it always docs arleast a first argu-

ment selecrion, but depending on the types !)lat the predicate has (often derived from dataflow analysis) and 

the predicate itself (what kinds of head unifications it does). the amount of selection can be vastly greater. 

The heuristic may seem complex, but it is a natural way 10 make a predicate deterministic. 

To show how ~nrichmcnt works. consider the following predicate without type declarations: 

a (a). 

a (b). 

It is transformed into: 

a (A) var (A), a_v (Al. \ If A is unbound. 
a(Al nonvar(A), a_n(Al. \If A is nonvariable. 

a_v(a). 
a_v (b). 

a n (a) • - . 
a_n(b). 

The predicate a /1 has been enriched with an unbound type (in a_ v /1) and with a non variable type (in 

a_ n /1 ). As another example, consider the definition without any type declarations: 

member IX, [X I ) I • 
member(X, (_IL)I. 

In this case the hewistic picks lhe second argument. since the first one does no useful unifications. After 

enrichment, the predicate becomes: 

member (X, Ll :- var(L), member_ v(X, Ll. 
member (X, Ll ·- nonvar (L), rnernber n(X, Ll. -
member v( ... l (same as original definition) -
member n( ... I . (sarne as original definition) -

The two tests var (L) and nonvar (Ll determine which of the two dummy predicates to execute, 

member v /2 or member_ n /2. and arc compiled into a single conditional branch. This is a 

• 

• 

• 

• 
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• 
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• 
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consequence of the fact that the two tests are mutually exclusive, i.e. if one succeeds then the other fails 

and vice versa. BOlh member_ v /2 and member_ n /2 have the same definition as the original predi-

cate, but they have different types for the second argument. The predicate member_v/2 is compiled 

assuming the second argument is a variable. The predicate member_n/2 is compiled assuming the 

• second argument •s a non variable. Both member_ v /2 and member_ n/2 are also targets of the faccor-

ing transformation (sccuon 4). 

• Type enrichment can introduce a significant increase in code size if it is not handled carefully. In 

practice, the code si1.e is kept small because: (I) the added types result in significantly smaller code for 

clause selection in each of the two dummy predicates, (2) before doing enrichment, head-body segment.a-

• lion separates clause heads from the bodies. so that long clause bodies are not duplicated, and (3) the BAM . 
transformation Stage (ChaPter 6) removes any remaining duplicate code. In a sense, the definitions are first 

''loosened up'' by head-body segmentation and type enrichment co allow more optimization, and then later 

• "tightened up." 

6.3. Goal reord~ring 

This transfonnation reorders goals in a clause to increase determinism and to reduce the number of • superfluous unifications that are done. Goals that are useful in determinism exnction are put as early as 

possible, and goals that are cenain to succeed (such as unifications with uninitialized variables) are put 

later . • 
The goals in a clause are classified in four categories: tests (Table 4.11), unifications with unbound 

variables, unifications with uninitialized variables, and other goals. The goals are reordered so that tests 

• are first (for de~erministic selection), followed by unifications with unbound variables (may be affected by 

aliasing). unifications with uninitialized variables (unaffected by aliasing. so they can safely be put last), 

and the other goals. The reordering takes into account the fact that unification is commutative, i.e. that 

I unification goals can be pennuted in any way without changing the semantics. Some rcorderin8!i are beuer 

than others because aliasing can worsen the type formula. e.g. if X is unbound (var (X)) then after pet· 

forming the unification Y•Z it may not be unbound any more. if it is aliased to Y or Z. The reordering is 



constrained so that aliasing docs not change &.he operational semantics. 

For example, consider a predicate that has an uninitialized argument: 

:- mode((a(A,B,C) :- uninit(C))). 

a(X, Y, Zl :- Z•[XILJ. X<Y, ••• 
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The uansfonnation knows that the unification Z• (X 1 L] does not instantiate X or L because Z is unbound 

and unaliascd. Therefore the unification is moved back: 

a(X, Y, Z) :- X<Y, Z•(XIL), •• 

This has t\VO advantages: (I) the test X<Y is brought forward so that it can be used by determinism exuac

tion, and (2) the u,nification Z= [X 1 L] is not done if the test X<Y fails. 

This u-ansfonnation compensates for the popular programming style which puts all unifications in the 

head and all tests in the body, e.g. people prefer 10 write: 

a((XILJ. [XIH)l :- var(X), ••• 

instead of: 

a( [X ILl, Zl :- var(X), Z•[XIH), ••• 

The first version does not imply anydting about the insaantiation pattern of the arguments, whereas the 

transfonncd version does. 

6.4. Determini~m extraction with test ~ts 

The majority of predicates wriuen by human programmers are intended to be executed in a deter

ministic way. These ~cates are in effect case statements, yet they are 100 often compiled in an 

inefficient manner, by means of shallow backtracking (i.e. saving the machine swe, unification wilh the 

clause heads, and repeated failure and Stale resaoration). This section describes the general technique used 

in the compiler to conven. shallow bacJcuacking in.Q conditional branching. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



104 

Test set Instruction 

1\ branch if less than 

A<B, ~ 

four-way branch on type 

{var(A),atornic(A),cons(A),structure(A)} 

look up in hash table 

Figure 4.10- Some examples of &est sets 

6.4.1. Definitions 

Predica&es arc compiled into code which is as deterministic as possible duough dlc tonc:epl or lhe 

test set. Two definitions are useful: 

Definition ST: A goal G is a simple test with respecl to the kernel Prolog predicate P and the 
type formula F if it satisfies the following conditions: 

• G ~es only variables that occur ·in lhc head of P • 

• The implementation or G docs not change any state in the o.~.:ution model, i.e. Ci 
does not cause side-effects (1,0 or database operations), Ci docs not crea~e choice points, 
and Ci does not bind any variables. 

• G does not always succeed. 

Definition TS: A set of goals is a test s~l with respect 10 the kanel Prolog predicate P and lhe 
type formula F if it satisfies lhe following conditions: 

• Each goal in the set is a simple cest according 10 definilion ST. 

• With a given set or variable values. at most one aoai in abe set can succeed. 
• A multi-way branch in which each·destination corresponds 10 lhe success or one or the 
goals in the set can be implemented in the target architecture. 

The &ests in lhe set need not actually be pment in the definition or P. Whether 011101a given set or goals is 

a test set depends on the archiuxture ancf the predicate P. 



lOS 

6.4.2. Some examples 

Most conditional branches in an architecture CQO'espond to a test set. For example, a branch-if-less-

than instruction corresponds 10 the lest set { A<B, -~B} . More compleJI conditions such as an n-way 

branch implemented by hashing can also be represented as test sets. Figure 4.10 shows some examples of 

test sets. The second and third examples correspond to WAM instructions. 

To illustrate the usc of test sets, consider the predicate: 

max{A. B. C) :- A~B. C•B. 
max(A, B. C) :- A~. C•A. 

which is one way to calculate the maximum of A and B. It is compiled as: 

max(A. B, C) :- if A>B then C•A 
else if A<B then C•B 
else (C•B or C•A) 

(The Prolog notation is simplified for readability.) The predicate is executed completely delerministicaUy if 

A>B or A<B; a choice point is created only when A•B. The choice point maintains the operational 

semantics: since both clauses of the original predicate succeed when A•B, there are two identical solu-

lions. 

type testSet = testset(tcStSet_name, testset_ident. set of goal)~ 

function dctcrminism(D : disjunction; H : goal; F : formul~ Previous : set of leStset) : disjunction; 
"ar TS : tcstset; 

begin 

end; 

TS., :set of testset; 

if length(D) s I then return D; 
TS., := find_leStSetS(D, H, F, Previous); 
if TS., = 0 then return D; 
TS := pick_testset(TS., ); 
return code_testsct(TS, D , H, F, Previous) 

Figure 4.11 -The determinism extraction algorithm 
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function find_tcstsets(D :disjunction, H :goal: F. :formula: Pr~ious :set oftestset): set oftestseL: 
var TS : tesLSCt; · 

begin 

end; 

TS.., : set of tesLSCt; 
i , j : integer; 

rAt lhis point D = (C 1 ; ••• ; C.,) where D has n choices •t 
TSw :=0: 
for i := 1 to n do begin 

end; 

t• C; = (G;t •... , G;,.) where C; has n; goals •t 
for j := 1 to n; do 

if G;i == "!"then exit inner loop 
else for all test.sets TS from table do begin 

end 

r TS = ~t(Name .Idem. Tests) from Table 4.11 •t 
if TS E Previous and vars(G;j) c vars(H) and bindset(G;i. F) = 0 tben 

if 3 Te Tests : (G;i implies T and not(F implies T)) then 
TS .. , := TS .. , u (TS ) 

return TSm 

Figure 4.12- Finding all test sets in a predica~e 

function pick_testset(TSu, : set of testsel) : testset: 
var TS : tcstset; • 

begin 

end; 

pick TS e TS._, such that 
'tl U e TS6e~ : goodne5s(TS) ~ goodness(U); r From Equation {G) •t 

return TS 

Figure 4.13 -Picking lhe best test set 

6.4.3. The algorithm 

Given a predicate, the compiler proceeds by first finding all test sets that contain tests lhat are 

implied by goals in lhe predicate. This depends on the type formula lhal is known for the predicate; for 

eumple, eire unilicalion X•a is only a leSl if X is nonvariablc. i.e. if the type formula implies 

nonvar (X) • Then a ''goodness" measure is calculated for each leSt set. and lhe leSt set wilh the largest 

goodness is used first. The goodness measure is calculated hcurislically; in the current implcmauation 

each test set is weighted by an an:hiteeture-dependcnt goodness (v.-hich depends on how cfficiendy it is 
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function code_restset(TS : testsct; D :disjunction; H : goal; F : formula; Previous : set of r.estset) :disjunction; 
var T :goal; ; 

begin 

end; 

Choicts : disjWlction: 

Clwiccs := I ): 
r At this point TS = tcstsct(Name ,/dent. Tests) •t 
for all T e Tests do begin 

end; 

Du11 := subsume(T. D); 
Drur := determinism(Dus•• H, update_fonnula(T, F), Previous u {TS )); 
append 'Stest' (T, Dr.ur) to Choices; 
D := subsume(nol{T). D) 

D := dcterminism(D, H ,F, Previous u (TS )); 
append' Selse' <D) to Choices; 
return 'Sease' (Name ,/dent, Clwices) 

Figure 4.14- Converting a disjunction iniO a case star.eme~u 

implemented in the architecture) and by the number of possible outcomes (e.g. hashing with a large number 

of cases is considered better than a two-way branch). The predicate is converted into a case swement 

using the best test set. The algorithm is called recursively for each arm of lhe case statement to build a 

decision tree. This tree is collapsed into a grap!l by the BAM transfonnation stage. 

Figures 4.1 I through 4.i4 give a pseudocode definition of this algorithm. The figures define the 

function det.enninism(D, H, F, Previous) that performs the determinism extraction. Given a predicate 

wriuen as a head II and a disjunction D , along with the type fonnula F that is true for that predicate, the 

function finds as many test sets as possible in the disjunction and converts them into case statements. It 

returns a new disjunction that contains these case stat.ements. The par3meter Prevwus is used to avoid 

infinite recursion. It contains all r.est sets that have already been used to make sure each test set is only 

used once. 

The function find_r.estsets(D, H. F, Previous) returns a list of all test setS in the disjunction (Figure 

4.12). It picks a lCSt set if there is a goal in the pn:dicar.e which implies a test in the test SCL It limits the 

goals 10 those that do not bind any variables (bindsel(G;j. F)= 0) and those that use only variables that 

occur in lhe head (wrrs(G,i) c wrrs(ll )). The function piclt_testset(TS..,) returns the test set with the 

greatest measure of JOOdness, a.". giYCn by Equation (G) (Figure 4.13). The function codc_lCSl.Set(TS. D, 
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II. F, Previous) converts the disjunction D into a case statement when given a lest set TS (Figure 4.14) . 

It uses the functions subsumc(F. F 1) and update_fonnula(F, F 1), which are defined in section 3. 
' 

Table 4.11 -Test sets 

Name Example Test Example BAM uanslation 

equal X=:oY equal(X,Y,Lbl) 
(X or Y is simple at run-time) 

equal(atomic,A) X==A equal (X, A, Lbl) 
(A is an atom) 

equal(structurc.F/N) 'Sname_arity' (X,F,N) equal([X],F/N,Lbl) 
(FIN is namc/ariry) 

hash(atomic) X=A (A is atomic) hash(tatm,X,N,Lbl) 
hash(structure) X=S (S is a structure) hash(tstr,X,N,Lbl) 

comparison(Ciass.Kind) X<Y jump(lts,X,Y,Lbl) 
(Class e { cq, Its. gts}) 
(Kinde (arilh,'unify. stand)) 

Type var (X) test(eq,tvar,X,Lbl) 
(Type e AIITypcs) 

sw:~eh(Typc) atom(X) switch(tatm,X,Ll,L2,L3) 
(TY.pc e TagTypcs - (var)) 

Table 4.1 I lists the test sets currently recognized by the compiler. This includes unification goals, all 

type checking predicates, and all arithmetic comparisons. For each test set il gives the name, a representa-

live lest in the lest set (only one is given, although usually there are scvetal ochers), and lhe translation of 

!.hat lest into a conditional branch of the BAM instruction SCL For the &est sets hash(atomic) and 

hash(structure) the BAM code includes a hash table (not shown) in addition to the hash instru1..1.ion. The 

following definitions simplify the table: 

TagTypcs = { var, atom, structure, cons, negative, nonnegative, float), i.e. all types that 
correSJ"''ld to one tag in lhe VLSI-BAM archicecture. 

AIITypes = TagTypes u {atomic. integer. simple, compound). i.e. il includes types that 
correspond to more than one tag. 

The goodness measure for a test set in a predicate is calculated using the following rule: 

Goodn~ss = 1000 · D + G (G) 

where D is l.he number of directions of the test set that occur in the predicate and G is the raw goodness 

measure of the ~est 5et. This rule ensures lhat lhc number of useful directions in lhc leSl.SCl is most impor-

tanL The raw ~oodncss is used only when the number of directions is l.hc same. Table 4.12 gives l.hc raw 

goodness of all test sets in the VLSI-BAM architecture (34). with a brief justification of the ranking. The 
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Table 4.12- Raw goodness measure of test sets in the VLSI-BAM 

Test set Rank Comments • 
switch( cons) 131 Switch is best becauSe it is fast and it is a three-way branch, so it 
switch( structure) gives the most information. Switch of compound eenns is beucr 

than other switches because it makes traversing a recursive term 
(like a list or a tree) fast. 

switch( negative) 130 Switch of atomic tenns is worse bcausc it penalizes the case of 
switch( nonnegative) traversing a recursive tenn. • 
switch(atom) 

switch( integer) 129 Switch of inLeger is worse bcause the VLSI-BAM has separate 
negative and nonnegative (tpos and tneg) lags, requiring two 
branches.· 

var 120 These test sets are types that correspond directly w lags, and there • atom exist fast two-way branches on tags. 
cons 
structure 
negative 

' nonnegative 

equal 85 This test set requires two insUlJCtions--a compare and branch, and • also possibly loading its arguments into registers. 

equal(atomic,_) 80 These test sets each require two instructions-a compare and 
comparisonL._) branch. 

integer 79 These test sets are types that each correspond to two lags, so they 
atomic need two tag checks. 
compound • 
equal( structure._) 60 Equality comparison of a suucture's functor & arity needs a 

memory reference. 

simple 50. This test set corresponds 10 a type that needs five tag checks (four 
without ftoating point). 

hash( atomic) 41 Hashing is the slowest because it needs w calculate the hash ad- • dress. 

hash( structure) 40 Hashing on a structure is slightl~' slower than hashing on an atomic 
term because a memory load is needed 10 access the main functor 
of the structure, whereas the atomic tenn is directly available in 
the register. 

• value of the rank is not important; only the relative order is importanl ArchiteclUfes rank the test sets 

according 10 how efficiently they are implemented in the architecture. To compile for a different architec-

ture, only the ranking is changed in the compiler. 'The ranking is modified for other processors by a com-

piler option. For example, for the MIPS processor, the option mips changes the ranking 10 make the test • 
SCl equal (atomic, 1)) best, i.e. a comparison_with the atom (] (nil), because it can be implemented 

with a singlc-<:yclc conditional branch instruction. The MIPS docs not have separate lags for negative and 

• nonnegative integers, so the test sets negative and nonnegalivc are noc implcmcnccd as cfticientlr as on lhe 

VLSI-BAM. These two lest set~ have lower ranks. 

• 
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ChapterS 

Compiling Kernel Prolog to BAM Code 

I. Introduction 

The previous chapters described the conversion of standard Prolog to kernel Prolog and the optimiz

ing kernel transformations. This chapter shows how the optimized kernel Prolog is compiled to BAM 

code. The compilation to BAM is performed in two steps for each predicate. In the first step. the control 

instructions that make up the framework of the predicate are compiled by the predicate compiler. This 

includes c:ompiling the deterministic case statements into conditional branches and the disjunctions with 

choice point insuuctions . 

In the second step, the clauses that make up the body of the predicate are compiled by the clause 

compiler. The clause compiler uses two primitives. the goal compiler and the unification compiler. to com

pile goals and explicit unifications. The clause compiler also does register allocation. enuy specialization 

(replacing buill-in predicates by faster enuy points). and performs the write-onee transformation (for fast 

trailing). and the dereference chain uansformation (to maintain consistency with the dataflow analysis). 

n.ese transformations are exphfined in detail in the sections below . 

2.. The predkate compiler 

In the kernel transformation stage (Chapter 4). determinism Quaction attempts to convcn each 

predicate into a series of nested case statements. This is not always successful; sometimes the case swe

ments still retain disjunctions (OR choices) that could not be convened into delenninistic code. The predi

cate compiler compiles both the case statements and the disjunctions into BAM code. The case statements 

arc compiled into conditional branches. The disjunctions are compiled into choice point insuuc:tions. The 

predicate compiler uses two primitives. the de~erminism compiler and the disjunction compiler, 10 compile 

the predicate's case statement~ and disjunctions. · 

110 
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2.1. The determinism compiler 

Compiling a kernel Prolog prcclicate into dcte~inistic BAM code is done in two steps. First. the 

determinism transformation (a kernel Prolog transformation, Chapter 4) converts a kernel Prolog predicace 

into a series of nested case statements. Then the determinism compiler compiles the nested case statements 

into BAM code. A case statement may contain any test set, and each test set is mapped to a conditional 

ba-anch. The test seL'\ and their corresponding conditional branches arc given in Table 4.11. 

2.2. The disjunction compiler 

A disjunction (an OR formula) is a list or clauses that encapsulates a choice. The first clause is exe-

. 
cuted the first .time the disjunction is encountered. The remaining clauses are executed in order on 

backtracking........each time backtracking returns to the disjunction the next clause is ttied. This is imple-

men~d by code which generates choice points. A choice point encapsulates the state of the abstnlct 

machine at the time it is created. Backtracking resr.ores machine state from a choice point to let execution 

continue from the point at which the choice point was aeated. 

Creating and restoring machine state in choice points is time<ansuming. To minimize the size of the 

choice points (and hence the lime required to aeate them), the choice point management instructions in the 

BAM arc streamlined to perform the least amount of data movemen:. They save only those regisaers that 

are needed in the clauses or the disjunction after the first.. and for each clause of the disjunction they restore 

only those registers that are needed in that clause. Argument registers arc restored in the clause itself and 

n01 in the fa i 1 instruCtion. Therefore the size of the choice point does not have to be stored in the choice 

point and decoded in the fail insuuction. A disadvantage is a slighdy larger code size. t Considec the 

following kernel Prolog for a predicate P with " clauses: 

Head :- ( C 1 ; C 2 ; • • • ; C. : fail) • 

A single choice point is created for each invocation of P . The set of rcgislers saved in the choice point is 

the set of all head arguments that are used in clauses after the first, i.e. C 2 through c.. Argumcnl<; &hat 

t This is leu of • problem in &he Vl.SJ-BAM sina: lhc: inaruaion reonktu mef&CS pain of sinclc·•'OfCIIOidl in10 
double-won! kN~d•. 
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• occur only in clause C 1 do not have 10 be stored in lhe choice poinL The set of registers lhat is restored for 

each clause is the set of argumcnLs used in that clause. 

Before creating the choice point, lhe compiler dereferences those arguments that it can deduce will 

• 
be dercfcrenccd later. This avoids dcrefcrencing the same argument more &han once. The set of arguments 

to be dercferenced is derived by checking the type fonnula corresponding to each goal in lhe body of lhc 

predicate's definition. and noting whelhcr its arguments have to be dcreferenced. For example, arilhmetic 

• operations and relational tests arc goals that require &heir arguments to be dereferenced . 

To illustrate lh.:: compilation scheme, consider lhe following predicaiC: 

p(A,B,C,O) a(A) 
c(C) 

• d(O) 

fail 
) . 

• 

• 

• 

• 

It is E:ompiled as: 

procedure(p/4). 
choice(!/3, (2,3],l(p/4,2)). ; Save registers r(2) and r(3). 
jump (all l. 

label (l Cp/4, 2)). 
choice(2/3, (2,no],l(p/4,3)). Restore only register r(2). 
move(r(2);r(0)) . 
jump(c/1). 

label (1 (p/4, 3)). 
choice(3/3, (no,3],fai1). 
move ( r ( 3 ) , r ( 0) ) . 
jump(d/1) . 

Resto:e only register r(3). 

The choice instructions do all lhc choice point manipulation: choice c 1/3, ... ) creates lhe choice 

point. choice (2/3, ••• ) modifies the address to return to on backtracking, and 

choice ( 3/3, ... ) removes lhe choice point. Register r < 0) is notsaved in lhe choice point because 

it is not needed in clauses beyond lhc first. The second and lhird clauses restore only lhe regis~ers lhey 

need. Register r c 1 ) is not saved because il is not needed at all. 

Each choice insuuclion conaains a list of lhc.registcrs thai it used. The length of lhc lis1 is lhc same 

for all choice instructions in a predicate. For choices after the first, the atom no is put in lhc positions of 

regiSICrs thai do not have to be restored. For example, lhe list ( 0, no, 5) mean!\ lhat registers r < 0 l 

and r c 5) are restored from the first and third locations in the choice point. and lhc second location is not 



113 

accessed. 

In this example a funher optimization can be done _by merging the move instructions with lhe choice 

insuuctions, i.e.: 

becomes: 

choice (3/3, (no, 3), fail I. 
move ( r ( 3; • r 1 0 l l . 

choice (3/3, (no, 0) ,•fail I . 

. 

This is possible because Lhc value loaded in a register is de~ennined by its position in the list, not by its 

number, and because register r ( 3.1 is only used to load r ( 0 I. 

clause 
+type 

clause body 
compiler 

varlist 

BAM code 
+new type 

skeleton 
BAM code 

Figure 5.1 - Suucturc of the clause compiler 

compile a single goal 
in the clause body 
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J. Tht clause compiler 

The clause compiler convens a clause from kep~el Prolog Conn (with type aMOWions) to BAM 

code. The structure of the clause compiler is given in. Figw-e 5.1. After compiling the goals in the body 

there arc two intermediate results: (I) BAM code in which variables have not yet been allocated to registezs 

(sk.~leton code) and (2) a variable occurrence list (the varlist), that conrains aU unallocated variables in the 

skeleton code. The final BAM code is obtained by passing the varlist to the register allocator . 

. 
Each goal in the clause body is compiled in four steps. First. three lransformations are performed on 

the goal: entry specialization, the write-once cransfonnation, and the dereference chain nnsformation. 

Then the goal is compiled into BAM code by one of two routines. the unification compiler or the goal com-

piler, depending on whether the goal is a unification or not 

These are u'ic important blocks in the clause compiler: 

(I) The goal compiler. Its main task is to handle argument passing. Because of the in&craction between 

the different kinds of unbound variables, initialized and uninitialized, dtis results in a case analysis. 

In addition, the goal compiler compiles in-line some built-in predicates and the dummy predicates 

that were created in lhe uansformation to kernel Prolog . 

(2) The unification compiler. Its task is. given a type, 10 compile an explicit unification into the sim-

plest possible code. 

(3) The register allocator. Its task is 10 allocate variables to registers in such a way that the number of 

superfluous move insuuctions is minimized. It uses a dala suuctun: called the.varlist which is gen-

erated by the clause body compiler. 

(4) Entry specialization. This attemptS 10 replace each goal in the clause by a faster entry point, 

depending on the types known at the call. 

(5) Write-on« transformation. This cransfonnation is part of a cechnique for reducing the oYethead of 

e uailins. 

(6) Dereference chain transformation. This 1ransformation is necessary to keep the clataOow analysis 

and the clause compiler consistent . 

• 
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The following sections give more details about these each of these blocks. First, an example of a clause 

compilation is given, with emphasis on the skeleton code, the varlist, and a specification of the register 

allocator. This is followed by discussions of the goal compiler, the unification compiler, enay spccializa-

lion, the write-once uansfonnation. and the dereference chain uansfonnation. 

3.1. Overvie"· of clause compilati()n and register allocation 

This section gives an example of ho~o~.· a clause is compiled. Consider lhe following clause with no types: 

a(A,B) :- b(A,C), d(C,B). 

Compilation of this clause proceeds in three steps: First the kernel Prolog is compiled to BAM code and a 

variable occurr~nce list, or varlisl. In this example, most of the work in this step is done in the goal com-

pilcr. The resulting BAM code is referred to as wl~ton code since variables have not yet been allocated to 

registers. The varlist is derived from the skeleton code and contains the list of variables and regislerS in it. 

Second, the register allocator uses lhe varlist to allocate variables to registers. Third, after aU predicates 

and all clauses are compiled, lhe BAM optimization stage improves the code (OI.aptec 6). The skeleton 

code for this clause is: 

allocate (X) • 
move (r (0), AI • 
move (r (1). 8) • 

move(tvar·r(h),C). 
move(tvar·r(h),O). 
pragma(push(variable)). 
push (0, r (h) ,1). 

Create an environment (ita size ia still unknown) . 
Load the head arguments into variables A and B. 

Create an unbound variable and put it in C and D. 
C may exist beyond a call, D exists between calls. 

move(A,r(O)). Load the parameters of the first call. 
move (0, r (1)) • 

call (b/2). 
praqma(tag(C,tvar)). 
move([C),r(O)). 
move (B, r (1 ) ) • 

call (d/2). 
deallocate (X) • 

ret. urn. 

The varlist for this clause is: 

C has an extra link, with a tvar tag. 
Extra indirection to remove the extra link. 

No last call optimization in the skeleton code. 
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Corresponds to move(r(OJ,AJ. (pre!, r (01 , A, 
pref, r(li,B. 
C,pref.c.o.o, 
pre!. A. r (0). 
pref,D, r(l), 
fenc:e, 

Corresponds to the unbound variable in C and D. 

Corresponds to eall(b/2). 
c. r (0). 

pref,B,r(l), 
fence) Corresponds to call(d/2). 

3.1.1. Construction or the \'artist 

The varlist is constructed to satisfy these conditions: 

(I) The only contents of lhe varlist are unbound variables. temporary regiscets. and chc atoms fence 

and pref . 

(2) The order of variable occurrences is the same in the slcelelon code and the varlist. 

(3) • The atom fence is insened as a marker at each point where wnporary variables do not survive. 

• This corresponds to each ca 11 < .• ) insuucti<>':l in lhe skeleton code. 

(4) Two variables that are preferably allocated 10 the same register are preceded by lhe a10m pref and 

called a pref pair. A pref pair is created when allocating lhe variables to the same regiSIU allows an 

• insuuction to be removed. For example, lhe move (A, r ( 0) ) instnac:tion c:an be removed if lhe 

variable A is allocated 10 regist.cr r < 0) • 

(5) A variable occms exacdy once in the varlist if and only if it occurs cxaclly once in the skelclon code. 

e Such a variable is called a void variable. An instruction containing a 'VOid variable may be n:moved. 

(6) A variable occurs more lhan once in the varlist if and only if it occurs men than once in the stelelon 

code . 

• 
3.1.2. The rq~ter allocator 

The rcgisu:r allocator assigns a register to each variable in the varlist such that there are no confticts • 

• i.e. a single regi~er never holds two values at the samt time. The allocalor also calculates lbe size of lhe 

environment (the number of permanent registerS) for lhc allocate and deallocate insaruttioas. 

The algorithm is defined in Figure 5.2. h assumes lhat variables are n:prescnted as logical vwiablcs. i.e. 



procedur~ register_allocator(VL : varlist); 
var V •0 ,4 • \ ·~~"'~'. VP••I , V ~"" : set of variable~ 
begin 

end; 

v.o.4 := l variable Y I Y occurs exactly once in VL}; 
'rt X E \'.o•d do Allocate each X to r (void); 
V P''"' := l variable Y I The sequence (Y •... ,fence, ... , Y1 occurs in VL I; 
'rt X E VP•"" do Allocate each X 10 a different p (I l ; 
Environment si1.e := number of elemenlS in V P'"": 
V u"'P := { variable Y I Y occurs more lhan once in V L I; 
\'r••f := prcfcr{l'L ); 
"'hilt' Vu..., ~ 0 do begin . 

end 

while 3 X E V ,.. .. , : X is allo6uable to r ( I ) without conft ict do begin 
Allocate X toilS preferred register r (I): 

end; 

vp••t := v,...1 -{X}: 
Vu"'P := Vu"'P- (X}; 
Vp,.f := prefcr(VL) 

if 3 X E v, .... p then begin 

end 

Allocate X to the lowest r (I) possible without conflict; 
Vp••l := V ,...1 - (X); 
Vu"'P := V u"'P - {X J; 
VP,.I := prefer(l'L) 

runction prefer(VL : varlist) : set of variable; 
begin 

return ( variable'Y I The sequence { pref, Y. _]or l pre f._, Y] occurs in VL) 
end; 

Figure 5.2 -The register allocator 
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lhat allocating a variable to a register binds &hat variable in all selS that contain iL ll assumes that &here are 

an infinite number of temporary and permanent registers. It uses the following correspondence between 

variable lifetimes and registers: 

(J) A variable lhat occurs exactly once is allocated 10 r (void). 

(2) A variable occurring on both sides of a fence marker (it crosses a fence) is allocated 10 a per-

manent register p ( I) (a location in the environment). 

(3) A variable that docs not cross a fence and that occurs more than once is allocated to a aemporary 

register r ( I ) . 

The algorithm is indcpcndcnt of the write-once uansformation and the dereference chain uansfonnation. 
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This is possible because the clause compiler is careful 10 feed the allocator a varlist that takes the two 

cransformations into account. 

In the example of the previous section, the alloca10r as~igns the following values 10 the variables: 

A • r (01 
B • p(O) 
c - p(l) 
0 - r (1) 

X • 2 

Since both B and C cross a fence, they are &uotalCd 10 pennanent registers. Both A and D are allocated 10 

their preferred registers. The nwnber of pennanent variables, X, is 2. 

3.1.3. The final•result 

The final BAM code output by the compiler after all cransfonnations and optimizations (including the 

BAM uansfonnations of chapter 6) is: 

allocate(2J. :Allocate space for two per-manent variables. 
move(r(l),p(O)). 
move(tvar"r(h),r(l)). ; Create an unbound variable and put it in r(l) and p(l). 
move ( r (1 ) , p ( 1) ) • 

pragma(push(variable)). 
push(r(l),r(h),lh 
call (b/21 . 
pragma(tag(p(l),tvar)). 
move([p(l)),r(O)). ; Indirection due to dereference chain transformation. 
move (p(O), r(l)). 
deallocate(2J. 
jump(d/2). Last call optindzation converts •call' to 'jump' • 

3.2. The 1oal compiler 

Given a goal and type infonnation about the goal, lhis module sets up the arguments 10 call the goal, 

does the call, and sets up the return arguments. The main wk of the goal compiler is co handle the com-

plexitics that arise when supporting combinations of uninitialized and initiali7.cd parameters. The follow-

ing situations arc also handled: 

(I) Duplicate variables. An uninitialized variable thai occurs twice in a goal muSl be initialized before 

calling the goal. 
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(2) Uninitialized register variables. Passing arguments as uninitialized regisiCr variables requires 

some care. These variables are not passed into a predicate, but are outputs retwned in registers. 

(3) Dummy predicates. Several compiler transformations create new predicaacs as part of t.he cransfor-

mation. These predicates are only called once, so t.hey are compiled in-line. 

(4) Built-in predicates. Some built-in predicaacs arc translated into in-line code (Table 5.5). 

function compilc__goal(G :goal; F :formula; Vsf :set): return (Code :list; Fo,. : fonnula; v.1.- :set); 
''ar \!..,;,.;, , V ;,.;, : set of variable; 

lnircode, Pucode. Call, Postcode :list of instruction; 
, A : ICrm; 

g;,r,: {ini,mem, reg); 
i :integer; 

begin • 

end; 

/* Initialize all uninitialized variables chat are duplicaiCd •t 
V ..,;,.;, := { X I F implies (uninit_mem(X) or uniniueg(X )) ) ; 
V,,.;, :=((vars(G)- V_,f) u V...u.ur) rt dups(G); rTablc4.6•t 
I nil code := list of ( V X e V,,.;, : Code 10 initialize t.he variable X); 

t• Pass arguments to the goal and clean up afterwards •t 
Precode := f ]; 
Posrcode := ( ]; 
fori := I to arity(G) do begin 

end; 

A := (argument i of goal G); 
g, := given_flag(A, F, Vsf ); r Table 5.1 •t 
r, := require)lag(A , G); r Table 5.2 •J 
Append precode( g; , r; ] to Precode; r Table 5.3 •t 
Append posLCodc( g; , r; ] to Po:stcode J• Table 5.4 •t 

r Call the goal ., 
if (G can be expanded in-line) then 

Call :=(in-line expansion of G) r Table 5.5 •t 
else if (G is a dummy predicate) then 

Call := (in-line compilation of G 's definition) 
else if (G does not alter temporary registers) then 

Call := (a s imp1e _ ca 11 instruction for G) r Table 3.7 •t 

Call := (a ca 11 instruction for G); 
Code := append(lnitcode, Precode, Call, Post code) 

Figure 5.3 -The goal compiler 

The function compilc__goai(G. F. v,1) defines t.hc goal compiler (Figure 5.3). Its inputs arc the goal {G). a 

type formula (F). and t.he set of variables ahat have a value on input (\'•/ ). Its outputs arc a list of BAM 

instructions (Code), the type formula true on output (F.,.,). and the set or variables ahat ha'·c a value on 
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output (V,1 ...... ). 

Each goal has three type fonnulas associated with it: a Require type, a Before type, and an After type. 

These types arc optionally given by programmer input and arc supplemented by dataflow analysis. The 

compiler maintains a table of these types for all predicat,.; including built-ins and internals. The Require 

type gives the types that the arguments being passed to the goal must have, i.e. the goal compiler is 

required to make them true in all cases. The Before type gives the types that are true before the call. The 

After type gives the types that arc true after .the call returns. No special action is needed by the goal com-

piler w ensure the validity of the Before and After types. 

Compiling a goal is made more complex because the kind of argument needed by the goal may not 

be the same as Jhc one that is given to it. The goal's Gi11en type (which is valid before the goal and given 

by F in Figure 5.3) must be reconciled with the goal's Require type. The most common Require and 

Give!' types are the three varieties of unbound variables: uninitialized memory and register variables and 

initialized variables. This requires a case analysis" with 3 X 3 cases for each argument Of the goal W prop-

erly match the Require and Given types. 

Table 5.1 -Calculating the Given ftag of an argument 

Condition on argument A g; 
nonvar(A) ini 
var(A ) " (F implies uninit_mem(A )) mem 
var(A ) " ((A E v.1) v (F implies uninit_reg(A ))) reg 
var(A) " (A E l's/) ini 

Table 5.2- Calculating the Require flag of an argument 

Condition on argument A ,, 
requirc(G) implies uninit_mem(A) mem 
require( G) implies uninit_reg(A) reg 
otherwise ini 
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Table 5.3- Calculating the prccode from the flags 

g, ,. 
' 

prccode( g, • r, 1 • reg reg [] ' 

mem reg l J 
ini reg I J 
reg mem [move(tvar·r(h),8),adda(r(h),l,r(h))) 
mem mem [ 1 
ini mem [move(tvar·r(h),8),adda(r(h),l,r{h))] • reg ini (move(tvar·r(h),8),push(8,r(h),l)) 
mem ini (move(A, (A)),move(A,B>J 
ini ini ( 1 

Table 5.4 -Calculating the postcode from the ftags 

g, , postcode( g; , r; ] I • 
reg reg [ ] 

mem reg [move (8, [A))) 
ini reg unify(A,8) 
reg mem [move (8,A)) 
mem mem [] • ini mem unify(A,Bl 
reg ini [move (8, A> ] 
mem ini [ 1 
ini ini (] 

Require and Given flags r, and g; (with values in {ini, mem, reg}) are associated with each goal • 
argument for the Require and Given types. Tables 5.1 and 5.2 define how the Require and Given flags are 

calculated. The function requite(G) in Table 5.2 is a defined predicate in ll1e compiler that returns the 

Require type for any goal. It knows all about built-in and internal predicates and ll1e results of dalaflow • 
analysis. 

Duplicate arguments (e.g. A in the call p(A. A)) are treated specially. An argument that is duplicate 

cannot be uninitialized-it occurs in more than one place, so it is not unaliased any more. The goal com- • 
piler initializes these arguments before doing the case analysis. 

Table 5.3 gives the precode. i.e. the code that is generated before the call to set up, and Table 5.4 

gives the postcode, i.e. the code that cleans up afaer the call. To enforce the Require type, in seven of the • 
nine cases a different argument B is passed to the call instead of the goal's original argument A. For 

example, if the Given flag is mem and the Require type is reg. then the compiler must create a new vari-

able 8 of type uninit_reg(B) to pass to the goal. After the goal returns, the original argument A and the • 
returned argument 8 arc unified together. The new variable 8 is created for all comoinations of Given and 
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Require flags except (reg , reg) and (mem, mem). In these two cases no precode or postcOde is needed. 

To stmplify the presentation, Figure 5.3 only does pan of what the algorithm implemented in the 

compiler docs. The definition of compilc_goal in the figure only handles Require and Given types that are 

all unmntalizcd variables. The actual algorithm handles any types. The type fonnula F and lhe variable 

set v,1 arc updated continuously during the execution of compile _goal. A variable occurrence list is calcu-

lated for the register allocator. The actual algorithm handles 12 cases for parameter passing instead of9-

· as an optimit.ation, two varieties of Given u.ninitialized register types are recognized . 

Table 5.5- BAM expansion of internal built-ins 

Kernel Prolog 

'Scut load' (X) 
''Scut' (XI 
·, Sname_arity' (X,'.', 2) 
'Sname_arity' (X, Na, Ar) 
'Sname_arity' (X,Na, 01 
'Stest • (X, Types I 
'Sequal' (X, Yl 
'Sadd' (A,B,C) 
'Ssub' (A, B, C) 

'Smod' (A, B, C) 
'Smul' (A, B, C) 

'$di v' (A, B, Cl 
'Sand' (A, B, Cl 
'Sor' (A, B, C) 
'Sxor' (A, B, Cl 
'Ssll' (A, B, C) 
'Ssra' (A, B, C) 
'Snot' (A, Cl 

3.2.1. An example of goal compilation 

BAM instruction 

move (r (b), XI 
cut(X) 
test(ne,tlst,X,faill 
equal([X],tatm"(Na/Ar),fail) 
equal(X,tatm"Na,fail) 
(a sequence of test instructions) 
equal(X,Y,fail) 
add(A,B,C) 
sub(A,B,CI 
rnod(A,B,CI 
mul(A,B,CI 
div(A,B,C) 
and(A,B,C) 
or(A,B,C) 
xor(A,B,C) 
sll(A,B,CI 
sra (A, B, C) 
not(A,Cl 

This section gives a simple example of compilation to show how the goal compiler works in practice. 

Consider the following predicate in standard Prolog: 

a (X, Yl :- Y is X+l. 

This is convened lO kernel Prolog: 

a (X, Y) :- '$add' (X, 1. Yl. 

To compile the call to • $add' /3 it is necessary to pass par.tmetcrs in the right way. In particular, it is 

necessat)• to pass the output of the addition into variable Y. The built-in 'Sadd' (A, B, Cl has the 
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following types ao;sociatcd with it: 

Require= (de ref (A), de ref (B), uninit_reg (C)). 
AJ~r= (integer(A),integer(B),integer(C),rderef(A),rderef(B),rderef(C)). 

From the Require type, the first two arguments X and I of ' Sadd' I 3 must be dercferenced and lhe lhird 

argument Y mus1 be an uninitialized register. The Given types of X and Y depend on lhe type fonnula for 

a (X, Y). Assume first lhat no type is given for a (X, Y). From Tables 5.1 and 5.2, the Given ftag for Y 

is ini and the Require flag for Y is reg. From Tables 5.3 and 5.4, the precode in this case is empty and 

the postcode is a call to unify(A ,8) to generate unification code. The compiled BAM code is: 

procedure(a/2). 
deref(r(O),r(O)). 
as:'d(r(O) ,1, r(O) )'. 
deref(r(l),r(l)). 
unify(r(O),r(l),nonvar,?,fail). 
return. 

Dereference X. 
Perform the addition. 
Dereference Y. 
Unify Y with the result of the addition. 

If p. ex, Y) has a type lhen the code can ofren be simplified. For eJtample, assume that iLS type is 

(de ref CX), uninit_mern (Y)), i.e. X is dereferenced and Y is an uninitialized memory variable. 

Then lhe Given ftag for Y is rnern. The compiled BAM code is: 

procedure(a/2). 
add(r(O),l,r(O)). 
pragma(tag(r(l),tvar)). 
move(r (0), [r(l) l). 
return. 

3.3. The unification compiler 

Perform the addition (X is dereferenced). 

Bind Y to the result of the addition. 

This section gives an overview of lhe compilation of unification, the optimizations that are done, and 

several examples. 

3.3.1. The unification algorithm 

Given a unification goal and type information about iLS arguments, lhis algorilhm genct3tes lhe sim-

plest possible code to implcmem the unification. In the genen~l case, the algorithm build~ a tree of insuuc-

lions. Each node of lhe tree has three branches-one each for read mode and write mode unification, and 

one for failure. The algorilhm genera~s dereference inSbUCtions if necessary and nil instruCtions to undo 
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variable bindings when backuacking. ll does other optimizations including optimal write mode unification, 

type propagation, and depth limiting. 

Write mode unification of a tcnn generates a bi9Ck of push instructions that builds the term on the 

heap. Read mode unification of a term is done sequentially for each of the term's arguments. First it 

checks the name and arity of the term. Then the arguments are unified. For arguments that are simple 

terms this consists of a single move, equal, or unify instruction. For arguments that are compound 

terms the unification algorithm is called recursiv~ly . 

The function unify(X. Y. F, v,,) defines the unification algorithm (Figure 5.4 and 5.5). Its inputs 

arc the two terms to be unified (X and Y ), the type formula uue on input (F). and the set of variables that 

have a value on input (Vsf ). Its outputs are a list of BAM instructions (Codt ). the type formula true on 

output (Fow ), and the set of variables that have a value on output (V.,.-). 
• TI1c algorithm does several tasks that are not shown in the figure since they would unnecessarily 

complicate the presentation. The instruCtion list. the type formula, and lhe variable set are updated con-

tinuously during the compilation. Before using the value of a variable, it is dereferenced if necessary. 

Before binding a value to a variable, it is trailed if necessary. A variable occurrence list (varlist) is calcu-

lated for the register allocator (Figure 5.2) . 

3.3.2. Optimizations 

The actual implementation does four optimizations not shown in Figure 5.4 and 5.5. It does optimal 

write mode unification. ll keeps track of tenns that are ground and recursively dereferenced to avoid com-

piling superfluous write mode unifications and dereferences. To reduce code size, it performs the last argu-

ment optimization and the depth limiting transformation . 

3.3.2.1. Optimal write mode unification 

The algorithm is modified to build a compound term in write mode with the least number of move 

instructions. First the code for building the main functor with empty sloLc; for iLc; arguments is generated. 

Thi!i i!i followed by the code for building the argument<; and filling in the slotc; with the coma heap offsets . 
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function unify(X. Y: term; F :formula; v,, :set) return (Code :list; F0 .., :formula; v,,, 0 .., :set); 
begin · 

end; 

Code:= I); 
if ( var(X) and var()' )) then begin 

if (F implies (unbound(X) or unbound(Y))) then 
Compile a store instruction 

else 
Compile a call to a general unification subroutine; 

return 
end el<ie if (nonvar(X) and nonvar(Y)) then begin 

Compile a check that X ~nd Y have the same functor and arity a; 
for i := I to a do begin · 

Append unify(X,, Y;, F, V,1 ) to Code 
end; 
return 

end if (nonvar(X) and var(Y)) then Swap X and Y 
e~e if (var(X) and nonvar(Y )) then Do nothing; 

if (X E v,1) then return unify_ write(X, Y, F, v,, ); 
else begin/* At this point X e v,, •J 

end 

if (F implies nonvar(X)) then return unify _read(X, Y, F, v,1 ) 
else if (F implies var(X)) then return unify_write(X, Y, F, v,1) 
else begin 

Compile a three-way conditional branch comparing lhe tags of X andY: 
Call unify_read and unify_writc 10 compile the read and write mode branches 

end 

Figure 5.4 -The unification compiler: lhe main routine 

This technique was proposed as an optimization over the WAM by Andre Marien [44]. The examples of 

unification given ·Jater use lhis technique. The justification of lhe BAM instruCtions needed for unification 

was done with this technique (Chapter 3). 

3.3.2.2. Last argument optimization 

This is an important optimization that significantly redtas the code size. It can be performed when-

ever a compound term has a compound term in its last argument. Withoutlhis optimization, the cree gen-

eratcd by the algorithm has lhc same depth as the term that is compiled. For each level in the uee a new 

block of write mode code is generated. For lists of n elements this results in 0 (n 1 ) move inmuctions. 

The optimization reduces the code size to 0 (n) by creating only a single write mode block, and letting all 

depth!' of the tree jump into it. This optimization was proposed by Mats Carlsson 114). The code for wri1e 
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function unify_ writc(X, Y: term; F : formula; v., : ~) return (Ctxk : list; F _ : formula; v., ,ow : set); 
begin 

end; 

r AI this point X is an unbound variable •t 
Generate a block of instructions to create the term Y on the heap; 
Bind X to this block (i.e. generate code to dereference X if necessary, 
store a pointer to this block in X, and trail X if necessary) 

function unify_read(X, Y: term; F :formula; v.1 :set) return (Code :list; Fow :formula; v., .• .., :set); 
begin 

end; 

r At this point Y is a non variable and F i(nplies nonvar(X) •t 
Code := (I; 
Compile a check that X contains a structure of same functor and arity as Y; 
for.i := 1 to arity(Y) do begin 

Append unify(X;, Y;, F, V,1 ) to Code 
end 

Figure 5.5- The unification compiler: read and write mode unification 

mocje unification of a nested term is replaced by a single jump insauction to the write mode code block of 

the outermost term. An example of unification given below uses this optimization. 

33.23. Type propagation 

There are two ways in which propagating type information during the compilation of W"lification 

improves the code. First. during the unification, the algorithm keeps track of the variables thal an: ground, 

uninitiatized, and recursively dereferenced. This information is propagated into the arguments of com-

pound terms. The propagation of ground and recursively dereferenced types was added after measure-

ments of the data now analyzer showed that these types are numerous. 

Second, when a new variable is encountered in a tenn, then the unification compiler has the choice 

whether to create it as an initialized variable or as an unin.itialized variable. It is not always best to create 

new variables as uninitiatized, since this often makes it impossible to apply last call optimization. To solve 

this problem it is necessary to look ahead in the clause. The variabk is created as uninitialized only if there 

is a goal later in the clau~ with this variable in an argument position that must be uninitiali7.ed. 



• 
3.3.2.4. Depth limiting 

Because the unification compiler generates a separate read and write mode branch for each functor in • 
the term that is unified. deeply nested terms result in a ~;ode size explosion. The last argument optimization 

(sec above) reduces the code size when the nesting occurs in the ias1 argumenL For other cases. a different 

technique is necessary. The unification compiler replaces a deeply nested subacrm by a variable. creates • 
the subtenn with write mode unification and docs a general unification with the variable. The depth limit is 

set by the compiler option depth_! imir (N). and the default depth is N•2. For example, consider the 

following unification where the complicated term z ( ... ) is nested deeply: • 
x-s (t (u < ... z < ... ) .•. Ill 

h is replaced by a sequence of three unifications: 

• 
X•s(t(u( ••• A .•. ))), B•z( .•. ). A•B 

The variable B does not yet have a value, so the unification B•z ( ... ) is executed in wriac mode. A gen· 

era I unification is performed for A•B. Since the size of a write mode unification is linear in the size of the • 
compound term, this considerably shonens the code for deeply nested terms. Measurements ~ done 10 

determine the effect of this transformation on execution time. In most cases it is insignificant, e.g. for the 

nand benchmark (Chapter 7), a program that contains deeply nested suuctures, the difference in execution • 
time between depth limits of two and three is insignificant (i.e. only a few cycles out of several hundred 

thousand). 

• 3.3.3. Examples of unification 

Consider the following sample clause: 

a(A, s(A,(XIX))). • 
The W AM code for thi~ clause is (assuming the two arguments of the clause arc in registers r ( 0) and 

r ( 1) ): 

• 

• 
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procedure a/2 
get structure s/2,rCll 
unify_value rCOl 
unify_variable r(3) 
get_list r(31 
unify_variable r(2) 
unify_value r(2) 
proceed 

,, the clause has two arguments • 
, unify r (1) with s (A, [X I XJ). 
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,, unify the first argument with r(Ol. 
load the second argument into r(3). 

,, unify r(3) with {XIX). 
load the first argument. into r(2)·. 

,, unify the second argument with rC2l . 
return to caller. 

Temporary values arc stored in registers r < 2 l and r c 3) . The execution time of lhis code averaged 

over read and write mode is 63 cycles on lhc Xenologic X-1 processor (85]. an implcmencation of the PLM 

architecture (28). The BAM code generated for'lhe same clause is (the pragmas have been Jef( out Cor dar-

ity): 

procedure(a/2). 
•• dereference r(l) • ~eref(r(1),r(l)). 

swit.ch(t.str,r(l),l(a/2,3),l(a/2,4),fail) ••• three-way branch. 
label(l(a/2,31). 

trail(r(lll. 
move(tstr·h.(r(l))). 
push(tatm•(s/2),h,l). 
push(r(O),h,l) • 
push(t1st•(h+2).h,l). 
pad (1). 

label(l(a/2,1)). 

•• write mode for s(A,{XIX)). 
conditionally push r(l) on trail stack. 
bind s(A,{XIX)) to second argument. 
create the term s(A. (XIX] I. 

common code for last arg. opt. 
move(tvar·h,rC2tt. 
push(r(2),h,l). 
push (r (2). h, 1•). 

; create the two argumen~s of [XIX). 

return . 
label(l(a/2,4)). 

equalC{rCll).tatm•(s/2),fail).; 
move ( ( r ( 1) + 1] • r (3) ) • 

deref(r(3J,r(3)). 
deref(r(OJ,r(O)). 

;; read mode for s(A, (XIX]). 
check functor ' arity of s/2. 
load first argument into r(3J. 

unify(r(3),r(O),?,?,fail). 
move((r(1)+2].r(O)). 

unify first argument ~ith r(O) . 
; load second argument into r(O). 

deref(r(OJ,r(O)). 
switeh(tlst,r(O),l(a/2,6),1(a/2,1),fail). :: three-way branch • 

label(l(a/2,6)). 
trail (r (0)) • 

move (tisCh, (r(O))). 
jump (1 (a/2 ,1) ) • 

label (1 (a/2, 7)). 
move((r(O)),r(2)). 
move([r(O)+l),r(O)). 
deref(r(O),r(Ol). 
deref(r(2).r(2)). 
unify(r(0),r(2),?,?,fail). 
return. 

•• write mode for (XIX]. 

jump to common code Clast arg. opt.). 
;; read mode for (XIX]. 

unify arguments of (XIX) • 

Again. lhe two arguments of the clause Ire in registers r ( 0) and r < l l and temporary values are stored 

in registers r c 2 l and r ( 3 1 • To reduce the code si7.e, the wrilC mode code for (X 1 x) jumps into lhc: 



middle of the code for s (A, ( x 1 x J >. With this optimization the code is 29 BAM instructions long (afcer 

translation and instruction reordering. this is 204 byi.Cs on !he VLSI-BAM). The W AM code is only 7 

instructions long ( 17 bytes on the PLM) because each instruction encapsulates a choice. W AM insuucuons 

for uniftcation assume the existence of a read/wnte mode bit in the implementation, which collapses the 

execuuon tree onto itself. 

The code size ratio VLSI-BAMJPLM is large for !his example. ll was hoped during development 

that (I) code expansion would be less for othe.r kinds of Prolog code (e.g. calls. parameter passing, back

tracking). and (2) dataftow analysis would reduce the complexity of unifications. These intuitions have 

been borne out (Chapi.Cr 7): lhe static code size in VLSl-BAM byres measul'ed for large programs is only 

lhrce times lha~ of lhe PLM, a microcoded W AM with a byte-coded instruCtion seL 

The execution time of lhe above code on the VLSI-BAM is 25 cycles (measured wilh a simulaaor 

taki.ng pipeline delays into accoWlt and averaged over read and wrice mode). This is about 40% of lhe 

cycles needed for the X-I. This time can be estimated by taking lhc average execution times of BAM 

instructions when uanslated to lhe VLSI-BAM architeCture: unify takes 5 cycles, equal takes 3 

cycles, switch, deref, trail,and movefrommemorytake2cycleseach, push, adda,andall 

olher move instructions take J cyc;e each. and pad instructions take 0 cycles because lhey are collapsed 

into the pushes. These estimates are only approximately correct because of insauction reordering optimi

zations performed on VLSI·BAM code. 

Through progrdmmcr annotation or da1aflow analysis it is sometimes possible 10 know lhe type of an 

argument at compile-time. For example, sometimes it is known whether an argument is Wlbound or bound. 

Consider lhe same sample clause again: 

a (A, s (A, (X I X) ll • 

Assume it is known that lhe second argument is an uninitializcd memory variable. This is expressed with 

lhc followin£ type declaration: 

:- mode((a(A,B) :- uninit_mem(B)l l. 

With this type lhe clause's code is only 9 BAM instruCtions long (36 bytes on lhc: VLSI-BAM): 
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procedure(a/2) 
move(tstr"h, [r(ll I I. 
push(tatm"(s/2),h,l). 
push(r(O),h,l). 
push (tlst • (h+2), h, 1). 
pad (1 l. 
move (tvar"h, r (0)) • 

push(r(O),h,l) . 
push(r(O),h,l). 
return. 

•• bind s(A,(XJX)) to second argument. 
,, create the term s(A,(XJX)). 

•• create the two arguments of [XIX). 

•• return to caller. 

The execution time of this example is II cycles . 

3.4. Entry specialization 
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For each goal in the clause. the clause compiler auempts 10 replace it with a faster entry point. 

depending on the types existing at that poinL For example. if it is known that the argumems N and A of the · 

predicate functor (X, N, AI are atomic then a faster version can be compiled. 

• Entry specialization is done in both the clause compiler and the dalaflow analysis. Doing it in both 

places is complemental}' since the analysis only keeps trade or a limited set of typeS: ground. nonvariable • 

uninitiaJized. and recursively dereferenced. During clause compilation more information is known. for 

example. if the goal X<Y occurs in a clause. then aftelW8rds it is known that X<Y is ttue. Analysis does . 
not have a representation for this information. but it could be useful for enuy specialization . 
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atomic (A)? 

uninit(A)? 

~ 
uni.nit (B)? 'S_name_ <_ *-1' !A, B) 

~ 
unini.t (B)? 

~ 
name(A~B) '$ name_>_*2' (A, B) ·s_name_>_l' (A,B) ·s_name_>_l_*2' (A,B) 

Figure 5.6: Example of a modal cnuy tree for enuy specialization 

• Entry specialization can be done for any predicate whose definition is not in the program. The sys-

tem has implemented this for the buill-in predicates. but it can be used by lhe programmer for any libraty 

predicate. For each predicace lhat has Caster enlry points, a modal_ entry declaration is given. along 

with type declarations for the fast entry points. These declaration are used in the dataflow analysis and lhe 

clause compiler lO replace any call to the predicate with a faster cnuy poinL For example. here is the 

modal enuy declaration for the name (A, B) built-in predicate: 

·- modal_entry(name(A,Bl, 
tnode (aton-.ic (A), 

mode(uninit(BJ, 
entry(' S name > 1 *2' (A, BJ), 
entry('$ name> 1' (A,B)) 

), 

mode(uninit(A), 
entry('$ name< *l' (A,911. 
mode(uninit(B), 

) 

) ) ) . 

entry('$ name> *2' (A,Bll. 
entry(name(A,B)l 

This declaration defines a binary uec, depicted in Figure 5.6. The nodes of the tree are decision points con-

uining a type. lr the type is valid then the left subtree is chosen. Olhcrwisc the right subucc is chosen. "nlc 

leaves or the uee arc the entry points. U none of the types arc '·alid lhen lhc leflmOSllcaf is chosen. which 
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usually is the same predicate as the original one. Each of the four fast enuy points also has a type declara-• tion: 

. mode('$ name > 1' (.A, B), (der~f(.A),deref(B)), atomic (.A), 
(list(B),ground(B)), n) . 

• ·- mode('$ name < •1' (.A, B) , (uninit(.A),deref(B)), true. 
(atomic(A),deref(A),list(BI,ground(BII, n). 

mode('$ name > *2'(A,BI. (deref(A),uninit(B)), true, 
(atomic(A),list(B),ground(B),rderef(B)), n). 

mode('$ name > 1 *2' (A, B), (deref(.A),uninit(B)), atomic (.A), 

• (list(B),ground(B),rderef(B)), n)-

These dec~tions are written in a five-argument form that is more general than a scandard type declaration 

(Appendix A): it gives the entry types (both Require and Before) and the exit (After) types for the predi-
• 

• cate. 

3.5. The write-once transformation 

• In the BAM all unbound variables are kept on the heap. This makes trail checking significantly fas-

ter. However, when combined with the ability to destructively modify the value of pennanem variables 

(e.g. to dereference them and save the dereferenced value in the permanent) it leads to several problems. 

• These problems are all neatly resolved by the write-once uansfonnation . 

Putting all unbound variables on the heap means that there are no pointers to the er.vironmenl/Choice 

point scack; all pointers point to the heap. This reduces trail checking to a single comparison v.·ith the heap 

• backtrack pointer r (hbl and a conditional push to the trail scack. It is not necessary to do-another com-

parison to decide whether the variable is on the heap or in an environment. In addition, since all unbound 

variables are created on the heap there are no .. unsafe variables" as in the W AM. An unsafe variable isan 

• unbound variable that is created on lhe environment and that must be moved to lhe heap ( .. globalized") 

before last call optimization dcaJiocates its memory. 

Modifying the value of a permanent variable (e.g. by dercferencing or binding it) cannot be done · 

• without a uail operation. Indeed, consider the case where a permanent dcrefcrcnccs to a nonvariablc tenn. 

If the dercferenccd value overwrites the original value. then both the original \'alue and its address ha'•e to 

be 1tailed since backtracking has to restore lhe original value. This is expensive. since it hl.li 10 be done 

• 
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every time a permanent is bound oc dereferenced. 

One solution to this problem is never to store a. dereferenced pennanent back in the environmenL • . 
This solves the problem but it is inefficient since a permanent may have 10 be dcreferenced several times in 

a clause. 

A better solution is to allocate a new permanent on the environment whenever the value of an old • 
one needs to be changed. Tile new permanent gets w new value and the old pennanent is unchanged. As 

a result, all permanent variables are only given. values once, so they are called "write-once" pennanents. 

Because it is not changed, the old permanent does not have 10 be trailed. At the coSt of a slightly bigger • 
environment. this completely eliminates the need to uail permanent variables. This allocation scheme is 

' implemented in the clause compiler. 

• To summarize: 

(I) · All unbound variables are created on the heap, and unbound permanent variables in an environment 

always point to the heap. • 
(2) The uail check is a single comparison with r (hb) and a conditional push 10 the trail saack (2 cycles 

on the VLSI-BAM). 

(3) Permanent variables are only given a single value in a clause. Whenever a permanent would be • 
changed, a new one is allocated and given the modified value. 

(4) Register allocation must allocate a different permanent register for ·each permanent variable in the 

clause. h is not allowed to use the same register for two variables whose lifetimes do not overlap. • 
This solution is implemented in dte c!&use compiler by mapping a permanent variable onto a new variable 

whenever its value would change. The register aUocator treats the new variables juSt like any other. and 

allocates them to temporary or permanent registerS. • 
The main disadvantage of this technique is that environments are larger. For example, consider a 

clause ofthe form: 

• 
e(A,El :- a(A,BI, b(B,C), c(C,D), d(D,E). 

where variables an: chained from one predic:au: 10 thc neaL In lhe WAM. it is allowed to allocate 
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pcrmancm variables such that variables whose lifetimes do not overlap arc allocated 10 the same permanent 

register. For the above example, this requires just two permanent registers, so the total environment size is 

four words (it also includes registers r (e) and r (cp) ). Only two permanents are needed no matter 

how long the chain of body goals is. This method requires trailing of the pennanent's values, because 

backtracktng must sec the original values. This scheme is consistent with the original implementation of 

the V..' AM, i.e. binding permanent variables on the environment and globalizing unsafe variables to ensure 

cornx:tncss . 

In contrast, the number of permanent variables needed by the write-once technique increases linearly 

with the length of the chain. For the above example, this requires four permanent variables, so the total 

environment size is six words. The total memory usage is increased by less than this amount because n~ 

trailing of permanents is needed. 

This is an example of a trade-off between memory space and execution time. The extra memory 

space needed is comparable to the increased size of the trail stack if there is no trail check for permanent 

variables. Since this is small, I have opted 10 decrease execution time at the expense of larger environ

ments. By keeping all WJbound variables on the heap and by implementing permanent variables as write

once variables, permanent variables can be dereferenced and bound without trailing, and the cost of trailing 

heap variables is reduced to a single comparison and conditional push. 

3.6. The dereference chain transformation 

This transformation is needed to maintain consistency between the dataflow analysis and the clause 

compiler. A new m1bound variable (of either initialized type or uninitialized memory type) is created as a 

pointer to a memory location. Binding the variable stores the new value in the location. However, the 

registcr(s) that originally contained the unbound variable stiU have pointers to the location. One level of 

indirection is nl',cdcd to access the value . 



argument A: 

Just befor~ the call to a( A) 

-+---------.J tvar 

Just after the call to a( A) 

/ 
Extra link 

between A 
and its value 

value bound 10 A - -

Figure 5. 7 -The need for the dereference chain transformation 
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To sec why this is nccc!>sary and what it implic.-.. con.c;ider the execution of the clau!>C main (Figure 5.7): 

main :- (i) a (A), (ii) write (A). 

a(AJ :- A•s(t(a),u(b),v(c)). 

The relevant situation can be seen in the transition from (i) (just before the call to a (A}) 10 (ii) (just after 

the call to a (A)). At (i) a new unbound variable A is created on lhe heap. At (iiJ the variable A has been 

bound to a value. The important point is WI A still has a tv a r lag. and Wt one indirection is needed to 

access the tst r pointer. The extra link exists because the aeation of A and its bindins arc done in 

separ.ate steps. This is true for both initialized unbound variables and uninitializcd memory \"'f'iablcs. 
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This situation is not a problem unless dataftow analysis determines that A is returned as a derefer

enced value. In that case there is a conflict between what the analysis deduces and what the clause com

piler thinks is true. There arc two ways 10 solve this problem: either weaken the analysis so that it will not 

deduce a dereference type in this case. or modify the clause compiler to ensure that the variable is derefer

enced by doing an extra indirection whenever the variable is accessed after it is bound. The compiler 

implements the second solution since dereferencing is a time-consuming operation and it is important 10 

derive as many dereference types as possibl~. The trade-off between doing an extra indirection for a value 

that may not be accessed later and doing an exua dereference loop seemed lO be a fair one . 

The' compiler insens code to do this indirection whenever the variable is accessed after it is bound. 

In addition to '!laintaining consistency with the analysis, this speeds up later dereferencing. There is a 

minor interaction with the register allocator-for correcUless. variables that geL an extra indirection are not 

allowed to be prcf pairs . 
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Chapter6 

BAM Transformations 

1. Introduction 

After compiling the program from kernel Prolog into BAM code, a series of optimizing uansforma-

tions is performed. The uansformations performed are: (I) duplicate code elimination, (2) dead code elim-

ination, (3) jump elimination, (4) label elimination, {5) synonym optimization, (6) peephole optimization, 
. 

and {7) determinism optimization. This chapter first gives two definitions and then presents the uansforma-

lions. 

2. Definitions· 

The following two definitions are useful: 

Definition DB: A distant branch is a bt31lch that always transfers control to an insuuction 
other than the next in the instruCtion stream. 

According to this definition. there are exactly four distant branches in the BAM: fail, return, jump, and 

switch. All other branches do not satisfy the definition since they can fall through to rhe next instruction. 

Definition BB: A contiguous block is any sequence of instructions that terminates with a dis
tant branch. 

According to rhis definition, a contiguous block can stan with any instruction and can contain conditional 

branches with a fall through case. Therefore the code contains a large number of overlapping contiguous 

blocks. This is useful to get maximum optimization when looking for contiguous blocks that satisfy some 

property. The individual transformations mentioned in this chapter will usually only look at contiguous 

blocks satisfying cenain constraints. for example. the contiguous blocks that begin with a label. 

3. Tbe transformations 

Seven transformations (Figure 6.1) are done on the BAM code generated for each predicate by the 

kernel to BAM compilation stage. A &ransitive closure is performed on the sequence of seven uansforma-

lions, i.e. they arc applied repeatedly until there are no more changes. Each &ransfonnation is carefully 
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coded .to result in code that is better (i.e. faster or shorter) than its input, so the closure operation ter-

minatcs. 

BAM code 

Optimized BAM code 

Figure 6.1 - BAM Transformations 

3.1. Duplicate codt elimination 

All duplicate contiguous blocks except the last occurrence are replaced by a jump to lhe last one. 

This optimization is also known as cross-jumping. It tighcens up loose code generated by lhe type enrich

ment transformation (Chapter 4). It is implemented by first creating an table indexed by all contiguous 

blocks that (l) begin with a label, {2) do not contain any other labels (but lhcy arc allowed to contain 

branches). and (3) are not degenerate blocks that consist of only a single jump. return, or fail insuuaion 

(but a single switch is allowed). The table contains lhe label of the last occurrence of lhe block. All con-
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liguous blocks in the code, including lhose that do not begin with labels, are looked up in the table and 

replaced by jumps if lhey are not the last occurrence. The result of this optimization is to reduce code size 

at the price of slightly slowing down execution. 

3.2. Oead code elimination 

All code that is not reachable from the entry point of a predicate is removed. This is done in two 

steps: First, all the labels that arc reachable through any number of branches are calculated by doing a cran-

sitive closure. Second, a linear traversal of the cOde is done and the insuuctions following a distant branch 

up to the n~xl reachable label are eliminated. 

3.3. Jump elimination 

Reanange contiguous blocks to minimize the number of jump, call, and remm insuuctions. This 

optimization is a variant of lhe jiU71p chaining optimization. A transitive closure is dooe on the foUowing 

replacements: 

(1) Replace a jump by the contiguous block it points to if lhe block is only pointed to by one branch or if 

lhe block is shorter than a preset threshold. The threshold can be changed by a compiler directive. 

The replacement is not done if the block is part of write mode unification or unification with an atom, 

since these two cases are hun by the uansfonnation. 

(2) Replace a call to a dummy predicate by the code for the pedicaac if it is straightlinc code, i.e. its 

code consists only of non·branches, call insttuaions, and branches all of whose destinations are 

fail. 1be predicate•s code must be tennii131Cd by a return or fail insuuclion. 

(3) Replace a conditional branch to a conditional branch by a new conditional branch if possible. The 

only ca-;e currently recognized is: 

test(ne,tvar,V,L). 

label(L). 
awitch(Tag,V,fail,L2,L3). 

which causes the t.est instruction to be replaced by: 



switch(Tag,V,Ll,L2.L3). 
label (Ll). 
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(4) Replace a branch one of whose destinations is a jump or fail instruction by a new branch identical to 

the original one except that the destination label is replaced by the destination label of the jump or by 

fail. 

3.4. Label elimination 

Remove all labels that arc not jumped to by any branch in the code. nus is done in two steps: First. 

the set of all destinations of all branch instructions is collected. Second, the labels not in this set are 

removed from the code. 

3.5. Synonym optimization 

This transformation is similar to strength reduction. It does a linear nversal of the code and 

replaces every addressing mode by the cheapest addressing mode that contains the same value. For exam-

pie, if p < 1 1 and r ( 0 1 contain the same value, then an occurrence of p ( 1) can be replaced by 

r < 0) • The following cost order (from cheapest to most expensive) is used by defaull and is based on the 

cost in lhe VLSJ-BAM architecture: 

Addressing mode 

r(b) 
r(I) 
Atom 
Tag·x 
p (I) 

(r{I)) 

{r(I)+N) 
(p(l)) 

{p(I)+N) 
r(void) 

. Reason for cost 

Promotes creation of cut ( r (b) 1 which is a no~ 
Usable without overhead 
Requires ldi (load immediate) instruction 
Tagged pointer creation needs lea (load effective address) instruction 
Permanent variable needs ld (Joad) instruction 
Indirection needs ld (load) instruction 
Offset indirect needs ld (load) instruction 
Indirect permanent needs 2 ld Ooad) instructions 
Offset indirect permanent needs 21d (load) insuuctions 
Most expensive because it must not be Chai!Kcd 

Overhead 
(cycles) 

0 
0 
I 
1 
1 
l 
1 
2 
2 

The reason given for the cost describes the instructions necessary to implement the addressing mode 

for the VLSI-BAM. More information on the insuuction set ol' the VLSI-BAM is given in (341. The 

addressing mode r (void I is created by the n:gister aUocator. It COrTcsponds 10 a void variable, i.e. a 

variable lhat occurs only once in a clause and whose value ft\ay therefore be ignored. h is made the most 
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expensive because it must remain unchanged so that peephole optimization can remove the insuuction con· 

taining it. 

The synonym optimization is implemented by m~intaining a set of equivalence classes at aU points of 

lhe program. where each equivalence class is a set of addressing modes whose values are identical. Labels 

in the code cause the set of equivalence classes 10 be reset 10 empty. A future cxlellsion of lhis module 

could eliminate this restriction by following the labels and performing a uansitive closure, resulting in a 

slight performance gain . 

3.6. Peephole optimization 

A uansi~ve closure is performed on a peephole nnsformation with a window of lhree insauctions . 

The set of pauems wac; determined empirically by looking atlhe compiler's output and adding patterns to 

fix ?bvious inefficiencies. Each pauem is implcmemed as a single clause in the optimizer. The pauems 

are one, two, and lhrce instructions long. However, lhe window is excended to arbiaary size for one pat· 

tern, a gcncrali1.ed last call optimization: 

call (N/A). 
deallocate(l). \.Arbitrary number of deallocate instructions • 

deallocate(JI. 
return. 

which is transformed to: 

deallocate(!).\ Same sequence as above. 

deallocate(JJ. 
jump(N/A) . 

3.7. D~r~rminism optimization 

A choice instruction is removed if it is followed by a sequence of instructions lhat cannot fail and a 

cut instruction. This simple-looking optimi7.ation significanll)' increases determinism--many predicates 

(e.g. Warren's quickson benchmark) containing a cut become deterministic lhat would ochctwise be corn· 

piled with a choice point. 
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A similar optimization is penormed by the simplification ll'atlsformation of kernel Prolog (Chapter 

4). For example, it transforms (! 
1 

p : ql in10 (!, p). The determinism optimization exaends 

simplification-if the goal s compiles into instructions lhat cannot fail lhen it is able 10 successfully 

optimize the BAM code of (sl ! 
1 

p ; q) even when simplification cannot delermine lhat s always 

succeeds. 

Consider this predicate. which contains no cut: 

:- mode((max(A,B.C) :- uninit(C))). \Cis unbound and unaliased. 

max(A, B, C) :- A<B. B•C. 
~x(A, B, C) ·- A•C. 

\ No cut here. 

ll is compiled into the following BAM code (slightly simplified for readability): 

procedure(max/3). 
deref(r(O),r(O)). 
de ref ( r ( 1 ) , r (1 ) ) • 
jump(lts,r(O),r(l),l(max/3,1)). \Conditional branch A<B. 
move(r(O).[r(2))). \ A<B is false. 
return. 

label (1 (max/3,1) I . 
choice(l/2, [0,2),l(max/3,4)). \ A<B is true. 
move (r ( 1) , ( r (2) l) . 
return. 

label (1 (max/3, 4)-). 
choice(2/2,[0,2),fail). 
move (r (0), (r (2))). 
return. 

When A<B is uue, a choice point is created to try both clauses. If a cut is insened into the first clause: 

:- mode ((max (A, B, C) :- uninit (C))). 
max(A, B, C) :- A<B, !, B-C. 
max(A, B, C) :-A-C. 

lhen the code becomes deterministic: 

\ C is unbound and unalia3ed. 
\ Cut is added here. 
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procedure(max/3). 
move (b, r (3)) • 

deref(r(O).r(O)). 
deref(r(l),r(l)). 
jump(lts,r(O),r(l),l(max/3,4)). \Conditional branch A<B. 

move ( r ( 0) , ( r ( 2) l ) . 
return. 

label (1 (max/3, 4 I I . 
cut(r(311. 
move (r(l), (r (2) I). 
return. 
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Measurements done by Touati (70] justify lhis optimization. He finds that it malces about half of all choice 

point operations avoidable . 



Chapter7 

Evaluation of the Aquarius system 

1. Introduction 

This chapter attempts to quanti( y some of the ideas that were introduced in previous chapters. The 

evaluation process is as imp<>nant as any other pan of the implementation of a large software system. Dur

ing the design phase it guides the design decisions. After the design is complete, it shows what features of 

the design conuibuted most to its effectiveness and it gives a foundation for starting the next design. Quan

titative measurements are the most reliable guidep<>sts one has during the design_ For example, it is easy 10 

imagine many possible compiler optimizations, but most of lhese have an insignificant effect on perfor

mance. It is more difficult to discover optimizations that are widely applicable. 

Five evaluations are perfonned in this chapter: 

(I) The absolute performance of the system. 

(2) The effectiveness of the dataftow analysis. 

(3) The effectiveness of the determinism transformation. 

(4) A brief comparison with a high performance implementation of the C language. 

(5) A bug analysis, summarizing the number and types of bugs encountered during developmenL 

Table 7 .I describes the benchmarks used in this chapter and lheir size in lines of code (not including com

ments). The benchmarks were chosen as examples of realistic programs doing computations representative 

of Prolog. This includes benchmarks that spend much of their time executing built-in predjcaaes because 

this behavior is common in real-world programs. The benclunarlts are divided into two classes, smoll and 

largt, depending on whether the compiled code wilh analysis is smaller or larger than 1000 words. The 

benchmarks JogiO, ops8, timeslO, and divideiO are grouped togelher and referred to as tkriv because they 

are closely related. The benchmarks are available by anonymous ftp 10 arpa.berkelcy.edu. 

All VLSI-BAM numbers in this chapter were obtained from the VLSI-BAM instruction-level simu

lator lnd include cache effects (17). The simulated system ha.o; 128 KB insuuclion and data caches. The 
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Table 7.1- The benchmarks • Benchmark Lines Description 

nrc verse 10 Naive reverse of a 30-elernentlist 
tak IS Recursive inteeer arithmetic. 
q~on 19 Quicksort of a 50-element list. 
logiO 27 Symbolic differentiation . 

• ops8 27 Symbolic differentiation. 
timcsiO 27 Symbolic differentiation. 
divide tO 27 Symbolic differentiation. 
scrialise 29 Calculate serial numbers of a list 
quccns_8 31 Solve the eight queens puzzle. 
mu 33 Prove a theorem of Hofscadter's ''mu-math. '' 

• zebra 36 A logical puzzle based on constraints. 
send more 43 The SEND+MORE=MONEY puzzle. 
fast_mu 54 An optimized version of the mu-math prover. 
query 68 Query a static database (with integer arithmetic). 
poly_IO 86 Symbolically raise a polynomial to the tenth power. 

.crypt 64 Solve a simple cryptarithmetic puzzle. 
meta_qson 74 A meta-interpreter running qson. • prover 81 A simple theorem prover. 
browse 92 Build and query a database. 
unify 125 A compiler code generator for unification. 
flatten 158 Source transformation to remove disjunctions. 
sdda 273 A dataftow analyzer that represents aliasing. 
reducer _nowrite 298 A graph reducer based on combinators. • 
reducer 301 Same as above but writes its answer. 
boyer 377 An extract from a Boyer-Moore theorem prover. 
simple_analyzer 443 A dataftow analyzer analyzing qsort. 
nand . 493 A logic synthesis program based on heuristic search. 
chat _parser 1138 Parse a set of English sentences. 
chat 4801 Natural language query of a geographical database. • 

caches are direct mapped and use a write-back policy. They are run in warm stan: each benchmark is run 

twice and the results of the first run arc ignored. The cache overhead is greatest for tak compiled without 

• analysis, and for poly_IO, simplc_analyzcr, chat, and boycr. For these programs it ranges from 9% to 24%. 

For met.a_qson. reducer, and chat_parser the overhead ranges from 2., 10 3.,. For all ocher programs the 

overhead is less than 0.5% . 

• 
2. Absolut~ ~rrormancr 

This section compares the performance of Aquarius Prolog with Quintus Prolog. Tables 7.2 and 7.3 

• compare the performance or Quintus Prolog version 2.5 running on a Sun 4/65 (25 MHz SPARC) with that 

or Aquarius Prolog running on the VLSI-BAM (30 MHl). The "Raw Speedup" column gives the ratio of 

the speeds. The "Normalized Speedup" column divides &his ratio by 1.8. Our group is in the process of 

• 
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poning the Aquarius syscem to the MIPS, MC68020, and SPARC processors. It was not possible 10 get 

numbers for these systems in lime for the final version of this disscnalion. • 
The nonnaliz.ation factor of 1.8 takes inco account the Prolog-specific extensions of lhe VLSI-BAM 

(a factor of 1.5) and lhc clock ratio (a facoor of 30125 = 1.2). The general-purpose base an:hiteclllre of the 

VLSI-BAM is very similar to lhe SPARC. The effect of the archit.ectural excensions of lhe VLSI-BAM • 
(34) has been carefully measured to be aboul 1.5 for large programs. However, for the small programs lhe 

compiler is able to remove many Prolog-spccific features. so that the nonnalized speedup numbers in Table 

7.2 arc an underestimate. • 
Table 7.2- Performance results for Sltlall programs (in ms) 

Benchmark Size Quintus v2.5 Aquarius Normalized Raw 
(lines) (Sun 4/65) (VLSI-BAM) Speedup Speedup 

deri" 1.143 0.0913 7.0 I 12.5 • log10 27 0.153 0.0168 
ops8 27 0.239 0.0189 
cimcsiO 27 0.345 0.0257 
divideJO 27 0.406 0.0299 

OfC\'ersc 10 1.62 0.136 6.6 11.9 
qson 19 4.820 0.173 15.5 27.8 • serialise 29 3.10 0.447 3.9 6.9 
query 68 23.7 3.57 3.7 6.6 
mu 33 7.04 0.808 4.8 8.7 
fast_mu 54 9.08 0.932 5.4 9.7 
queens_8 31 21.2 1.13 10.4 18.7 
tak 15 1120. 25.4 24.5 44.1 • poly_lO 86 417. 35.5 6.5 11.7 
send more 43 490. 38.4 7.1 12.8 
zcbr.t 36 423. 84.1 2.8 5.0 
gcomeuic mean 6.7 12.1 
standard deviation of mean 1.9 3.3 • 

For the small benchmarks, the normalized speedup is somewlte« between 6.7 and 12.1 (fable 7.2). 

The normalized speedup of the large benchmarks without built-in JR(licaces is about 5.2 (Table 7 .3). 

Speedup is better for the small benchmarks because dataflow analysis is able to derive better types for • 
many of them. For some of them (such as cak and nrcverse) it derives essentially perfect types. The small 

programs show a large variation in speedups. The tak benchmark does well because il relies on integer 

arithmetic, which is compiled efficiently using uninitialized register types. The zebra benchmark does • 
poorly for awo reasons. First. it does a large amount or baclttracking. which is inherently limiiCd by 

•. -memory bandwidth. Second, it wortcs by successively ins&anliating arguments of a compound daUt 

• 
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• Benchmark 

Table 7.3- Perfonnance results for large programs (in ms) 

Siz.e Quintusv2.S Aquarius Normalized Raw 
(lines) (Sun4165) : (VLSI-BAM) Speedup Speedup 

No buill-ins 
prover 81 8.67 0.921 5.2 9.4 
meta_qson 74 49.6 4.71 5.8 10.5 
nand 493 173.3 13.7 7.0 12.7 
reducer _nowrite 298 312. 37.2 4.6 8.4 • 
chat_parser 11~8 1157. 129.5 5.0 8.9 
browse 92 5450. 741. 4.1 7.4 
geome.uic mean 5.2 9.4 
standard deviation of mean . 0.5 0.8 

• Including built-ins . 
unify 125 18;3 1.40 1.2 13.0 
Jlauen 158 13.6 1.42 5.3 9.6 
sdda 273 29.5 2.94 5.6 10.0 
crypt • 64 21.7 4.00 3.0 5.4 
simple_analyzcr 443 180. 33.4 3.0 5.4 
reducer 301 405. 44.9 s.o 9.0 • 
chat 4801 3100. 699. 2.5 4.4 
boyer 377 4870. 1360. 2.0 3.6 
geometric mean 3.8 6.9 
standard deviation of mean 0.7 1.3 

• geometric mean (all large programs) 4.4 7.9 

Table 7.4 -Time spent in built-in predicates 

Benchmark Time(%) Most used built-ins 

prover 0 -• meta_qson 0 -
chat _parser 0 -
nand <1 -
browse I length/2 
reducer 40 wri&e/1, compare/3. argl3 
unify 40 arg/3, functor/3, compare/3 

• crypt so div/2, mod/2, •12 
boyer 60 arB/3. functor/3 
simpte_analyzer 70 compare/3, rtJr1l2. argl3 
sdda 70 wri&e/1, =../2. compaR/3 
ftauen .. 80 wri&e/1, fiXt/2, c:ompard.J. namell. functor/3, arg/3 

• structure. The analysis algorithm does not ha~ a represencation for chis opention. so it cannot be optim-

ized. 

The built-in predicates in Aquarius Prolog are not grcady faster than those in Quintus Prolog, since 

• many of the Quintus built-ins are not written in Prolog, but in hand-crafted assembly. The Aquarius system 

shows better speedup o~r Quintus built-ins written in Prolog (such as read/1 and write/1) and the 

entry spccializalion nnsformation also speeds up the built-ins. Table 7.4 &ivcs the percentage d time lhat 

• 
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the benchmarks spend executing inside built-in predicau:s. This number does not take into account built· 

ins that are implemented as in-line code (arithmetic leSt, addition and subtraction, and type checking). The 

table also gives the most often used built-in predicates for each benchmark in decreasing order of usage. 

Several benchmarks usc built-in predicates significantly. The normalized speedup for these pro

grams is 3.8. somewhat less than programs without buill-ins (Table 7.3). The nonnalized speedup for aU 

large programs is 4.4 (the reducer benchmark is counted only once in this average). The boyer benchmark 

docs poorly because it relies heavily on the arg/3 and functor/3 built-in predicau:s. The chat 

benchmark uses these built-ins as well as others including set of I 3, but it was not possible 10 measure 

the fraction of execution time spent in them. The sdda and flauen benchmarks do well partly because lhe 

write /1 buil~-'in is much faster in Aquarius than in Quintus. 

3. The effecth·eness of the dataftow analysis 

This section evaluates the effectiveness of the dataflow analysis with three kinds of measurements. 

Tables 7.5, 7.6, and 7.7 give the effect of the dataflow analyzer on performance and code size, and lhe 

efficiency of the analyzer both in u:nns of its execution time and the fraction of arguments for which types 

can be deduced. 

For a representative set of realistic Prolog programs of various sizes up 10 1,100 lines, the analyzer is 

able to derive type infonnation for 56% of all predicau: arguments. It finds that on average 23% of all 

predicate arguments are uninitialized, 21% of arguments arc ground, 10% of arguments are nonvariables, 

and 17% of arguments arc recursively dereferenced. The sum of lhese three numbers is greater than 56% 

since it is possible for an argument 10 have multiple typeS, e.g. it can be ground and recursively derefer

enced at the same time. Doing analysis reduces execution time on the VLSI-BAM by 18% for programs 

without built-ins and static code size by 43% for all programs. 

Table 7.5 gives the execution time in microSeconds or the benchmarks for the VLSI-BAM compiled 

wilhout analysis (No Modes) and with analysis (Auto Modes). The last three columns give the ratios of the 

auto modes to lhc no modes times. To give an idea how built-ins affect the results of analysis. Table 7.5 

gives two perfonnancc ratios for the large benchmarks: the first for all programs. and the second for 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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• Table 7.5- The effect of datallow analysis on perlormance 

Benchmark No Modes(~) AulO Modes ( ~) AulO/NO Modes 
Time Deref Trail :Time Deref Trail Time Deref Trail 

deriv 146 18.2 5.5 91.3 0.3 0.1 0.63 0.02 0.02 
loglO 25.9 2.3 0.7 16.8 0 0 
ops8 28.5 3.3 1.0 18.9 0.3 0.1 
timcsJO 39.7 5.1 1.3 25.7 0 0 • 
dividciO 51.7 7.5 2.5 29.9 0 0 

nreverse 308 79.7 31.1 136 0 0 0.44 0.00 0.00 
qson 378 109 25.1 173 0 0 0.46 0.00 0.00 
scrialise 512 75.8 12.3 447 44.9 0.7 0.87 0.59 0.05 
mu 992 154 . 48.0 783 139 34.7 0.79 0.90 0.72 
fast_mu 1120 148 38.0 932 64.4 7.9 0.83 0.44 0.21 • 
queens_8 1700 271 67.9 1090 33.4 0 0.64 0.12 0.00 
query 5180 560 174 3570 0 0 0.69 0.00 0.00 
tak 71700 13800 3180 25400 0 0 0.35 0.00 0.00 
poly_IO , 60400 6280 1740 35600 1080 209 0.59 0.17 0.12 
zebra . 84600 11400 8.6 84100 11400 8.4 0.99 1.00 0.98 

average 0.66 0.29 0.19 • 
prover 1070 110 29.4 820 51.2 5.9 0.76 0.47 0.20 
unify 1600 198 33.9 1400 138 19.3 0.88 0.69 0.57 
naucn 1460 149 9.9 1420 133 6.5 0.97 0.90 0.66 
sdda 3180 368 36.9 2940 296 21.3 0.92 0.81 0.58 • crypt 4090 319 104 4000 262 104 0.98 0.82 1.00 
meta_qsort 5330 674 182 4450 417 63.0 0.83 0.62 0.35 
nand 18700 2290 542 13400 902 22.9 0.72 0.39 0.04 
simple _analyzer 35400 3880 316 31900 3080 76.2 0.90 0.79 0.24 
reducer 48800 6680 1210 44900 5580 731 0.92 0.84 0.61 
chat _parser 151000 19400 6990 131000 11200 4360 0.87 0.58 0.62 
browse 820000 117000 28600 741000 96700 20400 0.90 0.82 0.71 • 
boyer 1410000 73900 6340 1360000 75000 6270 0.97 1.02 0.99 

average 0.89 0.73 0.55 

average (no buill-ins) 0.82 0.58 0.39 

• programs l~l do not usc buill-ins significantly (the first five of Table 7.4). Data initialization times are 

subtracted from deriv, nreverse, qson. serialise. and prover. The table also gives the lime each benchmark 

spends performing dereferencing (DercO and trailing (Trail). 

• The time spent in dereferencing and uailing, two of the most common Pro1og-specific operations, is 

significantly reduced by analysis. For the small benchmarks analysis reduces derefcrencing fmm 17'lco 

5% of execution time, and trailin1; from 4% lO 0.6% of execution lime. This is because they are simple 

• enough that analysis is able to deduce most relevant modes. For the large benchmarks derefercncing is 

reduced from II '1. to 9% and uailing is reduced from 2.3% ao 1.3%. These results are less extreme for two 

reasons: the large benchmarks usc buill-ins, which arc unaffected by analysis. and the analyzer loses infor· 
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Table 7.6 - The effect of dataftow analysis on static code size 

Benchmark No Modes Auto Modes Auto/No Modes 
{insuuctions) (insuuctions) • 

tak 80 34 0.42 
nreversc 287 139 0.48 
queens_8 472 146 0.31 
qsort 485 215 0.44 
deriv 5891 1123 0.19 • loglO 1464 272 

ops8 1469 277 
timesJO 1479 287 
divideiO 1479 287 

query 1425 403 0.28 
serialisc 860 520 0.60 • mu ·1169 731 0.63 
fast_mu 1165 718 0.62 
zebra 1271 814 0.64 
poty_to 3023 893 0.30 
average 0.45 • crypt 1239 1027 0.83 
browse 1863 1150 0.62 
prover 4395 1318 0.30 
meta_qsort 2484 1424 0.57 
flatten 4267 2335 0.55 
unify 6326 4210 0.67 • sdda 6526 5031 0.77 
simple _analyzer 9051 5836 0.64 
nand 23406 6654 0.28 . 
reducer 11726 7682 0.66 
boyer 24862 9136 0.37 
chat_parscr 33557 20516 0.61 • average 0.57 

mation due 10 its inability to handle aliasing and its limited type domain. 

Table 7.6 gives the static code size (in VLSI-BAM instruCtions) for the benchmarks compiled • wilhout analysis (No Modes) and with analysis (Auto Modes). The effect of analysis on code size is 

greater than the effect on perfonnance. This follows from the compiler's implementation of argument 

selection: when no modes arc given, the compiler generates more code 10 handle arguments of different • types. If analysis derives the type then the code becomes much smaller. The code size compares favorably 

wilh other symbolic processors. and is low enough that there is no disadvantage lO having a simple instruc-

lion set. Wilh the analyzer. code size on the VLSI·BAM is similar 10 lhc KCM (6}, aboutlhree times the • PLM. a micro-coded WAM 128}, and about one fourth the SPUR using macro-e~tpanded WAM 18}. 

• 
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• Table 7.7- The efficiency of dalafiow analysis 

Benchmark Args Preds Time Modes (fraction of argumentS) 
{sec) ; uninit ground nonvar rderef any 

dcriv 12 8 11.9. 0.33 0.67 0.00 0.67 1.00 
logiO 3 2 2.9 
ops8 3 2 3.0 • timcsiO 3 2 3.0 
dividciO 3 2 2.9 

tak 4 2 2.3 0.25 0.75 0.00 0.75 1.00 
nreversc ,c; 3 2.2 0.40 0.60 0.00 0.60 1.00 
qsort 7 3 3.4 0.43 0.57 0.00 0.57 1.00 
query 7 ·s 4.2 0.86 0.14 0.00 0.14 1.00 • zebra 10 6 3.5 0.10 0.00 0.50 0.00 0.60 
serialisc 16 7 4.2 0.38 0.19 0.06 0.19 0.63 
queens_8 16 7 6.0 0.31 0.69 0.00 0.69 1.00 
mu . 17 8 9.6 0.12 0.47 0.00 0.12 0.65 
poly_1o 27 11 16 0.33 0.67 0.00 0.67 1.00 
fast_mu 35 7 21 0.29 0.55 0.05 0.55 0.89 • 
average 0.35 0.48 0.06 0.45 0.89 

meta_qson 10 7 II 0.30 0.00 0.10 0.00 0.40 
crypt 18 9 12 0.00 0.61 0.11 0.56 0.72 
prover 22 9 13 0.27 0.09 0.27 0.14 0.68 

• browse 42 14 20 0.24 0.45 0.05 0.40 0.74 
boyer 62 25 31 0.27 0.00 0.06 0.00 0.34 
ftauen 83 28 34 0.27 0.08 0.16 0.11 0.52 
sdda 87 32 45 0.18 0.07 0.17 0.08 0.44 
reducer 134 41 so 0.13 0.10 0.05 0.12 0.29 
unify 141 29 84 0.18 0.19 0.14 0.21 0.56 • nand 180 43 5900 0.26 0.67 0.00 0.28 0.93 
simple_ana1yzer 270 71 77 0.23 0.10 0.08 0.10 0.41 
chat _parser 744 156 263 0.44 0.19 0.02 0.09 0.67 

average 0.23 0.21 0.10 0.17 0.56 

Table 7.7 presents data about the efficiency of lhe dataftow analyzer. For each benchmark it gives • lhe number of predicate arguments (Args) where a prcdicacc of arity N is counted as N, the number of 

predicates (Pieds), the analysis time (Tune), the fraction of arguments lhat are uninitialized (uninit), ground 

• (ground), nonvariable (nonvar), or rec:ursi~ly dereferenced (rderd), and the fraction· of arguments that 

have any of these types (any). Analysis time is measured under Quintus release 2.0 on a Sun 3~. It is 

roughly proponionaltO lhe number of arguments in the program, except for lhe nand benchmark. 1be sum 

• of lhe individual modes columns is usually greater than the any modes column. This is because arguments 

can have multiple modes-the)' can be both n:c:W'Sively dcreferenccd and ground or nonvariable. Unini-

tialized arguments are present in p-eat quantities, even in la~~e progmns such as chal_parser and 

• simple_analy7.er. Comparing lhe small and large benchmarks, lhe fraction of derived modes dcc~ses for 
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the large programs for each type except nonvariable. For both lhe small and large benchmarks the analyzer 

uansforms one lhird of the uninitialized modes into Wlinitialized register modes. • . 
4. The effectiveness of the determinism transform~tion 

To show what pans of the determinism transformation of Chapter 4 are the mosr effective, it is useful • 
10 define a spectrum of determinism exrraction algorithms ranging from pure W AM to the full mechanism 

of the Aquarius compiler. To do this, the_ Aquarius mechanism for extracting determinism is divided into 

three orthogonal axes: 

(1) The kind of tests used to extract determinism. These tests are separated into three classes: exp~icit 

unifica~ions (e.g. X=a, X•s (Y) ), arithmetic cests (e.g. X<Y, X>l), and type checks (e.g. 

var (X), atomic (X)). Pure WAM uses only explicit unifications with nonvariables. Aquarius • 
uses all three kinds. 

(2) Which argument(s) are used to exrract determinism. Pure W AM uses only the first argument of a 

predicate. Aquarius uses any argument that it can determine is effective. It uses enrichment heuris-

tic 2 (Chapter 4 section 6.2). 

(3) Whether the factoring transformation is performed (Chapter 4). Factoring significantly increases 

determinism for predicates that contain many identical compound terms in the head. Pure W AM 

does not assume factoring. Aquarius does facroring by default 

These three parameters define a chrec~imensional space of detcnninism exuaction algorithms. Each algo-

• rilhm is chatacterac:t-1 by a 3-tuple depending on its position on each of the axes (fable 7 .8). This results in 

3 x 2 x 2 = 12 data points. Pure W AM selection corresponds 10 the iirsl element in each column, denoted 

by the 3-tuple (U, ONE, NF). The Aquarius compiler's selection corresponds to the last element in each • column, denoted by the 3-tuple (UA T, ANY, F). 

For each of these 12 points three parameters were measured: execution time. static code size, and compile 

time. All programs are compiled with dataftow analysis and execuiCd on the VLSI-BAM. All averages are 

geometric means. It was only possible to do measurements for nine benchmarks: rveversc, qson. query, 

mu, fast_mu, quecns_8. ftaucn, mcta_qsort, and nand. Therefore the variance of the results is large and 
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Table 7.8- Three dimensions of determinism extraction 

Kind of test Which argument Fac&oring 
Explicit unifications only (U). First argument only (ON£). No factoring (NF). 

Explicit unifications and arithmetic Any argumem (ANY). Do faaoring (F). 
tests (VA). 

Explicit unifications. arithmetic 
I.CSlS, and type checks (UA1). 

they can be relied upon only to indicate trends. The benchmarks were wriucn for the WAM. The meas-

uremcnts compare only the relative powers of different kinds of determinism extraction in the BAM. They 

do not compare the \\'AM and BAM directly . 

3 2 0 

W AM selection [u: 0~ N£).6 

- ~rcen1 slowdown 
relative to AquarillS 

-difference bt:twt:t:n 
2 .A - two vt:nius 

Figure 7.1 -The effectiveness of delenninism exlraction 

Figure 7. J depicts the J 2 pointS as a Janice. Each vencx denotes one panicular combination of deter· 

minism extraction. l1lc top clement correspond!\ to Aquarius selection and the bouom ckmcnt corresponds 

to WAM selection. Each edge connect" two llQints that differ by one step in one coordinate. The vertices 
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are marked wilh the pert:ent slowdown compared to Aquarius selection. The edges are marked with the 

percent difference in execution time between lheir two endpoints. 

The mean speedup for the nine benchmarks when going from WAM selection (U, ONE, NF) to 

Aquarius selection (UAT, ANY. F) is 16%. There is no significant change in mean code size for any of lhe 

twelve data points. The variance of the compile time is too large 10 make any conclusions about it. 

The mean speedup of factoring is 8%. However, factoring is the only uansformation that sometimes 

slows down execution. The factoring heuristic.should be n:fined 10 look inside compound arguments 10 see 

whether there is any potential determinism there. If there is none, it should not factor that argumenL 

One way of finding a set of effective extensions for delerminism extraction is by traversing the lattice 

from bottom to top, and picking lhe edge with the greatest performance increase at each vencx. Starting at 

W AM selection (U. ONE, NF). lhe first extension is the ability 10 use arithmetic tests in selection. This 

speeds up execution by 3%. The second extension is the ability 10 select on any argument. This speeds up 

execution by another 3%. The third extension is lhe factoring transformation. This speeds up execution by 

8%. At this point, the resulting performance is within 2% of Aquarius selection. 

The resulting vertex (UA. ANY, F) seems to be a particularly good one, i.e. the ability to selea on 

arithmetic tests in any argument works well together wilh factoring. Leaving out any one of lhese thr~ 

extensions reduces performance by at least8%. A plausible reason for lhis result is that the benchmarks do 

many arilhmetic tests on the arguments of compound Jenns and it is only the combination of the thr~ 

extensions that is able to compile this deterministically. 

S. Prolog and C 

The performance of Aquarius Prolog is significantly better than previous Prolog sysLems. A question 

one can pose is how the system compares with an implementation of an impetative language. This section 

presents a comparison of Prolog and the C language on several small programs. The comparison is not 

exhaustive-there are so many factors involved that I do not attempt to address lhis issue in its entirety. I 

intend only ro dispel lhe notion that implementations of Prolog are inherently slow because of its e~pres· 

sive power. A serious comparison of two languages requires ans"'·cring the following questions: 

• 

• 

• 

• 

• 

• 
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• 
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(I) How can implementations of diffe~ent languages be compared fairly? This comparison concentrates 

exclusively on the language and ignotes features exremal to lhe language itself, such as user inaec-

face, development time, and debugging abilities. One method is to pick problems co be solved, and 

then to wriac the .. best" programs in each language to solve lhe problems, choosing the algorilhms 

appropriaiC for each language. The disadvantages of this approach are (a) different languages are 

appropriate for different problems. (b) how does one decide when one has wriuen the "best" pro-

gram? To avoid these problems I have chosen to compare algorithms. not programs . 

(2) Which algorilhms wiJJ be implemented in bolh languages? Ideally one should select a range of algo-

(3) 

(4) 

rithms, from those most suiled co imperative computations (e.g. anay computations) co those most 

suiled to symbolic computation (e.g. large dynamic data objects, pattern macching). Prolog is at an 

advantage at the symbolic end of the spectrum because to implement symbolic computations in an 

imperative language we effectively have to implement more and mote of a Prolog-like syS1em in that 

language. The programmer does the work of a compiler. At the imperative end of the spectrum, the 

efficiency of Prolog depends suongly on the ability of the compiler to simplify its general features. 

What programming style will be used in coding the algorithms? I have made an attempt co program 

in a style which is aCceptable for both languages. This includes choosing data types in both 

languages lhat are natural for each language. For example, in Prolog dynamic data accessed by 

pointers is easiest to express. whereas in C static arrays ate easiest to express. It is possible to use 

dynamic data in C. but it requires more efT on and is used only for lhose tasks lhat need it specifically . 

How are architectural features &alcen into account? For fairness both implementations should run on 

the same machine. The measurements use the same processor, the MIPS, for both implementations. 

However, a general-purpose archilCCture favors the execution of imperative languages, since it has 

been designed to execute such languages well. This shows up for algorithms whose Prolog implc-

mentation makes heavy usc of Prolog-spccific features. To allow the reader to make an informed . 

judgmenL. lhe table does not correct for lhis fact ll is imponant 10 bear in mind that by adding addi-

tional architectural features comprising S% of the chip area to the VLSf-BAM (a pipelincd processor 

similar in many ways 10 lhe MIPS), the performance incrca!iCs by ~- for programs thar usc 
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Prolog-spccitic features (compiled with the current version of the Aquarius compiler). Archicectural 

studies done by our research group suggest that these features could be added to a fulllre MIPS pro- • 
cessor. 

Table 7.9 compares the ellecution time of small algorithms coded in both C and Prolog on a 25 MHz MIPS 

processor. Measurements are given tor tak, fib. and hanoi. which are recursion-intensive integer functions; • 
and for quicksort, which sons a 50 element list 10000 times. Prolog and C source code is available by 

anonymous ftp to arpa.bcrkelcy.cdu. In all ~s the user time is measured with the Unix "time" utility. 

The C versions are compiled with the standard MIPS C compiler using both no optimization and the optim- • 
ization level that produces the fastest code (usually level 4). 1be Prolog versions are compiled with 

dataflow analysis and translated inco MIPS assembly by a partial translator. The same algorithms were 

encoded for both Prolog and C. in a natural style for each. The natural style in C is 10 use static data. • 
whereas in Pro log all data is allocated dynamically. 

Table 7.9- Comparing Prolog and C (in sec) 

Benchmark Aquarius MIPSC • Pro log Unoptimiz.ed Optimized 
tak(24,16,8) 1.2 2.1 1.6 
fib(30} 1.5 2.0 1.6 
hanoi(20,1.2,3) 1.3 1.6 1.5 
quicksort 2.8 3.3 1.4 • Recursive functions arc fast in Prolog for three reasons: last call optimization converts recursion into 

iteration, environments (stack frames) arc allocated per clause and not per procedure as in C, and outputs 

are returned in registers (they arc of uninitialized register type). Last call optimization allows functions • 
with a single recursive call to execute with constant SLaCk space. This is essential for Prolog because recur-

sion is its only looping construCt. The MIPS C compiler does not do last call optimization. C has con-

suucts 10 denote iteration explicitly (e.g. ··ror" and "'while" loops) so it does not need this optimiution as • 
strongly. The time for fib 1 3 0) • the only recursive inleger funclion that is not able lo usc last call 

optimization in Prolog. is closest to C. 

The two quicksort implcment.alions are carefullo use the same pivcx dements. The C implementa- • 
tion uses an am)' or integers and does in-place sorting. The Prolog implementation uses lisls and creates a 

new sorted list. The list representation needs lwo words to store each data element. Coincidentally, the 

• 
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Prolog version is twice as slow as the C version. the same as the ratio of the data siz.es . 

• I 

I 

I 
Table 7.10- Classification of bug types 

Kind Description % 

Mistake A part of the compiler that is incorrect due to an oversight When many mis- 39 
takes occur related to one particular area, then they become hotSpOt bugs . 

• • Local A problem lhat can be fixed by changing just a few predicates. For example, it (37) 

may be due to a typographical error or a simple oversight in a predicate 
definition. 

• Global A problem that can be fixed only with many changes throughout the compiler. (3) 

This kind of mistake is more fundamental. For example, avoiding the genera-

• lion of BAM instruction~ with double indirections requires many small 
changes. 

Incomplete A pan of lhe compiler whose first implementation is incomplete because of in- 19 
complete understanding of its purpose. Later use saeu:hes it beyond what it 
was intended to do, so that it needs to be extended and/or cleaned up. For ex-

' ample, the updating of type formulas when new infonnation is given. • H01spot A critical area of the compiler that requires much thinking to get correct Its 16 
importance is much greater than its size would indicate. Such an area gets 
more than its share of mistakes. 

. • Conceptual A concept in the compiler design whose implementation is prone to many mis- (13) 

takes. For example, the concept of uninitialized variables . 

• • Physical A part of the compiler's text. For example, symbolic unification in the (14) 

dataflow analyzer and parameter passing in the clause compiler both resulted 
in many bugs. 

Mixture An undesired interaction between separate partS of the compiler. Despite 16 
careful design, often the separate transfonnations and optimizations are not 
completely orthogonal. but interact in some (usually limited) way. For exam-
pic, maintaining consistency between the dataflow analyzer and the clause 

I • 
compiler. This leads to the dereference chain transformation, which in its turn 
leads to the problem of interaction between it and the preferred register alloca-
tion. 

lmprovemem A possible improvement in the compiler. This is not strictly a bug. but it may 9 
point to an imponant optimization that could be added to the compiler. For 
example, a possible code <>ptimization or reduction in compilation time. • 

Understanding A problem due to the programmer misunderstanding the required input ro the 4 
compiler. This is not srriclly a bug, but it may point to difficulties in the 
compiler's user interface ot. in the language. For eumple, the difference 
between the tenns - is_ and _<_in Prolog. The first is a variable and the 

• second is a structure . 

6. Bug analysis 

I 
This section gi"cs an overview of the number and types of bugs encountered during compiler 

development. A bug in a program is a problem that leads to incorrect or undesired behavior of the pro-

gnm. In lhc compiler, this means incorrect or slow compilation. or slow execution of compiled code. 



ISH 

Table 7.10 classifies the bugs found during devdopment [76). (The percentages do not add up 10 100% 

because bugs can be of more lhan one type.) 

The development of the compiler staned early 1988 and proceeded until late 1990. An extensive 

suite of test programs was maintained to validate versions of the compiler. The leSt suite was continually 

extended with programs that resulted in bugs and with programs from external sources. Records were kept 

of all bugs reponed by users of the compiler other than the developer. A total of 79 bug reports were sent 

from January 1989 to August 1990 by five users. The frequency of bug repottS stayed constant near four 

per month. Statistical analysis is consislCllt with the distribution being random with no time dependence, 

i.e. the num~r of bug repons fluctuates, but there is no increasing or decreasing trend. lberefore the 

development imroduced bugs at about the same rate as they were reponed and fixed. This coincidence can 

be explained by postulating that the time spent devdoping was limited by the necessity of having to spend 

time debugging to maintain a minimum level of robus&ness in the compiler. This is consistent with my per

sonal experience during the development process. 
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ChapterS 

Concluding Remarks and Future Work 

.. So many things arc possible just as long 
as you don't know they're impossible." 
-Norton Juster, The Phantom Tollbooth 

1. Introduction 

In this chapter l recapitulate the main result of this dissenaLion, disLiU some praclical lessons learned 

in the design process. talk about the caveats of language design, and give directions for fuuue research. 

2. Main result 

My thesis is that logic programming can execute as fast as imperative programming. For this pur-

pose l have implemented a new optimizing Prolog compiler, the Aquarius compiler. The driving force in 

the compiler is to specialize the general mechanisms of Prolog (i.e. the logical variable, unification, 

dynamic typing, and backuacking) as much as possible. The main ideas in the compiler are: the develop-

ment of a new abstract machine that allows more optimization, a mechanism to generate efficient code for 

deterministic predicates (COI]vcrting backlracking 10 conditional branching), specialization of unification 

(encoding each occurrence of unification in the simplest possible way), and lhe use of global dataf!ow 

analysis to derive types. 

The resulting system is significantly faster than previous implementations and is competitive with C 

on programs for which dataflow analysis is able to do sufficiently wen. It is about five times faster than 

Quintus Prolog, a popular commcn:ial implementation . 

3. Practical lessons 

During the design of this compiler I have found four principles useful. 

(1) Simplicity is common. Most or the time, only simple ca.4ies or the general mechanisms o; the 

language arc used. For example, most u~~ of unificatimt arc memOf}' loads and stores. Many of 

these simple cases arc easily dcfedcd at compile-time. 
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(2) Use the design time wisely. There are many possible optimizations that one can implement in a 

compiler of lhis son. To get the best results, rank them according 10 their estimated perfonnance • I 
gain relative to !heir implementation effort. and only implement the best ones. Do not be distracted 

by clever ideas unless you can prove that they are effective. 

(3) Keep the design simple. For each optimization or transformation, implement the simplest version • 
that will do the job. Do not auempt to implement a more general version unless it can be done 

wilhout any extra effon. It is easy to become entangled in the mechanics of implementing a complex 

optimization. Often a simple version of this optimization act.ieves most of the benefits in a fraction • 
of the time . 

. 
(4) Document everything, including bugs. Documentation is an excension 10 one's memory and it pays 

for itself quickly. Tile mental effon spent in writing down what one has done results in a beUer • 
recollection of what happened. In this design, I have maintained two logs. The first is a file in chro-

nological order that documents each change and the reason for it. The second is a dirccaory contain-

ing bug reports contribuced by the users of the compiler and brief discussions of the fixes. • 
The first three of these principles are corollaries of what is sometimes called the .. 80-20 rule": 80% of the 

results are obtained with 20% of the effon. Using this principle consistently was very imponant for my 

• work and for the BAM project as a whole. 

4. Language design 

The Prolog language is only an approximation to the ideal of logic programming. During this • 
research, our group has grappled with some of the deficiencies of Prolog. 1bere are deficiencies in the area 

or logic: Prolog's approximation 10 f'egation (i.e. negation-as-failure) is unsound (i.e. it gives incorrect 

• resull'i) whal used in the wrong way. Prolog's implementation of Wlification can go inao infinite loops 

when creating circular cerms. The default control flow is coo rigid for data-driven programming. 

There are deficiencies in the area of programming: The correspondence between a program and its • execution efficiency is nO( always obvious. Unification is only able to access the surface or a complex data 

struCture. Because the clauses of a predicate arc written separately. man)' conditions have to be repealed or 
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extra predicates have to be defined. There is a sense in which Prolog is a kind of assembly language. 

All of the above problems have solutions. some of which have been implemented in existing systems 

and in the Aquarius system. However. for three reaso~s I have resisted the impulse 10 change the language 

more than just a lillie. First. of all logic languages. the Prolog language has the largest and most vigorous 

user community. and this is a resource I wanted to tap. There are many programs written in Prolog. in vari

ous styles. and I wanted to sec if this existing pool of ingenuity could be made to run faster. Second, it is 

unwise to change more than one component o~ a system at the same time, especially if they can interact in 

unpredictable ways. That is, one should not design a new language and "' compiler for it at the same time. 

Third, I do not deem myself com~tent yet to design a language. I believe in the rule of bootstrapped com

petence: Befor~ writing a compiler, write programs. Before designing a language, write compilers. Com

petence in each task is limited by competence in its prerequisite. 

. The best languages are those which distill great power in a small set of features. This makes such 

languages useful as tools for thought as well as for implementation. Practical aspects such as how efficient 

it can be implemented are as important in a good language design as theoretical aspects. A good language 

is theoretically clean (i.e. easily understood) as well as being efficiently implementable. Examples of such 

languages are Pascal (many algorithms are specified in an Pascal-like pseudo-code), Scheme, and Prolog. 

To create such a language, a person must have completely digested a set of ideas as well as have a large 

amount of practical experience. This is a difficult combination-it is easy to gloss over the areas one does 

not know well. 

5. Futurt work 

The goal of achieving parity with imperative languages has been achieved for the class of programs 

for which dataftow analysis is able to provide sufficient information, and for which the dcu:nninism is 

accessible through buill-in predicates. To further. impro"e perfonnancc these limits must be addressed . 

To guide the removal of these limits it is imporutnlto build large applications and study the interac

tion between programming style and the implementation. This is a problem or succcssiv.: refinement. A 

more so(lhisticated implementation catal)?.es a new style of programming, ,. .. hich in its tum catalyzes a new 
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implementation, and so fonh. The first step in this process was the development of the first Prolog com

piler and the WAM. The Aquarius system is only the second su:p. his able to generate efficient code from 

programs written in a more logical style than standard Prolog. However, the limits of this style are not yet 

understood as they are in the W AM. Further work in this area will lead to a successor lO Prolog that is 

closer to logic and also efficiently implcmcntable. 

5.1. Dataflow analysis 

When writing a program, a programmer commonly has a definite intention about the data's type 

(intending predicates to be called only in certain ways) and about the data's lifetime (intending data to be 

used only for a limited period). Beeause of this consistency, I poswlate that a datafiow analyzer should be 

able to derive this information and a compiler should be able co take advantage of iL 

There has been much good theoretical work on global analysis for Prolog, but few implementations, 

and fewer still that are part of a compiler that lakes advantage of the information. Measurements of the 

Aquarius system show that a simple dataflow analysis scheme integrated inca a compiler is already quite 

useful. However, the implementation has been resaicted in several ways to make it practical. As programs 

become larger, lhese restrictions limit the quality of lhe results. I hope lhe success of this experiment 

encourages others to relax these restrictions. For example, it would not be too difficult to: 

• Extend lhe domain to represent common types such as integers, proper lists, and nested compound 

terms. This is especially important for general-purpose processors. 

• Extend the domain to represent variable aliasing explicitly. This avoids the loss of information that 

affects the analyzer. 

• Extend lhe domain to represent data lifetimes. This is useful to replace copying of compound terms 

by in-place destructive assignmenL In this way dynamically allocaled data becomes static. The lerm 

.. compile-time garoagc collection .. lhat has been used to describe chis process is a misnomer. what 

is desired is not just memory recovery, but to prc.~c as much as possible of lhc old vaJue of lhe 

compound term. Often a new compound term similar to the old one is created at the same lime the 

old one becomes inaccessible. Destructive assignment is used lo modify only those parts that are 
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changed. 

• Extend the domain to represent types for each invocation of a predicate. For example, the analyzer 

could keep track not only of argument types for predicate definitions, but ot argument types for-goals 

• 
inside the definitions. This is useful to implement multiple specialization, i.e. 10 make separate 

copies of a predicate called in several places with different types. For the chat_parser benchmark, 

making a separate copy of the most-used predicate for each invocation results in a performance 

• improvement of l4'io . 

5.2. Determinism 

The second area in which significant improvement is possible is delenninism extraction. The 

• Aquarius compiler only recognizes determinism in built-in predicates of three kinds (unification, arithmetic 

tests, and type checking). Often this is not enough. In many programs, user-defined predicates are used 10 

choose a clause . • 
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Appendix A 

User manual for the Aquarius Prolog compiler 

1. Introduction 

The Aquarius Prolog compiler reads clauses and directives from sldin and ourputs Prolog-n:adable 
compiled code to stdout as one fact per insuuction. 1bc output is assembly code for the Berltdey Abslract 
Machine (BAM). Directives hold starting from the next predicate that is input. Clauses do not have to be 
contiguous in the input stream, however. the whole stream is read before compilation Slarts. 

This manual is organized into ten sections. Section 2 documents the compiler's directives. Section 3 
gives r.he compiler's options. Section 4 gives a short overview of the dataflow analysis done by the com
piler. Section 5 gives the type declarations accepted by the compiler. Section 6 summarizes the differ
ences between Aquarius Prolog and the Edinburgh standard. Section 7 gives an example showing how 10 

use the compiler. Section 8 describes the method used ro compile specialized enb')' points 10 increase the . 
efficiency of built-ins. Section 9 describes the assembly language interface. Section 10 describes how 10 

define BAM assembly macros . 

2. Directh·es 

The directives recognized by the Aquarius compiler are given in Table 1. 

3. Options 

The Aquarius compiler's options are given in three ca.egories: high-levd (lhese options control 
actions of the compiler atlhe 'Prolog level). architecture-ilependent (these options are conswn for a partic
ular architecture). and low-level (mainly useful for debugging pwposes). The default options are set for 
the VLSI-BAM processor. The options are given in Tables 2, 3. and 4. 

4. Dataftow aftalysis 

Dataflow analysis is enabled with the analyze option. ll generaaes ground, nonvar. recursively 
derefcrenced and uninitializcd variable types which are merged with the programmer's types. Both unini
lialized memory and uninitialized register types are gencraccd. Enuy declatations (given by entry 
directives) are used 10 drive the analysis. Predicaaes oC arity uro are always used as enuy declarations. 
The quality of the generated types is such thal compilation time. execution time. and code size are all 
significandy reduced. ThereCore it is n:c:ommended always 10 compile with analysis. The whole program 
is kept in memory during the analysis . 

All mode. entry. and op directives are executed before the analysis SW1S. Other directives aR

executed after the analysis and before compilation. The directives default and clear interfere with 
daWlow analysis, so lhey should be given only when the analyze option is disabled. 

4.1. Datallo•· analysis and dynamic code 

The compiler makes r.he distinction between static and dynamic code. S&atic code is completely 
known at compile-time and is subject &o analysis. Dynamic code is creased at run-lime b>· the built-in 
predicates assert /1. retract /1. and lhcir cousins. It is nounal)•zcd. lllcrc are two cases to con· 
sidcr: 

(I) A dynamic predicate calls a saalic predicate. In this case. &here mUSt be an enU)' declaration givin~ 
the wont-case lYJ'IC of the call for each 111lic predicate &hat might be called by a dynamic predicate . 
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Leaving out this declaration may result in incorrect compilation. 

(2) A static predicate calls a dynamic predicate. The analy1..er will assume worst-case types for the 
dynamic predicate unless it has a type declaration. 

The most common uses of dynamic code are as databases of facts, or as rules that only call a limited set of 
static predicates. For these uses, there is no problem in integrating analyzed static code wilh dynamic code. 

4.2. Dataflow analysis and the call/ l built-in 

The ca 11 I 1 built-in predicate can call any predicate in the program with any modes, and it is not 
possible in general w detennine these predicates and their modes at compile-time. However, most pro
grams lhat use call/ 1 will call one of a known set of predicates or will call a dynamic predicate. There 
arc three cases to consider: 

(I) If lhe set of predicates that may be arguments of ca 11 I 1 is known by the programmer, lhen lhese 
predicates should be given entry declarations with worst<ase modes. (This case can be written more 
efficiently by writing a new predicate that directly calls one of lhe set, and avoids calling call/ 1.) 

(2) If lhe predicates that may be arguments of call/1 are dynamic,lhen analysis is correct wilhout 
enuy declarations. This is true because dynamic predicates are not analyzed. 

(3) If any predicate in the program may be an argument of call/ 1 and nothing is known about the 
modes ~en analysis is useless and it should not be done. 

5. Types 

The Aquarius compiler acceptS type declarations for a predicate. Using types results in a significant 
improvement in code quality. Types are represented as (Head: -Formula) where Head contains 
only variables and Formul "\ is a logical conjunction. Almost any Prolog lest can be used in a type for
mula. Possible type fonnulas are given in Table 5. This representation for types is simple, yet powerful 
enough to represent much important information in a compact way. The represenwion gener.llizes the 
declarations of Dec-10 Prolog. For example, the Dec-10 declaration: 

:- mode(concat(+,+,-)) 

is expressed here as: 

:- mode((concat(A,B,C) :-nonvar(A),nonvar(B),var(C))). 

6. Differences with Edinburgh Prolog 

Aquarius Prolog recognizes new type-checking built-ins which arc not pan of the Edinburgh Prolog 
standard as embodied by C-Prolog. The new built-ins and their definitions in standard Prolog are given in 
Table 6. 

7. An example or the compiler's use 

The following example show~ how lhe compiler is used: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 
• 

• 

• 

• 
• 

• 

• 

\ /hprg2/Bam/Compiler/compiler % Run the compiler • 
% Code is entered directly. 
% Enter the type. 
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:-mode ((a (A) : -nonvar (A))) . 
a (a) . % Enter a simple two-fact predicate. 
a (b) . 

·o \ End-of-file. 
\ The output follows: 

\ Cputime between start and finish is 1.383 

procedure(a/1). 
de ref ( r C 0 l , r ( 0) ) • 
hash(atomic,r(0),2~1(!/l,l)) . 
fail. 

label{l(a/1,1)). 
pragma(hash_length(2)). 
pair(a,l(a/1,3)). 
pair(b,l(a/1,4)). 

label{l(a/1,3)) . 
label (1 (a/1, 4)). 

return. 

8. Entry specialization for more efficient built-ins 

The directive modal_entry (Head, EntryTree) adds a discrimination tree of entry points for 
the predicate Head. This directive is used by die system lo implement more efficient built-ins. It is not 
normally needed by programmers, although they can lake advantage of it for other predicates. The com
piler uses the discrimination tree to choose the most efficient entry point for each call of a predicate 
depending on the type fonnula that is true at the predicale 's call The syntax of the discrimination tree in 
modal_enuy is: 

tree(entry(EntryHead)). 
tree(mode(Formula,TrueTree,FaleeTree)) ·-

tree(TrueTree), tree(FalseTree). 

Ent ryHead is the entry point that replaces Head and Formula is a type formula. Compilation of a 
the predicate Head proceeds by following a palh down the discrimination tree. If lhe formula valid when 
Head is called implie!\ Formula then the TrueTree is followed. Otherwise the FalseTree is fol
lowed. Tree traversal SlOpS when an entry Point entry (EntryHead) is encountered. At that point lhe 
original call is replaced by Ent ryHead. 

9. lnterf'adag with BAM assembly language ntutiaes 

Prolog predicateS can efficiently call routines wriuen in BAM assembly code (lhe compiler's output) 
or in the target machine's ISSCmbly language (for example, VLSI-BAM. MIPS, or MC68020 assembly 
code). The interface with both low-level languages is provided through the five-argument type declaration. 
This declaration has lhe following fonn: 

:- mode(Head, Require, Before, After, Survive). 

Head is the head of lhe predicate. Require is lhe required t)-pc formula. i.e. lhc formula made uue by 
lhe compiler. All uninitializcd variable types (both uninitialilcd memory and uninitializcd register) must 
be pan or lhe required ronnula. Before is the type formula known 10 be valid before the call. 
After is the type formula known to be valid after lhc call. Survive is the register survive Rag. If lhe 
ftag is y then lhc predicate must not alter lhe values of any argument registers (exceptlhosc used to return 
a result). h must SI\'C and restore any argument register.; it needs. The predicate is called wilh a 
simple_call instruction and must rclUm wilh a simple_return insuuaion (or iL" equivalent in 
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VLSI-BAM processor assembly). A simple call may not be nested. It is more efficient than a standard call 
because it docs not need an environment frame around it in the calling routine. 

If the !lurvive flag is n then the prcdicat.c is assumed to invalidate all argument regist.cr values. In 
this case the argument rcgist.crs arc available as scratch regis&ers and the caUing routine will create an 
environment frame. 

Efficient parameter passing is implement.cd by using uninitialized variables. These are of two kinds: 
uninitiali7.ed memory and uninitialized register variables. An uninitialized memory variable is a pointer 10 

an empty memory cell. Binding to it is a store to memory. An uninitializcd register variable is an empty 
register. Binding to it is a move to the register. No lrailing or dereferencing is needed in either case. 

Declaring an argumenr to have a uninitializcd regist.cr type means that the output of the routine is 
stored in the corresponding argument register. Similarly, an uninitializcd memory type requires the output 
to be stored to the location pointed to by the argument register. Inputs and outputs must be put in scparat.c 
regtsters. 

10. Defining UAI\1 assembly language macros 

It is possible to define macros in lhe Prolog source that are expanded into BAM assembly instruc
tions. The advantages of macros are that they do not have call-return overhead, lhat unnecessary shuffting 
of data between registers is avoided, and that the full range of low-level compiler optimizations is per
formed on them. A macro definition has the following fonn: 

:- macro((Head :-Body)). 

where Head is the head of lhe predicate lhat will be expanded and Body is a series of BAM insuuc
tions. For example: 

:- mode(quad(A,B), uninit_reg(B), true, deref(B), y). 
:- macro ((quad (A, B) :- add (A, A, X), add (X, X, B))) • 

The macro definition is preceded by a mode declaration telling that the second argument is the outpuL 

Macro definitions must obey the following rules: 

(I) All legal BAM inslructions and addressing modes are allowed in lhe macro definition including user 
inslructions. except as noted below. User instructions are never generated by the compiler, but they 
are recognized and optimized in macro definitions. Labels are given as ground terms or as Prolog 
variables. The Iauer are given unique ground values by the compiler. Registers are given as user 
registers(e.g. r(h) and r(t2))orasPrologvariables(e.g. X andY). Thelauerareallocated 
by the compiler. Do not use numbered registers (r ( 0) • r ( 1) •••• ). 

(2) The macro definition must be preceded by a mode declaration. The exit modes must be valid upon 
exiting the macro. All head argumcnt.s that retum results must be of uninitialized regis&er type. 

(3) The macro may not alter any of the head arguments except chose returning a resuJL 

(4) The second argument of the de ref (X, Y) insauction must be a new variable, i.e. it must not have 
a value upon entering the macro. Failing lO obey this constraint will lead lO incOITect behavior on 
backtracking. 

(5) ll is not recommended to create choice points inside macros since it is not known how many registers 
arc live. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 
I 

• 

• 

• 
f • 

Directive 

·- help. 
·- default. 

mips. 

·- vlsi_plm. 

·- clear. 
option(Options). 

. 
nctoption(Options) . 

·- printoption. 
·- mode((Head:-Formula)). 

·- entry((Head:-Formula)). 

·- mode(H,R,B,A,S). 

·- entry(H,R,B,A,S). 

·- modal_entry(H,T). 

:- macro((Head:-Body)) . 

·- include<FileName). 

·- pass(Anything). 

·- version. 
·- op(A,B,C). 
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Table 1 -Compiler directives 

Action 

Print a summary of these directives. 
Set the default options for the Vl..Sl-BAM processor and clear all 
type dec:;larations and modal entries. 
Ensure compatibility with the MIPS processor. This directive 
should occur only once in a file. It sets the option align( I), dis
ables lhe option split_integer, and sets all other options to their 
default values. It clears all type declarations and modal enuies. 
Ensure compatibility wilh the re-microcodcd Vl..SI-PLM. This 
directive should occur only once in a file. It sets lhe options 
high_reg(6) and align{l), disables the option splil_integer, and 
~ts all other options 10 their default values. It clears all type de
clarations and modal entries. Trail checks and shifts are com
piled differently. 
Clear all type declarations and modal enaies. 
Add lhe options in Options 10 the current options. Op
t ions may be a single option or a list of options . 
Remove the options in Options from the current options. 
Options may be a single option or a list of options. 
Print a liSt of the currently active options. 
Type declaration for a predicate. The type information is 
remembered until new types are given for that predicate or until 
all type information is cleared. This declaration is not used as a 
Starting point for dataflow analysis. However, the typeS generat
ed by dataflow analysis are used 10 supplement the declaration, 
and an eaor message is given if there is a conuadiction. 
Type declaration for a predicate-same as above. This declara
tion is also used as a starting point in dataflow analysis. 
Detailed type declaration for a predicate. This declaration is use
ful for interfacing with assembly language. H is the head, R is 
the required type fonnula (made true by the compiler before each 
call), B is the before type formula (assumed true before each 
call), A is the after type formula (assumed true after each call), S 
is the survive flag (y/n depending on whether the call lets regis
ters survive). The after type formula is used by dalaOow analysis 
to improve the generated types . 
Detailed type declaration for a predicate-same as above. This 
declaration is also used as a starting point in dataflow analysis. 
Optional discrimination aree of efficient entry points for Lhe 
predicate H. The tree T contains type fonnulas used to replace 
each caD or the predicate by a more efficient entry poinL 
Macro definition. The head is expanded into a sequence or BAM 
assembly inStructions. 
lnsen the text of the file FileName. This directive may be 
nested up to the system limit of simulWlcous open files. 
Pass the input··:- pass (Anything) . "unallcred 10 the out
put in Prolog-readable form. 
Print the creation date of this version of the compiler . 
Declare an opcrc1tor in Prolog. Pas.-. the input •' . 
op (A, B, C) . " unaltered to the output in Prolog-rcadable form. 



Option 

select 1imit(L) 

analyze 

compile 

factor 

comment . 

same number solutions 

same order solutions - -

depth_limit(D} 

short block(Sl 
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Table 2- High-level compiler options 

Default 

L=l 

off 

on 

on 

on 

on 

on 

D=2 

S=6 

Description 

Perform selection for up 10 L arguments. Selection is done 
according 10 the enrichment heuristic. See Chapter 4 section 
6.2. 
Perform dataflow analysis for all predicates in the input 
stream. This option enables analysis of the entire input 
stream, no matter where it occurs in lhe Stream. The starting 
points for analysis are the entry declarations and all predi
caces of arity zero. The types obtained from lhe analysis are 
merged with the programmer's types. The predicaces arc 
then compiled with the merged types . 

. Compile the input. When this option is disabled, the entry 
types generated by the dataflow analyzer for the source predi
cates are output as valid Prolog-readable type declarations. 
Do factoring source a-ansfonnation. Wilh this a-ansfonnation 
similar compound tenns in adjacent heads are only unified 
once. Often this gives faster code. 
Give information about what the compiler is doing. 

Keep the same number of solutions on backtracking as stan
dard Prolog. Relaxing the semantics by removing this option 
results in better code in some cases. 
Keep the same order of solutions on backtracking as standard 
Prolog. Relaxing the semantics by removing this option 
results in betler code in some cases. 
Nesting depth limit on unification goals. Unifications deeper 
than this limit are transfonned to remain within this limit 
This a-ansformation is used because compilation time and 
code size for deeply nested unifications would otherwise in
crease as the square of the size of the unification. 
Threshold on basic block length for shuffle optimization. 

Table 3 - Architecture-dependent compiler options 

Option Dcfaull Description 

low reo (L) L--o Lowest numbered machine register. 
- J 

high_regi.Hl H=lOO Highest numbered machine register. In the VLSI-BAM pr~ 
cessor, registers higher than r (15} are mapped into 
mer,"~ory. 

low_perm(P) P=O Lowest numbered permanent variable. 
hash_size(H) H=S Minimum size of a hash table. 
align (K) K=2 Align all compound terms 10 swt on a multiple of K. 
uni on Generate unify_atomic instruction to unify with an atomic 

term. 
split int.eger on Use separate tags for negative and nonnegative integers. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 
• 

• 

• 

• 

• 

• 

• 
I 

I 

• 

• 

Option 

system(X) 
writ-e 
peep 
stats(S) 

debug 

Type 

nonvar(A' 

ground(A), 
var(A) 
uninit(Al 

uninit_reg(A) 

de ref (A) 
rderef (A) 

structure(A) 
list (A) 

cons(A) 
compound(A) 
functor(A,F,N) 

atom(A) 
atomic(A) 
simple (A) 

integer(A) 
float (A) 
number (A) 

negative(A) 
nonnegative(A) 
A>O 

true 
fail 
(Fl,F2l 
(Fl;F2) 
not (F) 
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Table 4 - Low-level compiler options 

Default Description 

quintus The system running the compiler (<Xher value: cprolog). 
on Write the object code when compilation is complete. 
on Do peephole optimization. 
oft Print timing statistics during compilation. S is one of the fol-

lowing atoms. or a list of them: t (top level of compilation) . 
c (compilation of a single procedure). p (peephole optimi-
zation), s (selection algorithm~xtraction of determinism). 
d (detenninistic code generation). 

off Print debugging messages during compilation. 

Ta61e 5 -Type fonnulas 

Meaning 

A is a nonvariable tenn. i.e. its main functor is instantiated. Nothing is implied 
about its arguments. 
A is a ground tenn, i.e. it contains no unbound variables. 
A is an unbound variable. 
A is an uninitialized memory variable. At the Prolog level, this means that A is an 
unbound variable known not to be aliased to another variable. In the implementa: 
tion, A is a pointer to an empty memory cell. Binding to this variable is a simple 
store, without dereferencing or trailing. 
A i~ an uninitialized register variable. At the Prolog level, this has the same mean
ing as an uninitialized memory variable. In the implementation, A is an empty 
machine register. This type increases the efficiency of parameter passing by re
turning a value directly in a register. It is useful for interfacing with assembly 
language. 
A is dereferenced. 
A is. recursively dereferenced, i.e. A is dereierenced and all subtenns of A are re
cursively dereferenced . 

A is a struCture. 
A is a list, i.e. a cons cell or nil. 
A is a cons cell, i.e. a non-nil list. 
A is a struCture or a cons cell. 
A is the structure F with arity N. 

A is an atom. 
A is atomic, i.e. a numbe-r or an atom. 
A is atomic or an unbound variable. 
A is an integer. 
A is a floating point number. 
A is an integer or a tloat. 
A is a negative imegcr. 
A is a nonnegative integer. 
A is a positive integer. 
A is the atom x. 

----~----------------------------------------~ Nothing is known about the type. 
This means "execution can never reach this point." 
This means "FI and F2," where Fl and F2 arc type fonnulas. 
This means "FI or F2." where Fl and F2 arc type fonnulas. 
This means "not F," where F is a type fonnula. 

-------------------------J 

----------------------------------------------------
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Table 6- New type-checking predicates in Aquarius Prolog 

Predicate Prolog Definition 
nil (A) ·- nonvar Cf-1, Ac (] • • 
cons (A) ·- nonvar (A), A=[ I ] . --list(A) ·- nonvar CJU, (A= (J ; A={ I )). --
compound(A) ·- nonvar (A), \+atomic(Al. 
structure(A) ·- ••<>nvar (A) , \+atomic (A) 1 \+A=[ I --] . 
ground(A) ·- nonvar (A), functor CAl f N) I ground(N1 A). -
simple(A) ·- (var (A) ; atomic(A)). • 
negative(A) ·- integer (A) 1 A<O. 
nonnegative(Al ·- integer (A) 1 A>-=0. 
is list (A) :-- (var(A) 1 ! ; A•(] ; A=[ _I B) I is list (B) ) . -is _partial_ list CAl :- · (viir(A) 1 

I ; A•[ I B] I is_partial_ list (B)) • . -
is proper list (A) :- (var(A) 1 ! 1 fail;Ac(];A""[_IB] 1 is_proper list(B)). • The following clauses are pan of lhe definition: 
ground(N1 - ) ·- N=:=O. 
groundCN1 A} :- N=\=0, arg (N1 A, X), ground(X), Nl is N-1, ground(Nl, A) . 

• 

• 

• 

• 

• 

• 
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Appendix B 

Formal specification of the Berkeley Abstract Machine syntax 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

% Formal specification of the Berkeley Abstract Machine (BAM) syntax 
% Copyright (Cl 1989 Peter Van Roy and Regents of the University of California 
% May be used and modified for non-commercial purposes if this notice is kept. 
% Written by Peter Van Roy. 

\ This file is an executable Proiog program that checks the syntactic 
\ correctness of BAM instructions. The predicate instr(I) is true if I is 
\ a legal BAM instruction. In addition to instructions output by the Aquarius 
\ compiler, this predicate also accepts the user instructions of the BAM, 
\ which allow the run-time system to be written completely in BAM assembly. 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
% *** Check correctness of a sequence of BAM instructions *** 

% Create saved state: 
\ Note: In C-Prolog this must be started up in a system 
\ equal to in size or larger than the one which created it. 
main :- save(check, 1), prompt(_, ''), read(InstrJ, pipe(Instr, 0, OJ, halt. 
main :- halt. 

\ Pipe working loop: 
pipe Cend_of_file, M, Nl ·:- ! , 

T is M+N, 
write('*** Checked '),write(T),write(' instructions; '), 
write(M),write(' correct and '),write(N),write(' incorrect.'),nl. 

pipe(Instr, M, N) :
(instr (Instr) 
-> Ml is M+l, Nl=N 

Ml•M, Nl is N+l, 
write('*** Incorrect: '),write(Instr),nl 

) . 
!, read(Newinstr), pipe(Newinstr, Ml, Nl). 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
% *** BAH Instructions *** 

\ l. Unification support 
instr(deref(V,W)) 
instr(equal(EA,A,L)) 
instr(unify(V,W,F,G,L)) 
instr (trail (VI 1 
instr(move(EA,VIIJ 
instr(push(EA,R,NJ) 
instr(adda(R,S,TJJ 

instructions: 
·- var_i(VJ, var_i(W). 
·- ea_e(EA), arg_i(AJ, lbl(LJ. 
·- var_i(V), var_i(W), nv_flag(F),nv_flag(G),lbl(L). 
·- var_i (V) . 
·- ea_m(EA), var_i(VI). 
·- ea_p(EAI, hreg(R), pos<NJ. 
:- numreg(R), numreg(S), hregCT). 



instr(pad(N)) ·- pos(N). 
instr(unify_atomic(V,I,L)) ·- var_i(Vl, an_atomic(I), lbl(L). 
instr(fail). 

% 2. Conditional control flow instructions: 
instr(switch(T,V,A,B,C)) 
instr(choice(I/N,Rs,L)l 
instr(test(Eq,T,V,L)) 
instr(jump(C,A,B,L)) 
instr(move(CH,Vl) 
instr (cut (V)) 
instr(hash(T,R,N,Lll 
instr(pair(E,L)) 

·- a_tag IT), .var_i IV), lbl (A), lbl (B), lbl (C) . 
·- pos(I), pos(N), I=<N, lbl(L), regs(Rs). 
·- eq_ne(Eq), var_i(V), a_tag(T), lbl(L). 

cond(C), numarg_i(A), numarg_i(B), lbl(L). 
·- a_var(V), choice_ptr(CH). 
·- a_var(V). 
·- hash_type(T), reg(R), pos(N), lbl(L). 
·- an_atomic(E), lbl(L). 

% 3. Arithmetic instructions: 
instr(add(A,B,V)) . numarg_i(A), numarg_i(B), a_var(V). 
instr(sub(A,B,V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(mul(A,B,V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(div(A,B,~)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(mod(A,B;V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(and(A,B,V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr( or(A,B,V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(xor(A,B,V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(not(A,V)) ·- numarg_i(A), a_var(V). 
instr(sll(A,B,V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(sra(A,B,V)) ·- numarg_i(A), numarg_i(B), a_var(V). 
instr(sll). /* vlsi_plm only */ 
instr(sra). /* vlsi_plm only */ 

% 4. Procedural instructions: 
instr(procedure(N/A)) ·- atom(N), natural(A). 
instr(call(N/A)) ·- atom(N), natural(A). 
instr (return). 
instr(simple_call(N/Al) 
instr(simple_return). 
instr (label (L)) 
instr(jump(L)) 
instr(allocate(Perms)) 
instr(deallocate(Perms)) 
instr(nop). 

·- atom(N), natural(A). 

·- lbl (L) . 
·- lbl(L). 
·- natural(Perms). 
·- natural(Perms). 

\ 5. Pragma information for translator and reorderer: 
instr(pragma(P)) ·- pragma(P). 

\ 6. Additions to BAM for the assembly language programmer: 
instr(I) ·- user_instr(I). 
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'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
\ *** Additions to BAM for the assembly language programmer *** 

\ This section describes the parts of the BAM language that are never output 
\ by the compiler, but only used by the BAH assembly programmer. This is used 
\ to write the run-time system in BAM code, so that it is as portable as 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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% possible. Additional instructions are jump to register address, convert 
%tagged atom or integer to untagged integer (ord), its inverse (val), and 
% non-trapping full-word unsigned comparison, non-trapping full-word 
% arithmetic, and trailing for backtrackable destructive assignment. 

reg (R). · user_instr(jump_reg(R)) 
user_instr ( jump_nt (C, A, B, L)) ·

user_instr(ord(A,B)) 
cond(C), numarg_i(A), numarg_i(B), lbl(L). 
arg(A), a_var(B). 

user_instr(val(T,A,V)) 
user_instr(add_nt(A,B,V)) 
user_instr(sub_nt(A,B,V)) 
user_instr(and_nt(A,B,V)) 
user_instr( or_nt(A,B,V)) 
user_instr(xor_nt(A,B,V)) 
user_instr(not_nt(A,V)) 
user_instr(s11_nt(A,B,V)) 
user_instr,{sra_nt (A, B, VI) 
user_instr(trail_bda{X)) 

a_tag(T), numarg_i(A), a_var(V). 
·- numarg_i(A), numarg_i(B), a_var(V). 
·- numarg_i(A), numarg_i(B), a_var(V). 

numarg_i(A), numarg_i(B), a_var(V). 
·- numarg_i(A), numarg_i{B), a_var(V). 

n\una.rg_i (A), numarg_i (B), a_var (V) .. 
·- numarg_i (A), a_var(V). 
·- numarg_i(A), numarg_i(B), a_var(V). 
·- numarg_i(A), numarg_i(B), a_var(V). 
·- a_var(X). 

\ Additional registers: 
\ See Implementation Manual for list of existing registers. 
user_reg(r(All :- atom(A). 

\\\\%%%%%%%%%%%%%%%\%\%\%%%\\\%\\\\\%%\\\%\\\\\\\\\%\\%\\\\\\\\\\\%%%\\%\\\\\% 

\ *** Pragmas *** 

\ A variable is a multiple of N. 
\ Inserted just before loads in readmode unification. 
pragma(align(V,N)) :- a_var(V), pos(N). 

\ Inserted just before a sequence of pushes in writemode unification. 
\ (The pushes may be interleaved with non-memory moves.) 
pragma(push(term(Size))) ·- pos(Size). 
pragma(push(cons)). 
pragma (push (structure (A))) . pos (A). 
pragma(push(variable)). 

\ Specify the tag of a variable. 
\ (This is useful for processors without explicit tag support.) 
pragma(tag(V,T)) ·- a_var(V), a_tag(T). 

\ Length of a hash table. 
pragma(hash_length(Len)) :- pos(Len). 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
\ "*" Tags *** 

a_tag(tatm). ,. atom ., 
a_tag(tint). /* integer *I 
a_tag (tnegl. /• negative integer *I 
a_tag (tpos) . I* nonnegative integer "/ 
a_t.ag(t.str). t• .structure */ 



a_tag(tlstl. /* cons cell */ 
a_tag(tvar). /* variable */ 

atom_tag(tatm). 

pointer_tag(tstr). 
pointer_tag(tlst). 
pointer_tag(tvar). 
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'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
\ *** Addressing modes *** 

heap_ptr(r(h)). 
choice_ptr(r(b)). 

reg (r (I)) • ·- int (I) . 
reg(U) ·- user_reg(U). 

hreg (R) ·- reg(R). 
hreg (R) ·- heap_ptr (R). 

perm(p(I)) ·- natural(l). 

an_atomic (I) ·- int (I) • 

an_atomic(T-A) ·- atom(A), atom_tag(T). 
an_atomic(T-(F/N)) ·- atom(F), pos(N), atom_tag(T). 

a_var(Reg) 
a_var(Perm) 

arg (Arg) 
arg (Arg) 

var_i (Var) 
var_i ( (Var)) 

arg_i (Arg) 
arg_i(Arg) 

numreg(Arg) 
numreg(Arg) 

numarg_i(Arg) 
numarg_i(Arg) 

var_off ( {Var)) 
var_off((Var+I]l 

·- reg(Reg). 
:- perm (Perm) • 

·- a_var(Arg). 
·- an_atomic(Arg). 

:- a_var(Var). 
:- a_var(Var). 

:- var_i (Arg) • 
:- an_atomic(Arg). 

:- reg(Arg). 
:- int(Arg). 

:- var_i (Arg) • 
:- int(ArgJ. 

·- a_var(Var). 
·- a_var(Var), pos'(I). 

\ Effective address for equal: 
ea_e(Var) :- a_var(Var). 
ea_e(VarOff) :- var_off(VarOff). 

' Effective address for move: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



·- arg(Arg). 
·- var_off(VarOff). 

ea_m(Arg) 
ea_m(VarOff) 
ea_m(Tag-H) ·- pointer_tag(Tag), heap_ptr(H). 

address for push: \ Effective 
ea_p(Arg) 
ea_p(Tag-H) 
ea_p (Tag- (H+D)) 

·- arg_i(Arg). 
·- pointer_tag(Tag), 
·- pointer_tag(Tag), 

heap_ptr(H). 
pos(D), heap_ptr(H). 
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'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
% *** Miscellaneous *** 

eq_ne(eq). I* Equal */ 
eq_ne(ne). /*Not equal*/ 

cond(lts) .. /* Signed less than *I 
cond(les). I* Signed less than or 
cond(gts). I* Signed greater 
cond(ges). I* ·signed greater 
cond (eq). I* Equal *I 
cond(ne). I* Not equal *I 

hash_type(atomic). 
hash_type(structure). 

lbl(fail). 

than 
than 

equal *I 
*I 
or equal 

lbl (NIA) ·- atom(N), natural (A). 

*I 

lbl (1 (NI A, I) ) ·- atom (N) , natural (A) , natural (I) . 

nv_flag(nonvar). 
nv_flag(var). 
nv_flag('?'). 

% A list of register numbers: 
% (May contain the value 'no' as well) 
regs ( { J) • 
regs((RISet)) :- (int(R); R•no), regs(Set). 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ *** Utilities *** 

ground(X) ·- nonvar(X), functor(X, _, N), ground(N, X). 

ground(N, _) ·- N•:•O. 
ground(N, X) ·- N•\•0, arg(N, X, A), ground(A), Nl is N-1, ground(Nl, X). 

int(N) 
natural (N) 
pos(N) 

·- integer(N). 
·- integer(N), N>•O. 
·- integer(N), N>O. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
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Appendix C 

Formal specification of the Berkeley Abstract Machine semantics 

\\\\\\\\\\\\\\\\\\\\\\%%%\\%%\%\%%\%%%%\\\\%%\\\%\\\\\%%%\\\\\\%\\\\\\\\\\\\\\ 

\ Formal specification of the Berkeley Abstract Machine (BAM) semantics 
\ Copyright (C) 1990 Peter Van Roy and Regents of the University of California 
\May be used and modified for non-commercial purposes if this notice is kept. 
\ Written by Peter Van Roy. 

\ The specification is a Prolog pro~ram that defines the meaning of BAM in 
\ terms of its execution in a simple memory model. It runs BAM code directly 
\ from the output of the Aquarius compiler. 

\ The specification does not include the user instructions of the BAM since 
\ their behavipr depends on the target machine. 

\ The specification is written in the Extended DCG notation. 

\\\%\\\\%\%\\\\\\\%\\%%\\%%\\%\\%%%\\%%\%\\\%\\\%\\\\%\\\\\\\\\\\\\%\\\\\\\\%\ 

\ Meaning 
\ r(b) 
\ r(e) 
\ r ;tr) 

' r(h) 
\ r(hb) 
\ r(pc) 
\ r(cp) 

of 

\ r (tmp_cp) 
\ rCretry) 
\ r(l) 
\ p (1) 

registers: 
Index to most recent choice point. 
Index to current environment. 
Top of trail stack. 
Top of heap stack. 
Value of r(h} at last choice point creation. 
Code address, 
Continuation pointer for code. 
Temporary continuation pointer for code, used only in simple_call. 
Retry address for backtracking, only exists inside choice points. 
Argument and temporary register. 
Location on current environment. 

\ Types stored in registers: 

• 

• 

• 

• 

• 

• 

• 

\ r(e) Contains values of registers {r(e),r(cp)} U {p(O), ... , p(N-1) }, 41 
\ where N is the size of the environment. 
\ r(b) Contains values of registers {r(e),r(cp),r(tr),r(b),r(h),r(retry)) U RS, 
\ where RS is a subset of {r(O), r(l), ••. }. 
\ r (tr) 
\ r(h), r(hb) 
\ r(pc), r(cp) 
\ r (tmp_cp) 
\ r(retry) 
\ r(l) 
' p(l) 

Contains a natural number. 
Contain words with a pointer tag. 
Contain natural numbers or symbolic labels. 
Contains a symbolic label. 
Contains a symbolic label. 
Contains a word. 
Contains a word. 

• 
\ Comments: ~ 
\ A word is either an integer or a structure of the form Tag·value where Value 
\ is a natural number except if Tag•tatm, in which case Value is an atom or a 
\ structure (F/N) where F is an atom and N is a natural number. 

• 
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\A symbolic label is either the atom 'fail', or the structure F/N, or the 
\structure l(F/N,I), where F is an atom and Nand I are natural numbers. 
% r(cp) is stored in environments, allowing nested calls. 
% r(tmp_cp) is not stored in environments, allowing only one level of call. 
\ However, no environment is needed in a predicate containing a simple_call. 
% There are no explicit stacks for environments or choice points; registers 
% r(e) and r(b) each contain a set of register values. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ Accumulator declarations: 

\ Accumulators: 

ace info(code, T, In, Out, table _command(T,In,Out)). -
acc_info(lblmap, T, In, Out, table command(T,In,Out)). 
acc_info(regs, T, In, Out, table_command(T,In,Out)i. 
ace - info (trail, T, In, Out, table_command(T,In,Out)). 
acc_info(heap, . T, In, Out, heap_table_command(T,In,Out)). 
ace info (count", T, In, Out, (Out is T+In)). -

' Predicate declarations: 

% Top level: 
pred_info( 
pred_info( 
pred_info( 
pred info ( 
pred_info( 

\-Addressing 
pred_info( 
pred_info( 
pred_info ( 
pred_info( 
pred_info( 
pred_ info( 
pred_info( 
pred_info( 
pred_info( 
pred_info( 
pred_info( 
pred_info( 
pred_info( 
pred_ info( 

' Instruction 
pred_ info( 
pred_ info( 
pred_ info ( 
pred_info( 
pred_info( 
pred_info( 
pred_infoC 

execute, 0, [regs,heap,trail,code,lblmap,count]). 
instr_loop, 0, [regs,heap,trail,code,lblmap,count]). 

instr_loop_end, 1, (regs,heap,trail,code,lblmap,count)). 
instr, 1, (regs, heap, trail, code, lblmap)) . 

numeric_pc, 2, (lblmap)). 

modes: 
heap, 3, heap)). 

reg, 3, [regs ]). 
perm, 3, (regs ]). 

a _var, 3, (regs )). 
var i, 3, [regs,heap]). -arg, 2, (regs } ) . 
arg_i, 2, (regs,heap]). 

numreg, 2, (regs ]). 
numarg, 2, (regs,heap]). 

var_off, 2, (regs,heap)). 
imm_tag, 2, (regs ] ) . 

ea_e, 2, (regs,heap]). 
ea_m, 2, (regs,heap]). 
ea_p, 2, (regs,heap)). 

utilities: 
de ref rtn, 2, (regs,heap,trail]). -

de ref - rtn_cont, 3, (regs,heap,trail]). 
equal_rtn, 3, (regs,heap,trail]). 

switch rtn, S, (regs,heap,trail)). 
test rtn, 4, (regs,heap,trail)). -jump_cond_rtn, 4, (regs,heap,trail)). 

hash_ lookup, 3, (regs,heap,trail,lblmap,code)l. 



pred info( hash_lookup_2, 3, {regs,heap,trail,lblmap,code]). 
pred_info( hash_indirect, 3, l heap )) . 
pred_info( save_choice_regs, 2, (regs,heap,trail)). 
pred_info(restore_choice_regs, 2, [regs,~eap,trail]). 

pred_info ( detrail_rtn, 2, [regs, heap, trail)). 
pred_info( trail_rtn, 1, (regs,beap,trailJJ. 
pred_info ( cmp_trail, 2, [regs, heap, trail)). 
pred_info ( unify_rtn, 3, (regs, heap, trail]). 
pred_info( unify_rtn_2, 3, (regs,heap,trail)). 
pred_info( unify_rtn_2, 5, (regs,heap,trail}). 
pred_info( unify_rtn_args_2, 6, (regs,heap,trail]). 
pred_info( unify_rtn_args_3, 7, (regs,heap,trail]l. 
pred_info ( unify_atm, 3, (regs, heap, trail]). 
pred_info ( unify_end, 2, · (;egs, heap, trail]). 
pred_info( unify_varvar, 2, {regs,heap,trail]). 
pred_info ( get_ size, 3, [ heap ) ) . 
predinfo( arith, -4, (regs,heap )). 

pred_info ( write rtn, 0, (regs,heap,trail]). -
pred_ info ( write - rtn, 1, (regs,heap,trail]). 
pred_ info( write _arg, 2, [regs,heap,trail]). 
pred_info ( write_args, 3, [regs,heap,trail]). 

% Implement the accumulator commands: 
table_command(ins(l,Val), In, In) ·- ins(In, I, Val). 
table_command(get(I,Val), In, In) ·- get (In, I, Val). 
table_command(set(I,Val), In, Out) ·- set(In, I, Val, Out). 

% Mask off tag before looking up heap entry: 
heap_table_command(ins(_·I,Val), In, In) ·- ins (In, I, Val). 
heap_table_command(get(_ ':I,Val), In, In) . get(In, I, Val). 
heap_table_command(set(_·I,Vall, In, Out) ·- set(In, I, Val, Out). 

186 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
% *** Initialization and runtime options *** 

:- dynamic(bamspec_option/1). 

main :
save(bamspec, 1), 
prompt(_, ''), 
( copyright, 

execute 
error(('Sorry, the executable BAM specification has failed.']) 

) , 
halt. 

main :
halt. 

copyright ·-
write('Berkeley Abstract Machine (BAH) Executable Specification'), nl, 
write('Copyright (C) 1990 Peter Van Roy and'), 
write('Regents of the University of California'), nl, nl. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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flag_print(I) :- bamspec_option(print), !, write('Executing '), write(!), nl. 
flag_print(_). 

\ Look up symbolic label to get a numeric PC: 
numeric_pc(PC, PC) -->> (integer(PC) ), .!. 
numeric_pc(PC, NPC) -->> [get(PC,NPC)}:lblmap. 

% Read in the instructions and create the code array and label map: 
% The code array gives the instruction corresponding to each PC value. 
\ The label map gives the PC value corresponding to each symbolic label. 
read_code(Code, LblMapl :-

read(Instr), 
read_code(Instr, 0, Code, LblMapl. 

read_code(end_of file,_, Code, LblMap) :- !, seal(Code), seal(LblMap). 
read_code((:-Option), PC, Code, LblMap) ·- !, 

asserta(bamspec_option(Option)), 
read(Nextinstr), 
read_code(Nextlnstr, PC, Code, LblHap). 

read_code(Instr, PC, Code, LblHap) :
ins<Code, PC, Instr), 
insert_lblmap(Instr, LblMap, PC), 
PCl is PC+1, 
read(Nextlnstr), 
read_code(Nextinstr, PCl, Code, LblHap). 

\ Add an entry to the label 
insert_lblmap(label(L), 
insert_lblmap(procedure(P), 
insert_lblmap(_, _, _) .. 

map: 
LblMap, PC) ·- !, 
LblMap, PC) :- !, 

ins(LblMap, L, PC). 
ins(LblMap, P, PC). 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ *** Top level execution *** 

execute :-
write('Reading BAM code'), nl, 
read_code(Code, LblMap), 
write('Starting execution'), nl, 
execute(leaf, Regs, leaf, _, leaf, _, Code, _, LblMap, _, 0, N), 
write('Executed '), write(N), write(' instructions.'), nl, , 
print_array(Regs). 

execute(Filel :
seeing(OldFilel, 
see(File), 
read_code<Code, LblMap), 
seen, 
see(OldFile), 
execute<leaf, Regs, leaf, _, leaf, _,Code, _, LblHap, _, 0, N), 
write('Executed '), write(N), write(' instructions.'), nl, 
print_array(Regs). 



execute -->> 
[set ( r (e), leaf)): regs, 
[set (r (b) 1 leaf)): regs, 
[set (r (h), tvar-0)): regs, 
[set (r (tr), 0)]: regs, 
(set (r (pel, 0)]: regs, 
[set(r(cp),global_success/O)]:regs, 
instr (choice (1/2, (] ,global_failure/0)), 
instr_loop. 

% Instruction execution loop: 
instr_loop -->> 

(get(r(pc),PC)}:regs, 

' • I 

instr_loop_end(PC). 
instr_loop -->> 

error(('Attempt to execute beyond existing cvde.')l. 

instr_loop_end$write/l) -->> ! 1 write_rtn, ins.tr (return), instr_loop. 
instr_loop_end(nl/0) -->> ! 1 nl, instr(return) 1 instr_loop. 
instr_loop_end(global_success/0) -->> !1 

write('•** Global success ***') 1 nl. 
instr_loop_end(global_failure/0) -->> !, 

write('*** Global failure ***'), nl. 
instr_loop_end(faill -->> 

instr(fail), 

' • I 

instr_loop. 
instr_loop_end(PCl -->> 

numeric_pc(PC, NPC)1 
% Fetch: 
(get(NPC,Instr)]:code, 
NPCl is NPC+l, 
(set(r(pc),NPCl)):regs, 
% Execute: 
{l]:count, 
flag_print(Instr), 
instr (Instrl, 
f 
• I 

instr_loop. 
instr_loop_end(PC) -->> 

error(('Program counter is ',PC]). 
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ *** BAM Instructions *** 

\ 1. Unification support instructions:. 
instr(deref(V,Wll -->> 

var_i(get, v, X), 
deref_rtn(X, Y), 
var_i(set, w, Y). 

instr(equal(EA,A,L)) -->> 
ea_e (EA, Xl 1 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



arg_i (A, Y), 
(lbl(L)}, 
@qual_rtn(X, Y, L). 

instr(unify(V,W,F,G,L)) -->> 
var_i(get, V, X), 
var_i(get, w, Y), 
(nv _flag (F) }, 

(nv_flag(G) }, 
flbl (L)) I 
unify_rtn(X, Y, L). 

instr(unify_atomic(V,I,L)l -->> 
var_i<get, V, X), 
[an_atomic Cll I, 
Ubl<L) I I 

unify_rtn(X, I, L). 
instr(trail(V)) -->> 

var_i(get, V, X), 
trail_rtn (Xl . 

instr(move(EA,VI)) -->> 
ea_m(EA, X~, 

var_i(set, VI, X), !. 
instr(push(EA,R,N)) -->> 

ea_p (EA, X) , 
{hreg (R) I, 
(get(R,Y)):regs, 
(set(Y,X)):heap, 
{pos (Nl I, 
add_~ord(Y, N, YN), 
{set(R,YN)):regs. 

instr(adda(R,S,Tll -->> 
{hreg(R) 1, 
(qet(R,X)J:regs, 
numreg(S, Off), 
add_~ord(X, Off, NX), 
{hreg (Tl I, 
(set(T,NXl]:regs. 

instr(pad(Nll -->> 
(get(r(h),H)]:regs, 
{pos (N) I, 
add_word(H, N, NewH), 
(set(r(h),NewH)):reqs. 

\ 2. Conditional control flow instructions: 
instr(choice(l/N,Rs,L)) -->> {pos(N), N>l, regs(Rs), lbl(L)}~ !, 

save_choice_regs(Rs, NewS), 
{ins (NewS, r (retry), L) I, 
(get(r(tr),TR)]:regs, 
(get(r(e), £)}:regs, 
(get(r(cp),CP)]:regs, 
(get(r(b), B)}:regs, 
(get(r(h), H)]:regs, 
tseal(NewS)), 

(ins(NewB, 
(ins(NewB, 
{ins(NewB, 
(ins(NewB, 
{ins(NewB, 

(set (r (hb), H)): regs, 
(set(r(b),NewB)]:regs. 

r(trl, TR) I, 
r,(e), £) ) I 
r(cp), CP) ) I 

r (b), B) I, 
r (h) , H) I I 
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instr{choice(I/N,Rs,Lll -->> {pos(t-l), pos(!), l<I, I<N, regs(Rs), lbl(L)), !, 

(get(r(b),B)]:regs, 
restore_choice_regs(Rs, B), 
tset(B,r(retryJ,L,NewB) ), 
(set(r(b),NewB)]:regs. 

instr(choice{N/N,Rs,L)) -->> {pos(N), regs(Rs), lbl(L)), !, 

[get ( r (b), Bl) :regs, 
restore_choice_regs{Rs, B), 
I get (8, r (b), NewB) } , 
(set{r(b),NewB)]:reo~ 

{get(NewB,r(hl,Hl J, 
[set {r (hbl, H) l: regs. 

instr(fail) -->> 
[get (r (b), Bl]: regs, 
{get { B, r C h l , HI I , 
(set(r(h),H)]:regs, 
{get(B,,r(e),E) ), 
[set(r(e),El):regs, 
{get(B,r(cpl,CP) }, 
[set(r(cp),CP)):regs, 
(get(r(tr),CurTR)]:regs, 
{get(B,r(tr),OldTR)}, 
detrail_rtn(CurTR, OldTR), 
{get {B, r {retry), Ll I, 
[set(r(pc),Ll]:regs. 

instr(switch(T,V,A,B,CJJ -->> 
(a_tag (T) I, 
var_i(get, V, X), 
extract_tag(X, TX), 
( lbl (A), lbl (B), lbl (C) } , 
switch_rtn(T, TX, A, B, C). 

instr(test<Eq,T,V,Lll -->> 
(a_tag(T)}, 
var_i(get, v, X}, 
extract_tag(X, TX), 
{eq_ne(Eq)}, 
{ lbl(LJ I, 
test_rtn(Eq, T, TX, L). 

instr(jump(C,A,B,L)) -->> 
(cond(C)}, 
numarg(A, XA), {extract_value(XA, VA), check_int(XA)), 
numarg(B, XS), textract_value(XB, VB), check_int(XS)), 

{lbl<L)), 
jump_cond_rt.n(C, VA, VB, L). 

instr(move(r(b),V)) -->> 
(get(r(bl,B)]:regs, 
a_var(set, V, B). 

instr(cut(V)) -->> 
a_var(get, V, X), 
(set (r (b), X) J :regs, 
(get (X, r (h), H) ) , 

(set(r(hb),H)):regs. 
instr<hash(T,R,N,L)) -->> hash_type(T), pos(N), lbl(L), 

reg(get, R, X), 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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hash_indirect(T, X, Y), 
[get(L,PC)]:lblmap, 
hash_lookup(PC, Y, N). 

instr(pair(_,_)) -->> 
{error(['Attempt to execute inside a hash table.'])}. 

' 3. Arithmetic instructions: 
instr(add(A,B,V)) -->> arith (add, A, B, V). 

instr(sub(A,B,V)) -->> arith (sub, A, B, V) . 

instr(mul(A,B,V)) -->> arith(mul, A, B, V). 

instr(div(A,B,V)) -->> arith(div, A, B, V). 

instr(mod(A,B,V)) -->> arith(mod, A, B, V). 

instr(and(A,B,V)) -->> arith(and, A, B, V). 

instr ( or(A,B,V)) -->> arith ( or, A,· B, V). 

instr(xor(A,B,V)) -->> arith(xor, A, B, V). 

instr(not(A,V)) -->> arith(not, A, O, V}. 

instr(sll(A,B,V)) -->> arith(sll, A, B, V). 

instr(sra(A,B,V)} -->> arith(sra, A, B, V}. 

\ 4. Procedura"l instructions: 
instr(procedure(N/A)} -->> {atom(N}, natural(A} }. 
instr(call(N/A)) -->> {atom(N), natural(A} }, 

(get(r(pc),PC)]:regs, 
[set <r (cp), PC) l: regs, 
(set (r(pc) ,N/Al] :regs . 

instr(return) -->> 
(get(r(cp),PC)]:regs, 
[set(r(pc),PC)]:regs. 

instr(simple_call(N/A)} -->> {atom(N), natural(A) }, 
{get(r(pc),PC)]:regs, 
(set(r(tmp_cp),PC)]:r~gs, 

[set(r(pc),N/A)]:regs. 
instr(simple_return) -->> 

[get(r(tmp_cp),PC)]:regs, 
{set(r(pc),PC)]:regs. 

instr(label(L)) -->> {lbl(L)}. 
instr(jump(L}) -->> {lbl(L)}, 

[set(r(pc),L}):regs. 
instr(allocate(N)) -->> 

I natural (N) I, 
[get(r(e),E)]:regs, 
{ins(NewE, r(e), E)), 
[get(r(cp),CP)):regs, 
{ins(NewE, r(cp), CP)}, 
{seal(NewE) ), 
{set(r(e),NewE)]:regs. 

instr(deallocate(N)) -->> 
{natural (N)}, 
[get (r(e) ,E) J :regs, 
{get (E, r (e) ,NewEl}, 
tget(E,r(cp),NewCP) ), 
(set(r(e},NewE)]:regs, 
(set(r(cp),NewCP)):regs. 

instr(nop) -->> [). 
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% 5. Pragma information for translator and reorderer: 
\ Pragmas are no-ops in the execution. 
instr(pragma(P)) -->> {pragma(P) ), ! . 

\ 6. Additions to BAM for the assembly language programmer: 

J92 

% The meaning of these instructions depends on the underlying architecture, 
% so they are not included in this specification. See the Implementation 
% Manual for a discussion of their use. 

\%%%%%%\%%%\%%%%%%%%%%%%%%%%%%\%%%%%\%%%%\%%\%%%%%%%%\%%%\%\%%%\%%%%\\%%%%%%%% 

% '*** Pragmas *** 

% A variable is a multiple of N. 
% Inserted just before loads in readmode unification. 
pragma(align(V,N)) :- a_var(V), pos(N). 

% Inserted just before a sequence of pushes in writemode unification. 
% (The pushes·may be interleaved with non-memory moves.) 
pragma(push(term(Size))) . pos(Size). 
pragma(push(cons)). 
pragma(push(structure(A))) pos(A). 
pragma<push(variable)). 

% Specify the tag of a variable. 
% (This is useful for processors without explicit tag support.) 
pragma(tag(V,T)) . a_var(V), a_tag(T). 

% Length of a hash table. 
pragma (hash_length (Len)). :- pos (Len) . 

%%%%%%\%%%%%%%%%%%%%%%%%%\%%%%%%%%%%%%%\%%\%%%%%\%\\\\\%\\\\\\\\\\\\\%\\\\\\\\ 

% .... Tags *"* 

a_tag(tatm). I* atom *I 
a_tag (tint). I* integer *I 
a_tag(tnegl. I* negative integer *I 
a_tag (tpos). I* nonnegative 
a_tag (tstr). I* structure 
a_tag (tlstl. I* cons cell 
a_tag(tvar). I* variable 

atom_tag (tatm) . 

atomic_tag(tatm). 
atomic_tag(tint). 
atomic_tag(tneg). 
atomic_tag(tpos). 

pointer_tag(tstr). 
pointer_tag(tlst). 
pointer_tag(tvarl. 

*I 
*I 

*I 

integer *I 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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\ *** Addressing modes *** 

% Both read and write access: 

heap(get, W, X)-->> {ptr_word(W)}, [get(W,X)]:heap. 
heap(set, w, Xl -->> {ptr_word(W)), [set(W,X)]:heap. 

ptr_word(T"_l :- pointer_tag(T). 

reg(get, R, X)-->> {reg(R)}, (get(R,X)):regs. 
reg(set, R, Xl -->> {reg(R)}, (set(R,X)):regs. 

reg(r(I)) :- int(l), !. 

hreg(R) :- reg(R), !. 
hreg(r(h)). 

perm(get, P, X)-->> {perm(P)}, [get(r(e),E)):regs, {get(E,P,X)}. 
perm(set, P, X)-->> {perm(P)}, (get(r(e),E)):regs, (set(E,P,X,NewE)J, 

[set(r(e),NewE)J:regs. 

perm(p(I)) :- natural(!). 

a_var(WR, V, XI -->> reg(WR, V, X), 
a_var(WR, V, X) -->> perm(WR, V, X). 

a_var(Reg) 
a_var(Perm) 

reg (Reg), ! . 
perm ( Pe rml·. 

var_i(WR, [V], X) -->> a_var(get, v, W), heap(WR, w, X), !. 
var_i(WR, V, X) -->> a_var(WR, V, X). 

\ Read access only: 

% An int is its own value: 
int (N) :- integer (N) . 

\ An atomic is its own value: 
an_atomic(l) ·- int(Il, !. 

atom(A), atom_tag(T), !. 
atom(F), pos(N), atom_tag(T). 

an_atomic(T"A) 
an_atomic(T.(F/N)) ·-

arg(Arg, Arg> -->> (an_atomicCArg) ), !. 
arg(A~g, X) -->> a_var(get, Arg, X). 

arg_i(Arg, Argl -->> (an_atomic<Arg)), !. 
arg_i(Arg, X) -->> var_i(get, Arg, X). 

numreg(Arg, Arg) -->> (int(Arg) t, !. 
numreg(Arg, X) -->> reg(get, Arg, X). 



numarg(Arg, Arg) -->> {int(Arg) }, ! . 
numarg(Arg, X) -->> var_i(get, Arg, X). 

var_off({Var+I], X) -->> a_var(get, Var, .T), !, 
{pos(l)}, add_word(T, I, T2); {get(T2,X)J:heap. 

var_off((Var], Xl -->> a_var(get, Var, .Tl, (get(T,X)]:heap. 

\ Creating immediate tagged pointer objects: 
imm_tag <Tag· (r (h) +D), W) -->> lpointer_tag (Tag} I, ! , 

(get(r(h),T)]:regs, 
lpos(D) }, add_word(T, D, X), 
insert_tag(Tag, X, W). 

imm_tag(Tag·r(h), W) -->> (pointer_tag(Tagl J, !, 
(get (r (h) ,X)]: regs, 
insert_tag(Tag, X, W). 

% Effectiv~ address for equal: 
ea_e(Var, XI -->> a_var(get, Var, X), • 
ea_e(VarOff, X),-->> var_off(VarOff, XI. 

\ Effective address for move: 
ea_m(Arg, X) -->> arg(Arg, X), !. 
ea_m(VarOff, X) -->> var_off(VarOff, X), ' 
ea_m(T-.r(h), X) -->> imm_tag(T-r(h), X). 

\ Effective 
ea_p(Arg, 
ea_p(T-Y, 

address for push: 
Xl -->> arg_i (Arg, X), ! . 
X) -->> imm_tag(T-Y, X). 

19.! 
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\ *** Miscellaneous *** 

eq_ne Ceq). I* Equal *I 
eq_ne (ne) . I* Not equal *I 

cond <lts). I• Signed less than ..I 
cond<les). I* Signed less than or 
cond(gts). I* Signed greater 
cond(ges). I* Signed greater 
cond(eql. I* Equal */ 
cond(ne). I* Not equal *I 

hash_type(atomic). 
hash_type(structurel. 

lbl (fail) . 

than 
than 

equal *I 
*I 
or equal 

lbl(NIAl ·- atom(N), natural(Al. 

*I 

lbl(l(NIA,Ill ·- atom<Nl, natural(A), natural(!). 

nv_flag(nonvar). 
nv_flag(varl. 
nv_flag('?'). 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



\ A list of register numbers: 
\ (May contain the value 'no' as well) 
regs (I J) • 
regs([RISet]) :- (int(R); R-no), !, regs~Set). 
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% Dereference utilities: 

deref_rtn (X, X) -->> (nonvartag (X) I, • 
deref_rtn(X, Y) -->> 

[get(X,X2)]:heap, 
deref_rtn_cont(X, X2, Y). 

deref_rtn_cont(X, X, Y) -->> !, (Y=X}. 
deref_rtn_cont(_, X, Yl -->> deref_rtn(X, Y). 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
% Equal routine: 

equal_rtn(X, x, _) -->> 1 

equal_rtn(_, _, Ll -->> {set(r(pc),L)]:regs. 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
% Switch and test routines: 

switch_rtn(_, tvar, A,_,_) -->> !, (set(r(pc),A)):regs. 
switch_rtn(T, TX, _,B,_) -->> {equivalent_tag(T,TX)),!, [set(r(pc),B)]:regs. 
switch_rtn(_, _,_,_,C) -->> [set(r(pc),C)):regs. 

test_rtn (Eq, T, TX, L) -->> {test_true(Eq, T, TX)), 1 (set(r(pc),L)):regs. . , 
test rtn ( , , , ) -->> []. - - - - -
test_true(eq, T, TX) ·- equivalent_tag(T, TX) . 
test_true(ne, T, TXJ ·- \+equivalent_tag(T, TX). 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ Arithmetic utilities: 

arith(Op, A, B, V) -->> 
numarg(A, XA), (extract_value(XA, VA), check_int(XA)), 
numarg(B, XB), (extract_value(XB, VB), check_int(XB) ), 
arith_operation(Op, VA, VB, VC), 
a_var(set, V, VC). 

arith_operation(add, 
arith_operation(sub, 
arith_operation(mul, 
arith_operation(div, 
arith_operation(mod, 
arith_operation(and, 

VA, VB, VC) ·- VC is VA+VB. 
·- VC is VA-VB. 
·- VC is VA*VB. 
·- VC is VA//VB. 

VA, VB, 
VA, VB, 
VA, VB, 
VA, VB, 
VA, VB, 

VC) 
VC) 
VC) 
VC) 
VC) 

·- VC is VA mod 'lB. 
·- VC is VA /' B. 

. _ .. _ .... _________________________________ _ 
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arith_operation< or, VA, VB, VCI . vc is VA \I VB. 
arith_operation(xor, VA, VB, VC) . vc is (VA 1\ \(VB) ) \I (VB 1\ \ (VA) ) . 
arith_operation(not, VA, , VCI vc is \ (VA) . -arith_operation(sll, VA, VB, VC) . - vc i:s VA<<VB. 
arith_operation(sra, VA, VB, VC) . vc is VA>>VB. 

\%%\%%%%%%%%%%%%%%%%%%%%%%%%\i%%%\\%%\%\%\\%\%%%%%%%%%%%%%\l%\tlt%%ii%\li%%\i% 

\ Conditional jump: 

jump_cond_rtn(C, VA, VB, L) -->> {jump_truetC, V'A, VB)}, !, {set(r(pc),L)):regs. 
jump_cond_rtn(_, _, _) -->> 11. 

jump_true(lts, VA, VB) :- VA@<VB. 
jump_true(gts, VA, VB) ·- VA@>VB. 
jump_true ( les, VA, VB) :- VA@=<VB. 
jump_true(ges, VA, VB) :- VA@>=VB. 
jump_true( eq, VA, VB) :- VA••VB. 
jump_true( ne,' VA, VB) :- VA\==VB. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ Hash table utilities: 

hash_lookup(PC, X, Ni -->> 
{PCl is PC+11, 
{get<PCl,pragma(hash_length(N)))):code, 
{PC2 is PCl+l}, 
{PCN is PCl+N), 
hash_lookup_2(PC2, PCN, X). 

hash_lookup_2{PC, PCN, _) -->> {PC>PCN}, !. 
hash_lookup_2(PC, PCN, X) -->> (PC•<PCN), 

{get(PC,pair(E,L))]:code, 
IE•>O, 

' . , 
lset(r(pc),L)]:regs. 

hash_lookup_2CPC, PCN, X) -->> (PC•<PCNJ, 
tPCl is PC+l}, 
hash_lookup_2CPC1, PCN, X). 

\ Indirection needed for structures because main functor is in memory: 
hash_indirect(atomic, X, XI -->> (]. 
hash_indirect(structure, X, Y) -->> (get(X,Y)):heap. 

• 

• 

• 

• 

• 

• 

• 

• 
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\ Choice point and fail utilities: 

save_choice_regs((}, _1 -->> (). 
save_choice_regsCtnoiRs}, B) -->> !, 

save_choice_regs(Rs, B). 
save_choice_regsllliRs}, B) -->> 

fget(r(l),Rl}:regs, 
• 

• 



(ins(B, r(I), Rl ), 
save_choice_regs(Rs, Bl. 

restore_choice_regs((], ) -->> (). 
restore_choice_regs((noiRs), B) -->> !, 

restore_choice_regs(Rs, B). 
restore_choice_regs((IIRs], Bl -->> 

I get ( B, r (II , R) I , 
(set ( r (I I , R I l : regs, 
restore_choice_regs(Rs, B). 
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\ Trailing and detrailing: 

trail_rtn(X) -->> 
(get(r{hb),HB)):regs, 
cmp_trail(X, HB) . 

. 
cmp_trail (X, I::IB) -->> (less_ trail (X, HB) 1, ! , 

(get(r(tr),TRl):regs, 
(set(TR,X)):trail, 
(TRl is TR+l I, 
(se~(r(tr),TRl)):regs. 

cmp_trail(_, _) -->> (]. 

less_trail(_-x, _-Y) :- X<Y. 

\ Restore to unbound the variables on the trail between OldTR and CurTR. 
detrail_rtn(CurTR, OldTR) -->> {CurTR•<OldTRJ, ' 
detrail_rtn(CurTR, OldTRl -->> {CurTR>OldTR}, 

{CurTRl is CurTR-1), 
(get(CurTRl,V)):trail, 
(set(V,V)):heap, 
detrail_rtn(CurTRl, OldTR). 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ General unification routine: 

unify_rtn(Wl, W2, L) -->> 
unify_rtn_2(Wl, W2, Flag), 
unify_end(Flag, L). 

unify_end(success, _) -->> (]. 
\ For later: detrailing if L\fail. 
unify_end(fail, L) -->> (set(r(pc),L)]:regs. 

unify_rtn_2(Wl, W2, Flag) -->> 
(extract_tag_value(Wl, Tl, Vl)}, 
(extract_tag_value(W2, T2, V2)J, 
unify_rtn_2<Tl, Vl, T2, V2, Flag). 

unify_rtn_2<tvar, Vl, NTag, V2, success) -->> (NTag\••tvar}, !, 



trail_rtn(tvar-Vl), 
(make_word(NTag, V2, Word)}, 
[set(tvar·vl,Word)]:heap. 

unify_rtn_2(NTag, V2, tvar, Vl, success).-->> {NTag\c•tvar}, !, 
trail_rtn(tvar-Vl), 
(make_word(NTag, V2, Word)}, 
[set(tvar·vl,Word)]:heap. 

unify_rtn_2(tvar, Vl, tvar, V2, success) -->> !, 

unify_varvar(Vl, V2). 
\ Matching atomic tags: 
unify_rtn_2(ATag, Vl, BTag, V2, Flag} -->> 

(atomic_tag(ATag)}, 
(atomic_tag(BTag) }, 
{equivalent_tag(ATag, BTag) }, 
I 
• I 

unify_atm(Vl, V2, Flag) . 
\ Non-matc.hing nonvariable tags: 
unify_rtn_2(ATag, _, BTag, _, fail) -->> 

{ATag\••tvaf, BTag\••tvar}, 
(\+equivalent_tag(ATag, BTag) }, 
I 

\ Matching pointer tags (recursive case): 
unify_rtn_2CATag, Vl, ATag, V2, Flag) -->> 

(pojnter_tag(ATag)}, 
get_size(ATag, Vl, Sz), 
unify_rtn_args_2(0, Sz, ATag, Vl, V2, Flag). 
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\The term's Size is the maximum offset needed to traverse the term in memory. 
get_size(tlst, _, 1) -->> (]. 
get_size(tstr, V, N) -->> 

(get(tstr·v,Func)]:he4p, 
(Funcz(tatm·(_/N))). 

unify_rtn_args_2(N, Sz, _, _, _, success) -->> {N>Sz), !. 
unify_rtn_args_2(N, Sz, T, V, w, Flag) -->> {N=<Sz}, !, 

IVN is V+N), 
(WN is W+N), 
(get(T·VN,VX)]:heap, deref_rtn(VX, OVX), 
(get(T·WN,WX)):heap, deref rtn(WX, DWX), 
unify_rtn_2(0VX, OWX, F), 
{Nl is N+lJ, 
unify_rtn_args_3(F, Nl, Sz, T, V, w, Flag). 

\ Continue with other arguments if argument unification succeeded: 
unify_rtn_args_3(fail, _, _, _, _, _, fail) -->> (). 
unify_rtn_args_3(success, Nl, Sz, T, v, w, Flag) -->> 

unify_rtn_args_2(Nl, Sz, T, V, w, Flag). 

\ Unifying value parts of two atomic terms with equivalent tag: 
unify_atm(V, ~. success) -->> !. 
unify_atm(_, _, fail) -->> (). 

\Unifying two variables: bind youngest to oldest, trail youngest. 
unify_varvar(Vl, V2) -->> {Vl>V2J, !, 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



trail_rtn(tvar"Vl), 
(set(tvar"Vl,tvar"V2)):heap. 

unify_varvar(Vl, V2) -->> (Vl•<V2}, !, 
trail_rtn(tvar"V2), 
(set(tvar"V2,tvar"Vl)}:heap. 

199 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ Simple type utilities: 

ground<Xl ·- nonvar(XJ, functor(X, _, Nl, ground(N, X). 

N=:=O, I ground (N, _> . 
ground(N, XI • N•\•0, arg(N, X, A) 1 ground(A), Nl is N-1, ground(Nl, Xl. 

natural(Nl :- integer(N), N>•O. 
pos(N) ·- integer{N), N>O. 

'''''''''''''"''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
\ Word, tag, and value manipulation utilities: 

\ This takes into 
\ For·integers it 
\ of the integer. 
% or tint tags. 

account the relationship between tpos, tneg and tint. 
extracts tpos or tneg tags and the absolute value 
It creates the correct integer, given the tpos, tneg 

equiv~lent_tag(T, T) :- ' 
equivalent_tagttint, tpos) :- 1 

equivalent_tag(tint, tneg). 

extract_tag(N, tpos) ·- integer(N), N>•O, !. 
extract_tag(N, tneg) ·- integer(N), N<O, ~. 

extract_tag(T"_, T). 

extract_value(N, N) ·- int(N), N>•O, !. 
extract_value(N, M) ·- int(N), N<O, !, M is -N. 
extract_value(_-v, V). 

extract_tag_value(W, T, V) :
extract_tag(W, T}, 
extract_value(W, V). 

nonvartag(l) :- int (I), ! . 
nonvartag(T"_) :- \+T•tvar. 

\ Only used for pointer tags: 
insert_tag(T, _-v, T-v). 

make_word(t.int, I, I) :- ! . 
make _word (t.pos, I, II ·- ' 
make _word(tneg, N, 1) :- I I .. 
make _word(T, v, T"V) . 

is -N. 



add_word(T-I, J, T-K) - K is I+J. 

\ Eventually, print out 
check_int (I) :- int (I), 

check_int ( ) 

value of PC: 

error(['Operand of conditional is not. an integer.']). 
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%Table utilities: 

% This code implements a mutable array, represented as a binary tree. 

% Insert a value in logarithmic tim~ and constant space: 
% This predicate is used in this program only to create the array, 
% although it can also be used to access array elements. 
ins(T, I, V) :-hash(!, H), ins_2(T, H, V). 

ins_2(node(N,W~L,R), I, V) :- ins_2(N, W, L, R, I, V). 

ins_2 (N, v, _, , I, V) . I=N, 1 

ins 2(N, L, R, I, V) . 
compare(Order, I, N), 

. ins_2(0rder, I, V, L, R). 

ins_2(<, I, v, L, 
ins_2(>, I, v, R) 

·- ins_2(L, I, VI. 
·- ins_2(R, I, V). 

% Access a value in logarithmic time and constant space: 
% This predicate cannot be used to create the array incrementally, 
% but it is faster than ins/3. 
get(T, I, V) :- hash(I, H), get_2(T, H, V). 

get_2(node(N,W,L,R), I, V) ·
compare(Order, I, N), 
get 3(0rder, I, V, W, L, R). 

get_ 3(<, I, v, I L, ) ·- get_ 2 (L, - -
get_ 3(•, I v, w, I ) ·- V•W. - - -
get 3(>, I, v, I I R) -- get 2CR, - -

I, V). 

I, V). 

\ Update an array in logarithmic time and space: 
set <T, I, v, U) ·- hash(!, H) I set 2(T, - H, v, U). 

set_2 (leaf, I, v, node(I,V,leaf,leafll. 
set_2Cnode(N,W,L,R), I, V, node(N,NW,NL,NR)) :

compare(Order, I, N), 
set_3(0rder, I, V, W, L, R, NW, NL, NR). 

set_3 (<, I, V, W, L, R, W, NL, R) ·- set_2 (L, I, V, NL). 
set_3(•, _, V, _, L, R, V, L, R). 
set_3(>, I, V, W, L, R, W, L, NR) ·- set_2(R, I, V, NR). 

% Prevent any further insertions in the array: 

• 
I 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• I 
I 



seal(leaf). 
seal(node(_,_,L,R)) :- seal(L), seal(R). 

\ Print values of array in sorted order: 
print_array(Terml :-

flat_array(Term, 2, Flat), 
print list(Flat). 

print_list ( []) . 
print_list(((A->B) IL)) ·-

write(A), put(9), write('= '), write(B), nl, 
print_list (L) . 

flat_array(Term, N, Sort) :
N>O, Nl is N-1, 
flat_array(Term, N1, Flat, [)), !, 
sort(Flat, Sort). 

flat_array(leaf, N, ()) ·-N .. :•O, !. 
flat array(nod'e(,,, ), N, ' ... ') ·- N•:•O, !. - . ----
flat_array(Term, _, Term). 

flat_array(leaf, _) --> [). 
flat_array(node(H,T,L,R), N) --> 

flat_array(L, N), 
{hash(H, I)}, 

{flat_array(T, N, F)}, 
[ (I->F))' 
flat_array(R, N). 

\ Invertible hash function: 
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t Bit inversion of the integer components of a ground term. Other parts are 
\ unchanged. This one inverts the low 16 bits. It can be changed by changing 
\ the last argument of bit_invert/3. 
hash(I, H) ·- integer(I), !, bit_invert(I, H, 16). 
hash(T, H) ·- functor(T, Na, Ar), functor(H, Na, Ar), hash_2(Ar, T, H). 

hash_2(0, _, _) :- !. 
hash_2(N, T, H) :- N>O, 

arg(N, T, X), 
arg (N, H, Y), 
hash(X, Y), 
Nl is N-1, 
hash_2(Nl, T, H). 

bit_invert (0, 0, _) :- ! . 
bit_invert(N, I, B) :- N>O, 

L is N>>1, 
R is N/\1, 
Bl is B-1, 
bit_invert(L, LI, B1), 
I is R*(l<<B) + Ll. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 



\ Error handling: 

error (L) :-
write('••• Error: '), 
error_loop (Ll 1 

write(' ***'), nl. 

error_loop ( (] l . 
error_loop((MIL]l :- write(M), error_1oop(L). 

202 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

\ Primitive version of write: 

write rtn -->> 
[get(r(O),X)]:regs, 
write_rtn (X) . 

write_rtn(tvar~V) -->> !, (write('_'), write(V)). 
write_rtn(l) -->> {int(I)J, !, {write(I)). 
write_rtn(tatm-(F/Nll -->> !, {write(''''), write(F/N), write('''')). 
write_rtn(tatm-A) -->> !, (write(Al }. 
write_rtn(tlst-v) -->> !, 

{W .is V+1), 
(get(tlst·v,Headl):heap, 
(get(tlst·w,Tail)]:heap, 
deref_rtn(Head, DHead), 
deref_rtn(Tail, DTail), 
(write('[')}, 
write_rtn(DHead), 
{write(' I') J1 
write_rtn(DTail), 
(write(']')). 

write_rtn(tstr-v) -->> !, 
[get(tstr·v,tatm-(F/N))J:heap, 
(write (F), write('(') I 1 

write_arg(V1 1), 
write_args(2, N, V), 
(write(')')). 

write_args(l, N, _) -->> {I>N), !. 
write_args(l, N, V) -->> (l•<N), !, 

(Il is 1+1), 
fwrite(',')), 
write_arg(V, I), 
write_args(I1, N, V). 

write_arg(V, I) -->> 
(W is V+II1 
[get(tstr·w,X)):heap, 
deref_rtn(X, DXI, 
write_rtn(DX). 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

.• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Appendix D 

Semantics of the Berkeley Abstract Machine 

1. Introduction 

This appendix gives an English-language description of the semantics of the Berkeley Abstract 
Machine (BAM) as comments auached to a Pri>log specification of its syntax. The BAM is incended 10 

operate on the same data structures as the Warren Abstract Machine (WAM). therefore some familiarity 
with the W AM is an advantage. The semantics are represented by shan descriptions supplemented by 
pseudo-cOde and examples where necessary. 

The BAM is designed to be simple and easily translated to most general-purpose processors. Many 
of its optimizations apply to any processor. for example the streamlined choice point OWJagement and the 
use of write-once permanent variables to simplify trailing. Although the first target is the VLSI-BAM pro
cessor. we have built U3nSiators for other processors including the MIPS and the MC68020. Pragmas give 
information that is used to obtain the best translation for different processors. 

· The instruction set is divided in six categories, each in a different section. Each section starts with a 
box giving lhe syntax of the instruCtions presented in that section. This is followed by a description of the 
instructions' actions. Section 2 gives the unification instructions. Section 3 gives the conditional control 
ftow instructions. Section 4 gives tile aridunetic insauctions. Section 5 gives the procedwal control 1Jow 
instructions. Section 6 gives the pragmas. which contain infannalion chat allows better translation. Section 
7 gives the user instructions. additions to the BAM chat are never output by the compiler but are intended 
for the BAM assembly programmer. The last section defines the syncax and semantics of the addressing 
modes used in the instructions. • 

In explaining the semantics, a few assumptions are made about the data representation. An infinite 
number of registers is assumed; the translator should map registers of sufficiently large index to memory. 
A tagged architeCture is assumed; i.e. eacb word c:oncains a tag and a value field wbich are creau:d as 
separate entities in some instructions and as a unit in other inst.ructions. A load-store architeewre is 
assumed; almost any archilCCWre has a subset of instructions lhat satisfy this assumption. The aclUal 
details of the translation to the targel architeeaurc are not. given since they depend on the characteristics or 
the architecture. These characteristics ~nclude the number of registers. the addressing modes, hardware 
suppon for certain features (caging. derefem~eing. rrailing. eu:.). the precise format of choice points and 
environments. and so forth. 
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2. Unification instructions 

Unification syntax 

instr(deref(V,W)) var_i(V), var_i(W). 
instr(equal(EA,A,L)) 
instr(unify(V,W,F,G,L)) 
instr (trail (V)) 
instr(move(EA,VIJ) 
instr(push(EA,R,N)) 

ea_e(EAJ, arg_i(A), lbl(L). 
var_i(~),var_i(W),nv_flag(F),nv_flag(G),lbl(L). 

var_i (V) . 
ea_m(EA), var_i(VI). 
ea_p(EA), hreg(R), pos(N). 
numreg(R), numreg(S), hreg(T). 
pos(N). 

instr(adda(R,S,T)) . 
inst r (pad (N) ) . 
instr(unify_atomic(V,l,L)) :
instr (fail). 

var_i(V), an_atomic(I), lbl(L). 

deref (V, W) 

equal(X,Y,L) 

unify(X,Y,T,U,L) 

trail {X) 

move(X,Y) 

push(X,R,N) 

adda(X,Y,R) 

Dereference the argument V and store the result in W. The argument 
V is unchanged. This is the only instruction which dereferences its 
argumeni. All other instructions assume that their arguments are 
dereferenc:ed. Giving the dereference instruction rwo arguments 
simplifies lhe irnplemenwion of write-once pennanent variables and 
makes a fast implementation of trailing possible. 

Compare X toY and branch to L if they are not equal. The comparison 
is a full word operation, eq ... ; va..emto ••eq•• in Lisp. It is assumed that 
X and Y are derefetenceu. 

Perform a genenl unification of X and Y. and branch to L if it fails. 
Always binds oldest variables to the youngesL In the failure case all 
bindings are undone. It is ass••med thai. X and Y are dereferenced. The 
two parameters T and U are added as an optimization. and may be 
safely ignored. They are flags (wilh values '?', var, or nonvar) 
that say whether it is known if X and Y are variables or nonvariables. 
With this information a better translation to the target processor can be 
done. 

Push the address of X on the trail stack if the trail condition X<r (hb) 
is satisfied. ll is assumed that X is a dereferenced unbound variable, 
i.e. it has a tva r tag. Only one comparison is necessary for the trail 
check. 1l1c state register r (hb) points to lhe heap location which 
was the top of the heap when the most recent choice point was crealCd. 

Move X to Y. Depending on the addressing mode, this instruction does 
a load or store or creates a tagged value. 

Push X on the staCk with stack pointer R, then increment R by N. This 
instruction is used for write mode unification. 

Add X and Y into R. This is a full word operation which never traps. 
unlike the arithmetic instructions in section 4. This insuuction is used 
to allocate space for uninitialized variables. The second argument Y is 
an offset which is scaled properly by the translator (i.e. it is unchanged 
ror the VLSJ-BAM since it is word·addresscd. and it is multiplied by 4 
for the MIPS, since it is byte-addressed). 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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pad <Nl Add N words to the heap pointer r (h). This is a full word operation 
which never traps, unlike the arithmetic instructions in section 4. ll is 
used to ensure the correct alignment of compound tenns. The space 
reserved by pad will never be stored to. If the increment is a multiple 
of the alignment then the pad disappears. The increment is scaled 
properly by the translator (see previous description of adda). 

unify _atomic (X, Y, Ll Unify the variable X with the atomic term Y, and branch to L if it fails. 
It is assumed that X is dereferenced. The unify_atomic inslruc
tion is a special case of general unification that is added to reduce code 
size in the VLSI-BAM processor. There is a compiler option to enable 
or disable the generati~n of this instruction. 

fa i 1 Untrail all variable bindings and jump to the retry address. Do not 
restore argum~nt registers. Argument registers arc restored by the 
choice poim management instructions . 

3. Conditional control flow instructions 

Clause selection symax 

instr(switch(T,V,A,B,Cll 
instr(choice(I/N,Rs,L)) 
instr(test(Eq,T,V,L)) 
instr(jump(C,A,B,L)) 
instr(move(CH,V)) 
instr(cut(V)) 
instr(hash(T,R,N,L)) 
instr(pair(E,L)) 

·- a_tag(T), var_i(V), lbl(A),lbl(B),lbl(C). 
·- pos(I), pos(N), I=<N, lbl(L), regs(Rs). 
·- eq_ne(Eq), var_i(V), a_tag(T), lbl(Ll. 
·- cond(C), numarg_i(A), numarg_i(B},lbl(L). 
·- a_var(V), choice_ptr(CH). 
·- a_var(V). 
·- hash_type(T), reg(R), pos(N), lbl(L). 
·- an_atomic(E), lbl{L). 

switch(T,R,A,B,C) 

choice(I/N,RS,L) 

A three-way branch: branch to the label A, B, C depending on whether 
the tag of R is tvar, T. or any other value. The label fail is not 
an address, but denotes a branch to the global failure routine. It is 
assumed that R is dcreferenced . 

The choice point management instruction for choosing clause I out of 
N clauses. Choice points are of variable size. The semantics of choice 
depends on l as·follows: 

I= 1 Create a choice point with retry address L. Save in it the 
registers listed in RS. 

l<I<N Restore the registers mentioned in RS from the choice point, 
ignoring no cerms. The no terms make it possible to 
know the position of the registers in the choice point without 
an explicit size field in the choice point. Update the reuy 
address to l . 

I=N Restore the registers mentioned in RS, ignoring no terms. 
Remove t.hc choice point (1.. will always be fail when 
I=N.) 



test (E, T, X, L) 

jump(C,X,Y,Ll 

cut(Xl 

hash('T,R,N,L) 

pair (E, Ll 
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The above notation is consistent with lhree possible implementations 
(in order of decreasing efficiency): (1) The implemenwion given 
above, in which only those registers listed in RS are saved and res10red, 
and the choice point does not have a size field. Restoring registers is 
done by the choice insiJ'l.lctions. not by the fail insltuetion. The com
piler does an effon to minimize the set of registers mentioned in RS. 
(2) Saving all registers up to the maximum regiSier listed in RS. In this 
case the choice points are of variable size, and the no terms in RS arc 
ignored. The notation is consistent with choice points containing a si.ze 
field. (3) Always saving and restoring all registers. In this case the 
choice points are of tixed size, the RS argument is ignored, and the fail 
instruction restores the registers. In this case the semantics correspond 
to the tty. re<ry. and Ul.lst instructions of the W AM. 

Branch 10 label L if the tag of X is equaVnot equal to T. 
Equality/nonequality is selected by the value of E. The label fail is 
not an address. but denOles a branch to the global failure routine. ll is 
assumed lhat X is dereferenced. 

Compare X and Y and jump to L if the comparison is uue. The lUnd of 
comparison is given by C. This instruction II'aps if either argument is 
not an integer. The label fail is not an address, but denOles a 
branch to the global failure routine. 

Implement the cut operation. Move X into the r (b) register; also 
move the value of r (h) in this choice point into the r (hb) regis
ter. The Iauer move is an optimization that reduces the number of 
II'ailed variables, but is not needed for correctness. The compiler 
ensures that X contains a pointer 10 the choice point which was most 
recent when lhe caurent predicate was entered. 

Look up register R in a hash table located at label L. The hash table 
contains atomic terms (when T=atomic) or the main functors of 
structures (when T=structure). If R is not in the hash table, then 
execution falls through to the next instruction. Otherwise execution 
continues at the label contained in the hash table. When 
T=structure the compiler guarantees lhat R points 10 a suucture. 
The following is an example of hash table code: 

hash(Type,Reg,N,Lbl). 

label(Lbl). 
hash_length(N). 
pa i r ( E 1 , L 1 ) • 

pair(E2,L2). 

pa i r ( E i , Li ) . 

pa i r (EN, LN) • 

Hash Reg in~o table at Lbl 
Fall through if not present 

The hash table 
Length of the hash table 
N entries 

Jump to Li if Reg Ei 

A hash table entry. E is either an atom or lhc main functor of a SUlJC· 

lure. The label L is the address where execution continues if the sup
plied value matches E. 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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4. Arithmetic instructions 

Arithmetic syncax 
instr(add(AI81V)) ·- numarg_ i (A) I nurnarg_i (8) 1 a _var(V). 
instr(sub(A,81V)) ·- nwnarg_ i (A) I nurnarg_i (B) 1 a var (V) . -instr(mulCA181VJ) . - n~arg_i (A) 1 nurnarg_i (B) 1 a var (V) . -
instr(div(A1BIV)) ·- numarg_ i(A) 1 nwnarg_ i (B) I a_var(V). 
instr(and(A1 BIV)) ·- nwnarg_ i (A) I nurnarg_i (B) 1 a_var(V). 
instr( or(A181V)) ·- nwnarg_i (A), nwnarg_ i (8) 1 a _var(V). 
instr(xor(A1BIV)) ·- nwnarg_ i (A) I nwnarg_ i(B)I a _var(V). 
instr (not (A, V)) ·- nwnarg_i (A) 1 a _var(V). 
instr(sll(A1B1V)) . - numarg_i (A) 1 nwnarg_ i (B) 1 a _var (V) . 
instr(sra(A1BIV)l ·- nwnarg_ i (A) I nwnarg_ i (B) I a var (V) . -

All arithmetic insuuctions assume that their operands are dercferenced and desauctively overwrite 
lhe result register. All perfonn operations on integers with correct lag and return a result with correct lag, 

trapping if either operand or the result is not a integer. Arithmetic semantics are: 

add(X,Y,Z) 
sub(X,Y,Z) 
mul(X,Y,Z) 
div(X,Y,Z) 
and(X,Y,Z) 
or(X,Y,Zl 
xor (X, Y, Z) 
sll(X,Y,Z) 
sra (X, Y, Z) 
not(X,Zl 

Z~X+Y 
z~x-Y 

z~x·v 
z~x/Y 

Z ~ X and Y (bitwise and) 
Z ~ X or Y (bitwise or) 
Z ~ X xor Y (bitwise exclusive or) 
Z ~ X « Y (Jogic21 shift of X leftY places) 
Z ~ X » Y (arithmetic shift of X right Y places) 
Z ~ not X (bitwise invert X imo Z) 

s. Procedural control flow instructions 

Procedural syntax 
instr(procedure(N/A)) ·- atom(N), natural(A). 
instr (call (N/A)) :- atom(N), natural(A). 
instr(return). 
instr(simple_call(N/A)) -- atom(N), natural(A). 
instr(simple_return) . 
instr (label (L)) ·- lbl(L). 
instr(jump(L)) ·- lbl(L). 
instr(allocate(Pe~)) :- natural (Perms) • 
instr(deallocate(Perms)) -- natural (Perms) • 

procedure(P) 

call (N/A) 

The entry point of procedure P. 

Call the procedure N I A. assuming a fixed location for w arguments. 
The arguments of N/A are sequentially loaded into argument regis
sets. By default lhc registers used arc numbered from zero, i.e. r ( 0) , 
r ( 1) ••.. This call is used for all user-defined predicates. It may be 
nested, but must· be sunounded by an allocate-deallocate pair when 
used in the body of a predicau:. 

return Return rrom a call. 



simple_call (NIA) 

simple_return 

label (L) 

jump (L) 

allocate(N) 

dea11ocate(N} 

6. Pragmas 
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Simple call of the procedure N I A, asswning lhe same argument pass· 
ing as c a 11 ( N I A I . This is a one-level call; it may not be nes&ed. It 
docs not require a surrounding allocate-deallocate pair. It can be 
implemented by saving the return address in a fixed register. This 
inslruction is useful for interfacing with assembly routines. 

Return from a simple call. 

Denotes a branch destination. The label fail is noLan address. bul 
denotes a branch to the global failure routine. 

Jump unconditionally to label L. The label may be to the first insuuc
tion of another procedure N I A or it may be internal to the current pro
cedure. The label fail is not an address, but denotes a branch to the 
global failure routine. 

Create an environment of size N on the local stack, i.e. a new set of N 
pennanent variables which are deno&ed by p (I 1 . Typically. the only 
state registers stored in the environment are r (e) and r (cp). The 
environment must NOT contain the r (b) register. 

Remove lhe top-most environment (which is of size N) from the local 
stack. 

Pragrna syntax 

instr(pragma(Pragma)) . pragma(Pragma). 

·- a_var(V), pos(N). 
·- pos(Size). 

pragma(align(V,N)) 
pragma(push(term(Size))) 
pragma(push(cons)). 
pragma(push(structure(A))) · pos(A). 
pragma(push(variable)). 
pragma(tag(V,T)) 
pragma(hash_length(Len)) 

·- a_var(V), a_tag(T). 
·- pos(Len). 

align(V,N) 

hash_length(Nl 

push (term (5)) 

push(cons) 

At this point the contents of register or pennancnt V arc a multiple of 
N. This information helps the reordering stage to generate double-
word load instructions for the VLSJ-BAM processor. 

N is the length of the hash table starting at this point 

At this point a block of push instructions is about to aeate a 1em1 of 
size S on the heap. 

At this point a cons cell (of size two words) is about to be crea&ed on 
the heap. This infonnation helps the reordering stage to generate 
double-word push instructions for the VLSI-BAM processor. 

push (structure (A)> At this point a structure of arity A is about to be created on the heap. 

push(variablel 

hash_length(Nl 

This infonnation helps the reordering stage to generate double-word 
push insuuctions for the BAM processor. 

At this point an unbound. initialized variable is about to be cre:ned on 
the heap. 

This is the stan of a hash table of length N. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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7. User instructions 
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The contents of variable V have &ag T. This pragma JRCC(Ies a load or 
a store with address V. It is used 10 make loads and stOreS efficient for 
processors which do not have explicit &ag support. 

This section describes the parts of the BAM language that are never output by the compiler, but only 
used by the BAM assembly programmer. This is used to write lhe run-time system in BAM code, so that it 
is as ponable as possible. Additional insuuctions are jump 10 register address, creating and decomposing 
a.agged words, non-trapping full-word arithmetic, non-trapping full-word unsigned comparison, and trailing 
for backLrackable destruCtive assignment Additional registers are used in implementing the run-time sys
tem, and can be mapped to memory locations. 

Additional insuuctions 

instr(I) :- user_instr(I). 

user_instr(jump_reg(R)) ·- reg(R). 
user_instr(jump_nt(C,A,B,L)):- cond(C),numarg_i(A),numarg_i(B),lbl(L). 
user_instr.(ord(A,B)) ·- arg(A), a_var(B). 
user_instr(val(T,A,V)) 
user_instr(add_nt(A1 B,V)) 
user_instr(sub_nt(A,B,V)) 
user_instr(and_nt(A,B 1 V)) 
user_instr( or_nt(A,B 1 V)) 
user_instr(xor_nt(A1 B,V)) 
user_instr(not_nt(A,V)) 
user_instr(sll_nt(A,B,VJ) 
user_instr(sra_nt(A,B,V)) 
user_instr(trail_bda(X)) 

·- a_tag(T), numarg_i(A), a_var(V). 
numarg_i(A), numarg_i(B), a_var(V). 
numarg_i(A), numarg_i(B), a_var(V). 
numarg_i(A), numarg_i(B), a_var(V). 
numarg_i(A), numarg_i(B), a_var(V). 

·- numarg_i(A), numarg_i(B), a_var(V). 
numarg_i (A) 1 a_var(V). 
numarg_i(A), numarg_i(B)I a_var(V). 
numarg_i(A), numarg_i(B), a_var(V). 
a_var(X). 

user_reg ( r (A)) 

jump_reg (R) 

jump_nt(C,A,B,L) 

ord (A, B) 

val(T1 A1 V) 

·- atom(A). 

Jump unconditionally to the address stored in register R. 

Compare A and 8 and jump 10 L if the comparison is true. The kind of 
comparison is given by C. This instruction does a full word com
parison and never uaps. The label fa i 1 is not an address. but 
denotes a branch to the global failure routine. 

Store in 8 the machine integer chat corresponds to the a10m or integer 
in A. This function strips the tag from A, and therefore depends on the 
target machine and the program that is compiled. It is used to conven 
atoms and integers into table indices. 

Create a tagged word in 8 by combining the tag T and the machine 
integer in A. This function is the inverse of ord (A, B): In the 
sequence ordCAl,B) 1 val (T,B,A2) the argument A2 will 
receive an identical value to Al if T is the tag of Al. 



add_nt(A,B,V) 
sub_nt(A,B,Vl 
and_nt(A,B,V) 

or_nt(A,B,V) 
xor_nt(A,B,Vl 
not_nt(A,B,Vl 
sll_nt(A,B,V) 
sra_nt(A,B,Vl 

trail_bda(X) 

8. Instruction arguments . 
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These arithmetic insrructions desuucliveJy overwrite lhe tesult regjsta 
All perform operations on full words. return a full word. and neva 
crap. See the previous section on arilhmclic for a description of the 
operations performed. 

Push the address and value of X on the trail stack if the trail condition 
X<r (hbl is satisfied. ll is assumed rhat X is derefacnced. When 
detrailing, the old value of X is restored. This is used to implement 
backtrackablc desrructive assignment. Only one comparison is neces
sary for the· trail check. The state register r ( hb} points to the heap 
location which· was the top of the heap when the most recent choice 
point was created. 

This section defines the syntax of the insauctions· arguments. 

Addressing modes for equal. move and push 

% Effective address for equal: 
ea_e (Var) 
ea_e (VarOffl 

·- a_var(Var). 
·- var_off(VarOff). 

-~ Effective address for move: 
ea_rn(Argl ·- arg(Arg). 
ea_rn(VarOff) ·- var_off(VarOff). 
ea_rn(Tag·H) ·- pointer_tag(Tag), heap_ptr(H). 

% Effective address for push: 
ea_p(Arg) ·- arg_i(Arg). 
ea_p(Tag-H) ·- pointer_tag(Tag), heap_ptr (H) . 
ea p(Tag-(H+D)) ·- pointer_tag(Tag), pos(D), heap_ptr(Hl. 

• 

• 

• 

• 

• 
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heap_ptr(r(h)). 
choice_ptr(r(b)). 

reg (r (I)) 
reg(Tl 

hreg (R) 
hreg (R) 

perm(p{I)) 

Other ~ing modes 

:- int (I) . 

:- user_reg(T). 

:- reg(R). 
:- heap_ptr (R). 

·- natural(!). 

·- int (I) . an_atomic(I) 
an_atomic(T.A) 
an_atomic(T-(F/N)) 

:-·atom(A), atom_tag(T). 
:- atom(F), pos(N), atom_tag(T). 

a_var(Reg) :- reg (Reg) • 
a_var (Perm) ·- perm (Perm) • 

arg(Arg) :- a_ var (Arg) . 
arg (Arg) :- an_atomic (l~rq) • 

var i (Va.r) ·- a _var (Var). -
var i((Var]) ·- a _var (Var). 

arg_i(Arg) :- var_i(Arg). 
arg_i (Arg) :- an_atomic(Arg). 

numreg(Arg) :- req(Arg). 
numreg(Ar«;f) :- int(Arg). 

numarg_i (Arg) ·- var_i(Arg). 
numarg_i(Arg) ·- int (Arg). 

var_off ( {Var)) ·- a_var(Var). 
var_off({Var+I)) :-·a_ var (Var), pos(I). 

Tag syntax 
a_tag(tatm). ,. atom *I 
a_tag(tint). I* integer *I 
a_tag(tneg). I* negative integer *I 
a_tag (tpos) . I* nonnegative integer 
a_tag(tstr). I* structure *I 
a_tag(tlst). I* cons cell *I 
a_tag(tvar). /* variable 

atom_ tag (tatm) . · 

pointer_tag(tstr). 
pointer_tag(tlst). 
pointer_tag(tvar). 

*I 

*I 
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ground(X) 

ground(N, 

e~ne(eql. 

e~ne (nel. 

cond <eq) . /* 
cond (ne) . /* 
cond <lts). /* 
cond<lesl. /* 
cond<gtsl. /* 
cond(gesl. /* 

Conditionals syntax 

Equal */ 
Not equal. *I 
Signed less than */ 
Signed less than or equal */ 
Signed greater than */ 
Signed greater than or equal */ 

L---------------------------~ 

·-

) -

Miscellaneous synLax 
hash_type(atomic). 
hash_type<structure). 

lbl (fail). 
lbl(N/Al ·- atom(N), natural(A). 
lbl{l(N/A,~)) ·- atom(N}, natural(A), int(I). 

nv_flag(nonvar). 
nv_flag(var). 
nv_flag (' '?'). 

% A list of register numbers: 
% (May contain the value 'no' as well) 
regs ( ()I . 
regs((RISet}) :- (int(R); R•no), regs(Set). 

Utility predicates 

nonvar (X), functor(X, _, N), ground(N, X) • 

·- N•:•O. 
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ground(N, X) ·- N•\•0, arg(N,X,A), ground (A), Nl is N-1, ground(Nl,X). 

int(N) :- integer(N). 
natural(N) :- integer(N), N>•O. 
pos (N) ·- integer (N), N>O. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Appendix E 

Extended DCG notation: 
A tool ror applicative programming in Prolog 

l. Introduction 

This appendix describes a preprocessor lhat simplifies purely applicative programming in Prolog. 
The preprocessor generalizes Prolog's Definite Clause Grammar (DCG) nocation to allow programming 
with multiple accumulators. It has been an indispensable tool in the development of the Aquarius Prolog 
compiler. Its use is transparent in versions of Prolog lhat conform to the Edinburgh standard. The prepro
cessor and a u~r manual are available by anonymous ftp to arpa.berkeley.edu. 

It is desirable to program in a purely applicative style, i.e. within the pure logical subset of Prolog. · 
In that case a predicate's meaning depends only on its definition, and not on any outside information. This 
has two important advantages. First, it greatly simplifies verifying correctneSs. Simple inspection is often 
sufficient. Second, since aU information is passed locally, it makes the program more amenable to parallel 
execution. However, in practice the number of arguments of predicates written in this style is large, which 
makes writing and maintaining them difficult. Two ways of getting around this problem are (I) to encapsu
late information in compound structures which are passed in single arguments, and (2) to use global instead 
of local information. Both of these techniques are commonly used in imperative languages such as C. but 
neither is a satisfying way to program in Prolog, for the following reasons: 

• Because Prolog is a single-assignment language, modifying encapsulated information requires a 
time-consuming copy of the entire saucture. Sophisticated optimizations could make this efficient, 
but compilers implementing them do not yet exist. 

• Using global infonnation desuoys the advantages of programming in an appJicative style. such as the 
ease of mathematical analysis and the suitability for parallel execution. 

A third approach with neither of the above disadvantages is extending Prolog to allow an arbitrary number 
of arguments without increasing the size of the source code. The extended Prolog is translated into stan
dard Prolog by a preprocessor. This repon describes an extension 10 ProJog's Definite Clause Grammar 
notation that implements this idea. 

2. Definite Clause Grammar (DCG) notation 

DCG notation was deveJoped as the result of research in natural language parsing and understanding 
[Pereira &. Warren 1980). It allows the specification of a class of auribuled unification grammars with 
semantic actions. These grammars are strictly more powerful than conteJtt-free grammars. Prologs that 
conform to the Edinburgh standard (Clocksin & Mellish 1981] provide a built-in preprocessor that 
translates clauses written in DCG notation into standard Prolog. 

An imponant Prolog programming sechnique is the accumulator (Sterling & Shapiro 1986). The 
DCG notation implements a single implicit accum~dator. For example, the DCG clause: 

ter111 (S) --> factor (A), (+I, factor CBl. ( S is A+BI. 

is lranslated internally into the Prolog clause: 

term(S,Xl,X4) :- factor(A,Xl,X2), X2•(+1X3), factor(B,X3,X41, Sis A+B. 

Each predicate is given two additional arguments. Chaining together these arguments implements the 
accumulator. 
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3. Extending the DCG notation 

The OCG nolation is a concise and clear way to express the use of a single accumulator. However, 
in the development of large Prolog programs I have found it useful to carry more than one accumulat.or. If 
written explicitly, each accumulator requires two additional argumenES, and these arguments must be 
chained together. This requires the invention of many arbitrary variable names, and the chance of intro
ducing errors is large. Modifying or extending this cooe, for exampl.e to add another accumulator. is tedi
ous. 

One way to solve this problem is to extend the DCG nolation. lbe extension described here allows 
for an unlimited number of named accumulators, and handles all the tedium of parameter passing. Each 
accumulator requires a single Prolog fact as its declaration. The bulk of the program ·source does not 
depend on the number of accumulators, so mainLaining and extending it is simplified. For single accumula
tors the nolation defaults to the standard DCG nolation. 

Other extensions to the DCG nolation have been proposed, for example Exuaposition Grammars 
(Pereira 1981] and Definite Clause Translation Grammars (Abramson 1984). The motivation for these 
extensions is natural-language analysis, and they are not directly useful as aids in program construction. 

4. An example 

To illustrate the extended nolation. consider the following Prolog predicate which converts infix 
expressions conLaining identifiers. integers, and addition(+) into machine code for a simple stack machine, 
and also calculates the size of the code: 

expr_code(A+B, Sl S4, Cl, C4) :
expr_cod<;(~ .• 51. 52, Cl, C2), 
expr __ co,-le (B, S2, 53, C2, C3), 
C3-(plusiC4), /• Explicitly accumulate 'plus• •/ 
5~ is 53+1. !• £xplicitly add l to the size */ 

expr_code(I, Sl, 52, Cl, C2) :
atomic (I), 

Cl•(push(I) IC2), 
52 is Sl+l. 

This predicate has two accumulators: the machine code and its size. A sample call is 
expr_code (a+3+b, 0, Size, Code, (J). which returnS the result: 

• 

• 

• 

• 

• 

• 

Size - 5 • 
Code • (push(a),push(3),plus,push(b),plus) 

With DCG nol3tion it is possible to hide the code accumulator, although the size is still calculated expli· 
citJy: 

expr_code(A+B, Sl, 54) --> 
expr_code(A, Sl, S2), 
expr_code(B, S2, S3), 
[plus), /*Accumulate 'plus• in a hidden accumulator*/ 
{54 is 53+1}. /* Explicitly add 1 to the size */ 

expr_code(l, Sl, S2) --> 
{atomic (I)), 

[push (I) I, 
{52 is Sl+l). 

The extended nOlation hides both accumulators: 

• 

• 

• 

• 



expr_code(A+BI -->> 
expr _code (A) , 
expr_code (B), 
[plus):code, /• Accumulate 'plus• in the code accumulator*/ 
[l):size. /*Accumulate 1 in the size accumulator*/ 

expr_code(l) -->> 
{atomic (I)), 

[push(!) ):code, 
[ 1 I: size. 
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The translation of this version is identical to the original definition. The preprocessor needs the following 
declarations: 

acc_info(code, T, Out, ln, (Out•[Tiln)))./• Accumulator declarations*/ 
acc_info (size, T. ln. Out·, (Out is In+T)). 

pred_info(expr_code, 1, (size,code)). /* Predicate declaration */ 

For eaclt accumulator lhis declares the accumulating function, and for each p-cdicate this declares the 
name, arity (number of arguments), and accumulators it uses. 1be order of lhe In and Out arguments 
determines whether accumulation proceeds in lhe forward direction (see :size) or in the reverse direction 
(see code). Choosing the proper direction is imponant if lhe accumulating function requires some of its. 
arguments to be instantiated. 

5. Concluding remarks 

An extension to Prolog's DCG notation that implemems an unlimited number of named accumula
tors was developed to simplify purely applicative Prolog programming. Comments and suggestions for 
improvements are welcome. 
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Extended DCG notation: 
A tool for applicative programming in Proiog 

User Manual 

J. Introduction 

This manual describes a preprocessor for Prolog lhat adds an arbiuary number of arguments to a 
predicate without increasing the size of the source code. The hidden arguments are of two kinds: 

(1) Accumulatcrs. useful for results that are calculated incrementally in many predicates. An accumula
tor expands inro two additional arguments per predicate. 

(2) Passed alguments. used to pass global information 10 many predicates. A passed argument expands 
into a single additional argument per predicate. 

The preprocessor has been tested under C-Prolog and Quintus Prolog. It is being used by the author in pro
gram development, and is believed to be relatively bug-free. However. it is still being refined and 
ext~ded. The most rec,...nt version is available by anonymous ftp to arpa.berkeley.edu or by contacting the 
author. Please let me know if you find any bugs. Comments and suggestions for improvements are wel
come. 

2. Using the preprocessor 

The preprocessor is implemented in the file accumulator. pl. It must be consulted or compiled 
before the programs that use il In Profogs that conform 10 the Edinburgh standard. such as C-Profog or 
Quintus Prolog. the user-defined predicate term_ expansion/2 is called when consulting or compiling 
each clause that is read. With this hook lhe use of lhe preprocessor is nnsparenL 

Clauses 10 be expanded are of the form (Head-->>Body) where Head and Body are the 
head and body of lhe clause. The head is always expanded with all of its hidden arguments. Table I sum
marizes the expansion rules for body goals. In the table. Goal denotes any goal in a clause body. Ace 
denotes an accumulator, Pass denotes a passed argwnent. and Arg denotes either an accumulator or a 
passed argument. Hidden arguments of body goals that are not in the head have default values which can 
be overridden. For compatibility with DCG notation lhe accumulator dcg is available by default. If
then-else is not handled in this version. 

The preprocessor assumes the existence of a database of information about the hidden parameters 
and the predicates to be expanded. Three relatioos are recognized: a declaration for each predicate. each 
accumulator. and each passed argument These relations can be put at lhe begiMing of each file (in which 
case their scope is lhe file) Ot stored in a separate file that is consulted first (in which case their scope is the 
whole program). 

A shon example gives a ftavor of what lhe preprocessor docs: 

\Declare the accumulator •castor•: 
acc_info(castor, _, _, _. truer. 

\ Declare the passed arqument 'pollux': 
pass_info(polluxJ. 

\ Declare three predicates usin9 these hidden arguments: 
pred_info(p, 1, (castor,pollux)). 
pred_info(q, 1, (castor,polluxJ). 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Table I -Expansion rules for the preprocessor 

Body goal Action 

{Goal) Don't expand any hidden arguments of Goal. 

Goal Expand all of the hidden parameters of Goal that are also in the 
head. Those hidden parameters not in the head are given default 
values. 

Goal:L If Goa 1 has no hidden arguments then force the expansion of all 
arguments in L in the order given. If Goa 1 has hidden argu-
ments then expand all of them. using the contents of L to override 
the expansion. L is either a term of the form Ace, 
Ace (Left, Right). Pass, Pass (Value), or a list of such 
terms. When present, the arguments Left, Right, and Value 
override the default values of arguments not in the head. 

List:Acc Accumulate a list of terms in the accumulator Ace. 

List Accumulate a list of terms in the accumulator dcg. 

X/Arg Unify x with the left term for the accumulator or passed argument 
Arg. 

Acc/X Unify X with the right term for accumulator Ace. 

X/Acc/Y Unify x with the left and Y with the right term for the accumula-
tor Ace. 

insert (X, Y) :Ace lnsen the arguments X and Y into the chain implementing the ac-
cumulator Ace. This is useful when the value of lhe accumulator 
changes radically because X and Y may be the arguments of an 
arbitrary relation. 

insert(X,Yl lnsen the arguments X and Y into the chain implementing the ac-
cumulator dcg. This insens the difference list X-Y into the ac-
cumulated list 

pred_info (r, 1, {castor,pollux)). 

\ The program: 
p(Xl -->> Y is X+l, q(Y), r(Y). 

This example declares one accumulator, one passed argument. and three pre.dicates using them. The pro
gram consists of a single clause. The preprocessor is used as follows: (bold-face denotes user input) 

\ cprolog 
C-Prolog version 1.5 
1 ?- ('accumulator.pl'). 
accumulator.pl consulted 9780 bytes 1.7 sec. 

yes 
I ?- ('example.pl'J. 
example.pl consulted 668 bytes 0.25 sec. 

yes 
I ?-

Now the predicate p (Xl has been expanded. We can sec what it looks like with the listing com
mand: 

I ?- liatinq (p) . 

p(X, Sl, S3, P) :- Y is X+l, q(Y, Sl, S2, P), r(Y, S2, 53, P). 

(Variable names have been changed for clarity.) The arguments 51, 52, and 53. which implement the 

.... ··········-·----------------------------------
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accumulator castor, are chained together. The argument P implemenlS lhe passed argument It is 
added as an extra argument to each predicate. 

In object-orienled terminology the declarations of hidden parameters correspond 10 classes with a 
single method defined for each. Declarations of predicates specify the inheritance of l.he predicate from 
multiple clasres, namely each hidden parameter. 

3. Declarations 

3.1. Declaration or the predicates 

Predicates are declared with facts of l.hc following form: 

pred_info(Name, Arity, List) 

The predicate Name/ Arity has the hidd~ parameters given in List. The parameters are added in the 
order given by List and their names must be.atoms. 

3.2. Declaration or the accumulators 

Accumulators are declared with facts in one of two forms. The shon fonn is: 

acc_info(Acc, Term, Left, Right, Joiner) 

The long form is: 

acc_info(Acc, Term, Left, Right, Joiner, LStart, RStart) 

In n:JOSt cases the shon form gives sufficient information. It declares lhe accumulator Ace, which must be 
an atom, along with the accumulating function, Joiner. and ilS argumenlS Term, the tenn 10 be accu
mulated, and Left & Right.the variables used in chaining. 

The long form of ace_ info is useful in more complex programs. It contains two additional argu
menlS, LStart and RStart. that are used to give default starting values for an accumulator occwring 
in a body goal that does not occur in the head. The starting values are given to the Wlused accumulator 10 

ensure that it will execute correctly even though its value is not used. Care is needed to give correct values 
for LStart and RStart. For DCG-Ii.ke list accumulation bolh may remain unbound. 

Two conventions are used for the two variables used in chaining depending on which direction the 
accumulation is done. For forward accumulation. Left is che input and Right is the output For 
reverse accumulation, Right. is the input and Left is the output 

To see how these declarations work, consider the following program: 

\ Example illustrating the difference between 
\ forward and reverse accumulation: 

\ Declare the accumulators: 
acc_info(fwd, T, In, Out, Out•(TIIn)). 
acc_info(rev, T, Out, In, Out•(TIIn)). 

\ Declare the predicates using them: 
pred_info(flist, 1, [fwdJ). 
pred_info(rlist, l, [rev)). 

\ Forward accumulator. 
\ Reverse accumulator. 

\ flist(N, [). List) creates the list [1. 2, ••• , N) 
fl ist <Ol --» I I. 
!list (N) -->> tJ>O, (NJ :fwd, Nl is N-1. !list (Nl). 

\ rlist(N, List, [)) creates the list {N, ... , 2. 1) 
rlist(O) -->> {). 
rlist(Nl -->> N>O, (N):rev, Nl is N-1, rlist(Nl). 

·This defines two accumulators fwd and rev lhat bolh accumulate listS. but in different directions. The 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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joiner of bolh accumulators is the unification Out-= [T 1 In). which adds T 10 the head of the list In 
and creates lhe list Out. In accumulator fwd the output Out is the left argument and the input In is 
the right argument. This builds the list in ascending order. SwiiChing the arguments, as in the accumulator 
rev, builds lhe list in reverse. A sample execution gives these results: 

I ?- flist (10, ( ], List). 

List- (1,2,3,4,5,6,7,8,9,10] 

yes 
I?- rlist(lO, List, ()). 

List • {10,9,8,7,6,5,4,3,2,1) 

yes 
I ?-

If the joining function is not reversible then the accumulator can only be used in one direction. For exam
ple, the accumulator add with declaration: 

ace info(add, I, In, Out, Out is I+In). -. 
It can only be used as a forward accumulator. Attempting 10 use it in reverse results in an error because the . 
argument In of the joiner is uninstantiated. The reason for this is that the predicate is/2 is not pure 
logic: it requires the expression in its right-hand side to be gr"wtd. 

33. Declaration of the passed arguments 

Passed arguments are declared as facts in one of two fonns. The short fonn is: 

pass_info(Pass) 

The long fonn is: 

pass_info(Pass, PStart) 

In most cases the short fonn is sufficienL It declares a passed argument Pass, that must be an atom. The 
long fonn also contains the starting value PStart that is used to give a default value for a passed argu~ 
ment in a body goal that does not occur in the head. Most of the time this siUJation does not occur. 

4. Tips and techniques 
Usually there will be one clau~ of pred_info for each predicate in the program. If the program 

becomes very large, the number of clauses of pred_info grows accordingly and can become difficult 
10 keep consistent. In that case it is useful co remember that a single pred_info clause can summarize 
many facts. For example, the following declaration: 

pred info( , , List). - - -
gives all predicates the hidden parameters in List. This keeps programming simple regardless of lhe 
number of hidden .parameters . 
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Appendix F 

Source code of the C and Prolog benchmarks 

%%%%%%%\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\%%\\\%%\\\\%%\%%%%%\%%%\%%%\ 

!• C version of tak benchmark •/ 

#include <stdio.h> 

int tak(x,y,z) 
int x, y, z; 

il"t al, a2, a3; 
if (x <= y) return z; 
al tak(>:-l,y,zJ; 
a2 = tak(y-l.z,x); 
a3 = tak(z-l,x,y); 
return tak(al,a2,a3); 

main () · 
( 

printf ("\d\n", tak(24, 16, 8)); 

/* Prolog version of tak·benchmark */ 

main :- tak(24,16,8,X), write(X), nl. 

tak(X,Y,Z,A) :-X=< Y, Z =A. 
tak (X, Y, Z, A) :- X > Y, 

Xl is X- 1, tak(Xl,Y,Z,Al), 
Yl is Y- 1, tak(Yl,Z,X,A2), 
Zl is Z - 1, tak(Zl,X,Y,A3), 
tak(A1,A2,A3,A). 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

/* C version of fib benchmark */ 

linclude <stdio.h> 

int fib (Y.) 

int x; 

if (x <• ll return 1; 
return (fib(x-l)+fib(x-2)); 

• 

• 

• 

• 

• 

• 

• 

• 



• 
• 

• 

• 

• 

• 

• 

• 

• 

• 

main() 
( 

printf("%d\n", fib(30)); 
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-------------------------------------------------------------------------------
t• Prolog version of fib benchmark •/ 

main :- fib(30,NJ, write(NJ, nl. 

fib(N,FJ :- N =< 1, F = 1. 
fib(N,F) :- N > 1, 

N1 is N- 1, fib(N1,Fl),. 
N2 is N- 2, fib(N2,F2), 
F is Fl + F2. 

%%\%%%%%%\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.%%%%%\%%%%%%%%%%%%%%%%%%%%%%%%%% 

/* c version of hanoi benchmark */ 

finclude <stdio.h> 

han(n,a,b,c) 
( 

int nl; 

if (n<=OJ return; 
nl = n-1; 
han(n1,a,c,b); 
han(n1,c,b,a); 

main() 
( 

han(20,1,2,3); 

-------------------------------------------------------------------------------
/* Prolog version of hanoi benchmark */ 

main:- han(20,1,2,3) . 

han(N,_,_,_) :- N•<O. 
han(N,A,B,C) :- N>O, 

N1 is N - 1, 
han(Nl,A,C,B), 
han(N1,C,B,A) . 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

/* C version of quicksort benchmark •/ 



linclude <stdio.h> 

int ilist[SO] = 127,74,17,33,94,18,46,83,65, 2, 
32,53,28,85,99,47,28,82, 6,11, 
55,29,39,81,90,37,10, 0,66,51, 
7,21,85,27,31,63,75, 4,95,99, 

11,28,61,74,18,92,40,53,59, 8); 

int list(50}; 

qsort (1, r) 

int 
{ 

1, r; 

int v, t, i, j; 

if (l<r) { 

v=list(l]; i=l; j=r+1; 

do I 
do i++; while (list(i]<v); 
do j--; while (list(j]>v); 
t=list(j); list(j]=list(i]; list(i]~t; 

while (j>i); 
list[i)=list[j); list[j]=list(l); list(l]=t; 

qsort (1, j-ll; 
qsort (j+l, r); 

main() 
{ 

int i, j; 

for(j=O; j<10000; j++) 
for(i=O;i<SO;i++l list(i]=ilist[i]; 
qsort(0,49); 

for(i•O; i<SO; i++) printf("\d ",list[i]); 

printf("\n"); 
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-------------------------------------------------------------------------------
/* Prolog version of quicksort benchmark */ 

main ·- range(l,I,9999), qsort(_), fail. 
main ·- qsort(S), write(S), nl. 

range(L,L,H). 
range(L,I,H) :- L<H, Ll is L+l, range(Ll,I,H). 

qsort(SI :- qsort<(27,74,17,33,94,18,46.83,65, 2, 
32,53,28,85,99,47,28,82, 6,11, 
55,29,39,81,90,37,10, 0,66,51, 
7,21,85,27,31,63,75, 4,95,99, 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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AppendixG 

Source code of the Aquarius Prolog compiler 

Due to the size of the source code, it has not been included here. The complete Aquarius system 
including source code will be disuibuted in Spring 1991. The sow-ce code of the compiJer may aJso be 
obtained from the author. 

Files in the compiler 

File 

accumulator.pl 
accumulator_cleanup.pl 
analyze.pl 
clause_code.pl 
conditions.pl 
compiler.pl 
expression.pl 
factor.pl 
flatten.pl 
inline.pl 
mutex.pl 
peephole.pl 
preamble.pl 
proc_code.pl 
regalloc.pl 
segment.pl 
selection.pl 
standard.pl 
synonym.pl 
tables.pl 
testset.pl 
transform_cut.pl 
unify.pl 
utility. pl 

Description 

Extended DCG preprocessor 
Cleanup file needed for preprocessor 
Dataflow analyzer 
Clause compiler 
Formula manipulation utilities 
Top level of compiler, includes type enrichment 
Compile arithmetic expressions 
Faaoring uansformation 
Aarrening uansformation 
In-line replacement 
Mutual exclusion and implication of formulas 
BAM uansfonnations (except synonym) 
Part of standard form transformation 
Predicate compiler 
Register allocator 
Head-body segmentation and goal reonlering 
Ddaminism extraction 
Scandard form transformation 
Synonym opcimization 
Compilation tables 
List of leSt SClS 

Cut transformation 
Unific;ation compiler 
Utility predicates 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Fast Prolog with an Extended Geueral Purpose Arcbitecture 
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Computer Science Division 
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ABSTRACT 

JOIJII M. PtndletorJ 

Harvest VLSI Design Caner, Inc. 

Most Prolog machines ~ been based on speciiuzcd II'Chitec· 
tures. Our aoaJ is to swt widl a general purpose an:hileQUre and 
determine a minimal set or extensions for high perform~~~ee Plolog 
execution. We have developed both lhe architeCture and opdmizin& 
compiler abnultlncously, drawinJ on results or previous implemen
Wions. We find that most Prolog specific opendons can be done 
satisfactorily in software: llowe-ler. th= is a cruc:ial set of fCIIUIU 
thallhc architec:twe must support to 8Chieve lhc best Proioa perfor
mance. The emphasis of this paper Is on our archiiCCturc IDd 
instJuctjon set. The costs and benefits of lhc special architccaual 
features and instructions are analyzed. Simulated performance 
results are presemcd and indicate a peak compiled Proia& perfor· 
manc:e of 3.68 miWon logieaJ inferences per second. 

1. Introduction 
Logic programming in general and Prolog (I] in particular 

have become popular for rapid software proiOt)'pin& nacural 
language cransla1ion. and expert system pro&J11DDlin&· Prolog's use 
of dynamic typina. bacbrxkina. and UDificadon plac:e heavy CUDpU· 

Wional demands on general purpose computers. In an ll'tempt to 
ICbieve ever higher perfOIIDIDCe, several special purpose ucbilec
tures have been proposed and builL Earty Prolog an:bilec:lures (2] 
were microcoded inrerpreten. Because no compilldon was done, 
performance WIS dislppolndna. Higher performance processoiS (3-
6) have siDcc been based on 1be WIJ'Jal Abarlct Macbine (W AM) 
(7). 1beir iDstrucdon lets -.- derived 6am die W AM 10 IIJIIPOil 
execution of Prolog propams. 1bele processors are special pwpose. 
mlc:rocoded c:natnes which depend on puallel aec:udon of opera
dons wtlhin ach relldvely come-palaecl iDslnlc:don for bi&h per
formmce. IDidal clellps lmplemelad onl)' die IDIInlcdons lhal 
supported lhe W AM and depended on a boll proceaor lor non
w AM CCIIDP'fldoas. To support Praloa built-las (prlmld\le Plolol 
opendons provided by die l)'ltall) llld .,.. 1,(), .-r clellpl 
Incorporate pnenl parpoee b4auedonl to mlnfm!v dependence Oil 
a boiL Alt.emldvel)', die ue of allmple. DDD-W AM iDIInlcdon let 
beaer IUpporll campllu opdmiutlort SevaaliUCb lpedll pu11101e 

reduced IIISirUCdon - llddfec1urel bave been JII'OPOICd fbr Joak: 
propammin& (8-11]. 1bele an:hitleclara llldude primidva wbidl 
support die use of ~aged dala. poiDier derefereDce. IDd aaald-waJ 
lnDdlea. Our bypocbelis is dill pu¥idiDa IUIIIJOil for bolb compiJcr 
opdaa'udm IIIII Jow-Jcvel opeadoal can bell be eocnmplllhed by 
ataM'q • IIIDple paerll purpclle lldlitec:llft ., ..., .... 
wldlout CIIIDPftllllill die ....... pulpOIC perfonDance. 

'l1le paftlaDanl:e IIDJII0¥8DII* of _. ,....a paiJIOI8 
II'Chi~eC~U~a over n1der II'Chitecaan~~ Clft be need 10 -.rc::b ID 
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University of Hawaii, Manoa 

which boch lhe compiler and lldlitec:IW'e were developed sogelhcr 
(12-14]. Architectural features lbat ClnDOt be Uled by lhe CDIIJPiler 
or which cannot demonstnae performll1Cie improvemelll are not 
included. Likewise, architeclllt'll features are added which support 
often used pimi1ive operations. We have ldopCed Ibis approach 
from lhe beginniDg of our projec:L 

It bas been conjec:luftd lbat commercial spec:ial JJUilX* sym
bolic processing architectures are doomed beciUX 1bey are not com-' 
modity itemS, and amequendy. economics prevellllhem from stay
inl on lhc leading edJC of implemmlllion leebnology. However. if 
die architec:nlrll fealures necessary ., improve ~bolic perfor
mance are modest and do not interfere widl the pqJ purpose 
IICbitec:ture. then u IDCft chip area becomes available. l'u1IR imple
mcawions of pueral purpose pocesso~~ can deliver high perfor
mll1Cie symboUc c::ompulin& in aiiiDdald product. We bope dW our 
wort is a step IOwards Ibis result. 

'Jbis piper praents lhe desip of a processor baed on lhe 
Bertdey Absuact Machine (BAM) arc:hifec:llft and modvlla iu 
deSign wilh lhe results of our pdiminaty IIUdies. We 11m prelellla 
brief discussion of tbe opdmizin& compiler, a ~t lllllysis of 
tbc archirec:auaJ featun:l. IIIII die sjmullft!d performance. Familiar· 
it)' widl tbe W AM is bdpful. Secdoo 2 IUIIIIDirizes lhe proc:cssor 
ucbitec:ture and budware implciDealldcin. Sec:don 3 presents lhe 
iDslnlction let aloa& wilb tbe resu1ls of our IIUdia wbk:b mociv""C' 
iDslnlction ldec:don. 'l1le compllldaa of Prolol prognms is 
described in leCdon 4, IIIII iD leCiion 5 we prese:Dl a CXJStlleaefit 
IDil7lil oldie spec:ialfealures llld iDIIruclions. Sec:lion 6 givls. di= 
performance rcsuJu. 'l1le &nalleCiion concludes with a IWIIIIliiY or 
our reaulls. 

2. ......... Arcllltedan adllaplemeladoa 
'l1le BAM pmceaor Ia a paerar PJIPC*.IIDP c:bip, pipelined 

poceaor wldl ell!llflons to IUPPOR Ploloa euc:udoa (Fipre 1). 
Bolb dala and iDIInacdall WOlds are 32 bill. and 11101t iniUuclions 
eucute Ia allqlc qcle. 'l1le aum ......_ forPl'olol .e cq IIWII
puJIIioD (iDiepUed ba arldiDedc: and die ..,.,. .,...), • 
double-word dala pon to IDCIIDOIJ, ipeCial bnllcb oncq auppon.llld 
le¥CI'II iDstrUc::daal to IUppOft our euc:udlxiiDOdel for Prolog. 

'l1le lldlitec:lln Ia p.-ed iD delal1 11aa1 wltb our mocm
liaal iD die IUblecdOill below. RelliDiDI • COle ..... purpose 
en:bilee:IIR imP!*~ CXIIIIUiillll Clll lbe symbolic: exlleMiCIIls For 
eumple. die procraor lboaJd be allle 10 biDdle ...... data ..... 
~~Dale eaddcl, wllb DO ipedllln:IIIDed for lbe 111L We diiCUII die 
..allc:ldonl or IIIII Clll die word faaDIIIDII die YinaaliDeiDOI)' 111-
-.. 'l'beD we paem lbe •dliiDclule'a tqilller IIIUC:llft llld 
IDeiDOI7 illlaface. FIDIDy, we .,._. aae delli1s or lhe lmple
IIICIUdon IIUdl • the pipeline llniC:IIIte IDil our mechanism for 
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Figure 1 
Block Diagram of the BAM Processor 

multiple-cycle instnactions. 

1.1. Word Format 

IS 
-'. 

Prolog docs not ~ire the user to specify the rype or a data 
item. This requires that run time type checking be implemented by 
adding a tag to each dala item to encode the type or that item. Many 
Prolog processors handle the tag and value fidds separately. This 
approach does not satisfy our goal of integrating tagging into a gen
eral pwposc architecture. Instead, we usc a standard 32-bit word 
length and place the tag in the most significant four bits or the word. 
Arithmetic computadons and addresses, however, use the entire 32-
bit word, so general purpose computations are not affecled by 
Prolog's use of tags. Tag values fixed by the hardware are those for 
non-negative Integers (0000) and negative integers (1 1 1 1 ). This 
selection of tagS for Integers is a common u:chnique used by Usp 
implementations on general purpose madlines (15). We have 11so 
fixed the tag value for variable poirurs (tvar • 0001) to increase the 
DUmber of bits available for branch disp1accblents in several Prolog 
specific instructions. AU other tag values are software defined. Our 
Prolog implemenwion uses rags limDar 10 diose of the W AM. 

2.1. Secmented VIrtual Addreaes 
One conscquenc:e or using both die 111 and value u an addJas 

is that each data type is mapped U.O Its own area of vinual memory. 
For Prolog's execution model one wishes to place seven1 data typeS 
iD die same ltaCk or heap. One possible solution is ID 2aslt (zero) 
the tag bits or the address before us1n1 it to ICCeiS memory. This 
IOludon Is not udsfiCIDI)' wben applied ID epplielllcms not 1llln& 
tap (for example. C propams). To avol4 dill difllc:ulty, • bave 
lnlroduced a scament table wblch mipS tbe most signlliCIDl six bits 
of Ill address 10 a twelve-bit value (Fipre l). AD ldcl.: before 
mapping Is refemd 10 u a lbon vitluallddress (SVA), and the 38-
blt ldclress raullina from die mappin& Is referred to • atoaa vinua1 
address (L VA). 'Ibis IDCIDOt)' ICpaenllliOG ICbeiDe Is limilar 10 lbe 
leiiDenwiOil used in the 801 processor (16). "'11e 801 tiiCI ...... 
tadOG to eDend die vlnua1 address lpiCC: boweWI'. our primary 
modvldoa for usin& IC,....don Is ID allow muldple dala typel to 
be mapped 1D tbe ume L VA leplCI1L Mlppin& twO blls iD llddidoll 
to die caa bl1l allowllbe ale or~ memo~)' - for a pwn 

sbon vsnua1 add!ess 

26 J 
• •p!ICIII 

' I . 
12 26 J 

loog virtual adcbess 

Figurt 2 
Segmentation of Virtual Address Space 

data type. each area using a different mapping. At one extlmle all 
data types can be mapped to the same LV A segment (this is 
equivalent to masking the most significant six address bits). At the 
other extreme, all SV A segments can be mapped to distinct L v A 
segmerus. In our c:wrcru implementation of Prolog. variable, list, 
ll1d suuc:ture poinlm are mapped to the same LV A segmeza, 
whereas the environment/choice point stack. the b'ail stack. and the 
symbol table are mapped to scparase segments. 

Another use or segmentation is for sbaring data in a multipro
cessor system. In this case the 38-bit LV A is used u the global vir
tual address ll1d sharing of data by cooperating processes is dGine ll 
the segment leveL • 

2.3. Memory Interface 
1bc high memory bandwidth requirement of Prolog dictates 

separate instruction and data buses (Figure 1 ). In addition, we have 
ellpanded the data bus to double-word width. A double-word data 
bus is motivated by Carlson's study (17) of the uchirecnual require
merus of high performance Prolog processors. Carlson axnpiled 
Prolog proarams into basic register ttansfer level operarions and then 
Qlmpactcd them into more complex instNctions while enforcing 
microarcbireawal c:onsaaints. His results show lha1 the best 
performanc:e/cost trldeoff occurs wben the udlil.ec:tute provides a 
double-word pon 10 data memory. 

A double-WOld memory pon improves lhc performance of term 
c::reatioo llld speeds block uansrers to llld from cnvironmerus and 
choice poiDcs. Some previous Prolog poc:esson suppon fast choice 
point creadoD llld restoration tllroulh the use of specialized buffers 
or sblldow Jqislers (3, 9). Such hardware IOIUiions are COSily llld do 
DOt lit our coal or mumlninl a aeneni pupole an:biiEC:biJ'C. 
lnlrcad. we rely on doubk-word memory opemioas and on compiler 
oplimization to minlmiu sballow lllclarackina (18). 

Our processor desip Is li&bdY coupled widllhe c:acbe design. 
We decided qainst co-dlip c:aches since. iD our cue. it is more 
lppi'Opriate to use processor chip area for II'Cbiteaural fellures and 
use fasl. dense Italic RAM dips for Jarae cacbes. To speed c:acbe 
ICCeSSeS. bowever, procecdoa violalion llld cnnsiS~CDCy diecks and 
..sellas tag comparison are done on-o;:bip. More details lbout the 
c:ac:be lnlerfiCe Ire given iD (19]. 

2.4. ... Architecture 

AD pi'OgiiiDIDCr vtslbk poc:eaor ftllSlellare accessed u twO 
1e11 of 32 JeiiSien: IIJe aeoeraJ J1WP01C 1q1srer ICl and the special 
~glsler ICl. 1be aenen1 pupose reglstas Ire UICd for procedure 
~ pusina, temporuy ltorl&e. IDd u a:t poinrcrs. The 
ooly acnenl pwpose ~gistcr wl1b a preaaiped a1e is the condDua-
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tion poinler {r31). This register is implicitly set to the return address 
by the call instrUction. All other uses or lhe general purpose regis
ters are defined by software convention. 

The special registers provide access to the processor SWUs 
word (PSW). program counter (PC), panial product/quotient register 
(PQ), segment mapping table, cache interface configuration registers, 
and a set of fifteen extra registers (s0-sl4). 

2.5. Implementation Details 
The execution pipeline consists or five stages (Figure 3). All 

instructions which modify registers or memory do so in lhe last pipe
line stage. Bypassing forwards available results of calculations to 
instructions following in lhe pipeline. Hanlware inlcrlocks are pro
vided for both load and store delays. If data from a load instruction 
is used by the next instruction, lhen the next instruction is delayed by 
a cycle. Also, memory instructions immediately following a store 
are delayed by a cycle. 

I illsavctioo felCh 
R te~'ler read 
A ALU 
M memory read 
W register/memory write 

Figure3 
BAM Processor Executioo Pipeline 

All instructions are 32 bits with a 6-bit opc:ode and fixed source 
register format. Instruction execution is controlled by Ill opcode 
pipeline which operates in paralld with the execution pipeline. Each 
stage or the opcode pipe decodes the opcode associated with that 
stage of lhe execution pipeline. Multi-cycle instructions and condi
tional inslNctions are implemented usin& "internal opcodes" [20]. 
The internal opcodes of multi-cycle instructions are feu:hed from a 
PLA and inserted into the opcode pipeline. When Ill iJUema1 opcode 
is inserted. no instruction is fetched during that cycle. Thus a single 
external opcode can invoke a sequence or iJUema1 opc:odes to pro
vide for often used complex operations (for example, pointer dere
ferencing). Internal opc:ode insertion is also used fc:- atomic syn
chronization operations, for pipeline interlock delays, and for ttap 
and interrupt handling. Conditional execution is implemented by 
conditionally replacing Ill opc:ode in the opc:ode pipe with Ill internal 
opcode. Our design uses SS extmlal opc:odes and 24 intelbal 
opcodes: of the internal opcodes, nine are rdared to nps (trap, 1ft), 
13 implement multi-cycle insbucdons (drtf, Itt, n4, pushd, IM, 
jmpr ), and two implement conditional operation iDslrucdons (IUii, 
pusht). 

"Fast tag logic" Is used to implement lingle-cyc:le tag
compare-llld-branch insbuctions. The fast tag logic consists or Ill 
exua register file which duplicates lhe tag portion of die general pur
pose register file and special tag comparison logic which aDows 
quick tag comparison and branch. Previous Prolog processors [3] 
bave also duplicared tag bits to acceJcrue bnncllina CXI Cl& value. 

1be pneral pul"ppOe register 6Je bas awo IUd pons (one 
lingle-word and one double-word) and awo write pons (bodlsiJiale
word). This pon lb'Uc:ture provides die blndwid1h requi~ by 
sin&Je-cycle double-word memory ac:ceaes widlout pady increas
inl the compleltity or the register me design. 

3. Wtrucdon Set 

In dlis section we praem die BAM inlaucdon et. 1be 

instructions are divided iruo three groups: general purpose, Prolog 
inspired general purpose, and Prolog specific. The general purpose 
instructions are those which can be found in typical processors. The 
Prolog inspired instructions are those which are not ofren present in 
general purpose processors, but which Clll sti.ll be used for general 
computation. The remaining insbuctions are tailored specifically 10 
the requirements ofProlog execution. 

The general purpose instructions are summuized in Table 1. It 
is important 10 point out that all arithmetic and logic operations 
operate on the full 32-bit word. Also, conditional branches consist 
or separate compare and branch instructions. Compare instructions 
set or clear the TF (true-false) condition code bit. and the branch 
instructions take the bnnch when TF is set Branches. jumps, and 
caDs are delayed by one instruction. The instruction in a branch 
delay slot can always be executed (bt), mnulled (turned iruo a nop) 
if the branch is taken (buu ), or mnulled if lhe branch is not taken 
(bran). Bolh directions of annulling are included because Prolog 
often favors mnulling when lhe branch is taken (for example. 
branching out or straight-line code 10 the unification failure routine), 
whereas conditional branches to the 10p or a loop (common in pro
cedural languages) favor annulling when the branch is not taken 

The remainder of this section motivates and presents our exren
sions 10 the general purpose instruction set A major inBuence on the 
design of these extensions was the sfmuiWleOUS development of an 
optimizing Prolog compiler. The abstract machine used by the com
piler was initially designed using a top-down approach (21]. We 
assumed a set or data structures similat 10 those used by the w AM. 
Knowledge of possible compiler Optimizations was ~ied to the 
semantics or Prolog to decompose Prolog's p:oera1 operations into 
their components. 1bese components, the absuact instruction set. 
are the instructions and addressiJI& modes required to compile Prolog 
operations into efficient code. Efficient translation or absuact 
machine instructions into lhe arcbiteciUral instruction set was a 
prime intJuencc in the first pass of the instruction ser design. 

In addition to our studies of abstract instruction sets. we inves
tigated the microarchitectural requirements for high performance 
Prolog (17] and gathered execution statistics for the VLSI-PLM, a 
microcoded implemenwion of the WAM [4]. These investigations 
pointed out those microan:hitec:tural features that would give the 
greatest performance gains and the Prolog operations that most need 
instruction set suppon. 

11. Proloa Inspired General Purpo~e IDitructlons 
Prolog inspired general purpose IDstrucdons are thole instruc

tions which suppon Prolog and which also may be useful in die 
implementation or other languages (Table 2). These Instructions 
include load and store of immediares, lingle-cycle double-word load 
and store, and push and pop memory opelllions. 

Jmmediares CID be loaded. stored, or used iD a comparison (ldi, 
ni, still, cmpi ). The immcdiares are tag&ed and are created by sip
extending a 12 or 17-bit immediare and replacina the four most 
lipificaru bits widlm immcdiare tq. Load immr4ilte (ldi) Is used 
for creating inle&en and atoms. Store immediate (sri) Is Ill opcimi
zation of a ldi, st leqUeDCie and is used to bind an atom widl a vari
lble that Is known ll compile time to be unbcx."" 

Double-word memory opeaadous (ldd. llll. ndc, pushd. 
pusluk) are mocivared by Prolog's 11rae memory bandwidth ftlqUire
ments. A double-word store or pusb Is IIIDP-qde only If die 
ICIW'Cie reaJsters form a COUCCU1ive. ewnlodd register pair, becaase 
only three rqisrers, awo of wbicb must be ldjaccN. can be read per 
cycle from the register me. Although IIDil-cOOieCUti dou'lle store 
and push (std. pushd) are two-cycle lnsUucdons. dlls Is offset by the 



InsUuction Doe rands Action Cvcles 
ld, ldl r(i). disp16.1(l) J(k) +- M(r(i)+disp16] (lill disU,IIisJIIIIM to t:~~elw) 
ldx r(i), r(j). J(k) r(k) +- M(r(i)+r(J)] 

II, Sill r(i), r(k), disp16 M(r(k)+displ6] +- r(i) (sra distilaruislttlblt 1D t:~~elw) 

stll r(i), r(k), r(l) M(r(k)+r(l)] +- r(i) 

w r(i), displ6,1(l) r(k) +- M(r(i)+clispl6]; M[r(i)+clispl6] +-·I 

add. sub. llld, or, xor r(i), r(J). r(k) r(k) ... r(i) op r(j) 
lldd32,sub32 r(i), r(j), r(k) r(k) +- r(i) op r(j) (trap Olllilfttd 32·bit INtl'jtow} 
lddi, andi. ori, xori r(i}. imml6, r(k} r(k) ... r(i} op imm 16 
sll,sra,srl r(i}, r(j). r(k) r(k) ... r(i) op r(j)<4:0> 
slli, srai. srli r(i), immS. r(k) r(k} +- r(i} op immS<4:0> 
divs, moys r(i), r(i). r(k) (r(k), PQ, 'IF) ... op(r(i), r(J), PQ, 'IF) 

cmp cond, r(i), r(J) TF +- (r(i) cond r(j}) 
bt lddr26 if ('IF) PC<2S:O> +- addl26 
bran lddr26 if ('IF) PC<2S:O> +- addl26; else 11111ul next instruction 
blat lddr26 if ('IF) { PC<2S:O> +- 8ddr26; 11111ul next inslruclion ) 
jmp lddr26 PC<2S:O> +-lddr26 
jmpr r(i), disp16 PC+- r(i) + disp16 
caU lddr26 1(31) +-PC+ I: PC<2S:O> +-lddr26 

rd s(i), r(k) r(k) ... s(i) 
wr r(i), s(k) s(k)+-r(i) 
uap immS save PCs llld PSW; set supetvisorbit; PC+- 2•(32+immS<4:0>) 
rfl restore saved PSW; fer.ch at saved PCs 

Table I 
General Purpose Instructions 

Tables 1-3 SIIIIUIIarize lhe BAM prcx:c:ssor insuuc:tion tel. divided inro dvee aroups: pnen1 purpose. Prolog-inspired gen
eral purpose, IIIII Prolog specific. The first two columns give lhe instruclion mnemaaic llld operands. The lhird column 
gives die instruction's register 11'111Sf'er clesaiption. R(i) delloles general purpose regislt:r i; s(i) dcnoces special register i; 
disp 11 is a sign-extended 11-bit displacement; imm 11 is a sign-exlalded 11-bit immediale; lddr26 is a 2&bit segment offset 
off1_8 IIIII off'2_8 are zero-extended 8-bit displacements; 111 is a four-bit immediale 111 value; llld c:cnd is one of twenty 
comparison conditions. M(x] is lhe memory localion 11 address x. Tq"Yilue specifies die 111 inJerlion operation. Tvar 
represents lhe value of lhe tmbound variable 11g (0001). Cycle counts assume no pipelille stalls clue to load or store delays. 
All branch IIIII jump insauc:tions are delayed. IIIII the following insauction is executed UDless it is annulled. The cycle count 
of drq depends on lhe number of memory operations ( 1) performed. 
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absence of a pipeline stall wben lhey are immedillely followed by a 
memory operation. 

and uninidalizcd variables IDd dercrmine ar compile rime wben des
trucdve assignment Is safe). 

Unsigned maximum (umaz) Is provided to simplify lhe 
management of the environnent and choice point staCk pointers. 

• 

• 

• 

• 

• 

• 
Push instrucdons are iDcluded to suppon compound term au

don. Using branch-and·bound search techniques. we determined an 
optimal set of single-cycle instructions for crcadon of all possible 
two and three-word sauClUres. 1bis set of instrUctions is opcimal in 
d1e sense that, for our microarchitee:lure, each stniCtlft is created in 
d1e smallest number of cycles. 1be resulting "compound term au
don instruction set'' favors d1e idiom of placing two words of data in 
~gisters and then movma them to memory usin8 • double-word 
push. Push operalions also allow the fill of the cache line from 
memory to be atipped if a push lncun a c:acbe miss lnd also ~fers to 
d1e first word or lhe cache line [ t9]. 'Ibis opdmizadon bas been used 
in a previous Prolog desian [5]. 1be push insbucdons allow lhe 
amount of d1e inc~m~ent to be ipedlied, and any pneral purpose 
~liSter can be tiled • a aact poillcr. 

Because these stacks are lntennixed, allocation occurs atlhe max· • 
imum of lhe two stack pointer values. 

Proto& requi~a 1hat variable aai&lllllenl be undone on back· 
lrlekJn&. 'Ibis UllbiDdinl of variables is fmplemenfed by ~rdin& 
variable addlalel on a ''Vail" lUCk. 1be orl&inll WAM model 
~ ICVeral pointer c:ompuilonJ to detetmine If llliling is neces
sary. Our implemcnwion lalricts variables to the &lobal stack 
(wblcb reduces lhe IWIIlber of comparisons 10 cne) and uses a c:om
pue iDitruc:don foUowed by a c:oadldonal push Cp111ht ). 1be pop 
iDIInlc:don II Uled durin& bldaractJn& to =eve variable addJases 
from die tnilllldt. Tbe compiler c:m reduce die amount of ll'lilinl 
IDd derrafliD& duuu&IJ dJe ue of 8ow IIJIJ)'IIIID determine wben 
UDinidaUzed variables [22] can be used (our use of UDIJiidallzed vari· 
abla is di.tfenm fJom [22) -we tile die AIDe ... for bodl iDitiaUz.ed 

3.2. ProJoa SpecUic IDstructJon Set Support 

Proloa ipedfic inltNcdons are diose iDslruclions which are 
tailored ll*flically for eftidenl execution of Prolog (Table 3). 
1bese instrucdons suppon taged pointer creadon. two and three· 

--

way bnncb on fll, pointer d=faalcin&, and unification of ltoiDS. e 
3~1. Tqaed Data Support 

Poinler =arion is acc:omplisbed by lhe lold effective address 
(kiJ) insuucdon wbicb calculates ID address IDd d1en replaces lhe 
most sianifi~ four bill with an immediate fll. 11is insbuclion is 
used ID create poinrcn ID UDbound variables and compound terms 
~and~~ • 

Type dlec:ldDa built-Ins are 1upponect with IIJI&Ie-cycle 
compue-md·bnzx:b.<ln·ta& iDsaucdonl (btgeq and btg~~e ). 1bese 
IDsuucdons alao allow tbe compiler to leplace lballow blctlractin8 
with a caadltional bnDcb on aniiJUIDCIII'• tq. 

Proto& IDowl unbouDd variables to be bound togeUief. Tbe 
resuldni refermce chain musa be derelermcect before 111blequenl 
variable bindin&- W AM lnstrucdons always dereference lbeir e 
operands. often JaUldD& m supertuous ~ Rowncr. our 

• 



Insuuction 

ldi 
sti 
Slid 
an pi 

ldd 

Sid 

Side 

push 
pusht 
pushd 

pusbdc 

_j)Op 

umin,umax 

Insuuction 
lea 

blieq.btpe 

dref 

ldd28, sub28, 
IDCI28, 0128, Kor28 
cmp28 
uni 

swb 

swt 

Ooerands Action 

Ill· imm17, r(k) r(k) +- ll&·ilnm17 
caa. imm17, r(k) M[r(k)] +- 111·imml1 
caa. imm12. r(k). clispS M[r(k)+dispSJ +- ll&.imm12 
cond.l(i).&aa. imm12 1F +- (l(i) cond taa•imm12) 
l(i), disp11. r(k),l(l) r(k) +- M[r(i)+disp11]; (r(i)+displl even) 

1(1) +- M[l(i)+disp11+1] 
r(i), r(J). r(k). clisp11 M[r(k)+displl] +- r(i); (rtl:)+displl even) 

M[r(k)+disp11+1) +- r(j) 
r(i), r(k). clisp16 M[r(k)+disp16] +- r(i); (i 111111 rti:J+displ6 even) 

M[r(k)+displ6+1] +- r(i+1) 
l(i). r(k). clispl6 M[r(k)) +- r(i); r(k) +- r(k) + clispl6 
r(i). r(k). clisp16 if (IF) [ M[r(k)] +- r(i); r(k) +- r(k) + disp16 ) 
r(i), r(J). r(k), clisp11 M[r(k)] +- r(i); M[r(k}+1) +- r(j); (r(l:) even) 

r(k) +- r(k) + disp 11 
r(i), r(k). dlsp16 M[r(k)) +- r(i); M[r(k)+1) +- r(i+1); (i 111111 rti:J ewn) 

r(i), disp16, r(k) 
r(k) +- r(k) + disp16 
r(k) +- M[r(i}-di$p16]; r(i) +- r(i)- clisD16 

r(i), r{J). r(k) r(kl +- IDISigned_minhnu(r(i),l(j)) 

Table2 
Plolog Inspi~ Oeucral Pwpose IDsuuctlons 

ODe rands 
... r(i), clisp12, r(k) 

caa. r(i), clispl6 

r(i) 

r(i). r(j)i~) 
cond. r(i. 

II&. imm 17' r(i) 

r(i), r(j). om_s, ora_s 

r(i),cql, lq2, 
oftl_B, oftl_B 

Action 
r(k) +- ... (r(i)+disp12) 

if (r(i)<31 :28> -Itt II&) 
(PC+- PC+ dispi6: lftiiUI nut ins1ruc:tioa ) 

if(r(i)<31:28> • tvar) (l•IUimberoflftDN)ry nfs) 
do ( tmp +- r(i); r(i) +- M(r(i)) ) 
until ((.{i)<31 :28> tt tvlr} or (tmll • r(i})) 

r(k) +- r(i) op r(J") (trap DIIIIDII-ilflepr IIJIS) 
1F +- (r0l COIICfici)) (trap DIIIIDII-illle•er tim) 
if (r(i)<31:28>. tvar> 1 Mll(i)J .... 111·imm17: n: .... o 1 
else if (l(i) ·lll·imm 17) 1F +- 0; else 1F +- 1 

if ((r(i)<31:28> • tvar) aDd (r(j)<31:28> "tvar)) 
PC+- PC+ offl_B: 

else if ((r(i)<31:28>- tvlr) llld (r(j)<31:28>. Mr)) 
( PC +- PC + ofll_B; 11111111 Dat iDIIruclion ) 

elle 11111uJ nat insauctioa 
if (r(i)<31:28> •lq1) (fiJI I or 11112 is tvar) 

PC+- PC+ om_B; 
eJse if (r(i)<31:28> •11&2) 

( PC +- PC + ofi2_B; IIIIIUI Dat iDslruc1ioa ) 
elle 11111uJ aext illslruction 

Table3 
froloa IDsuuctlons 

3.2.2.. Unlflcadon Support 

Cvcles 
1 
1 
1 
1 

1 

2 

1 

1 
1 
2 

1 

1 

1 

CYcles 
I 
1 

laO: 1 
1..0: 2+21 

1 
1 

1 

1 

1 

opdmlziDa compiler keeps tndt of wbicb varilbla a deftfmnced 
and aenerates e~tplicit derefe~aX~e~ only wben neceaary. Imple
menting dereference u a liqJe lnsauctlon reduces lladc code size 
and aDows dereference memory leads to be pipeUned, taultlna In a 
d&JIIer loop Chan &he equivaled aaembly code [9, 10]. We use &he 
ame tag value for both unbound variables llld reference poiDierl 
(Wlbound vuiables are ~ refereadal). Tbe deld'erence inllnlcdon 
(drtf) is implemem.ed u &ICIQIIGICe of lllrerDal opc:odeL 

Unification is one of lhe primary opel'llioas of Plolog; it is 
used for argument passina, IIIUCblre creation, lbUClUI'e decomposi
don, and paaem m•tcbina~ AltbouJh general aniJlcadon is a com-

All of &he basic uithmellc IDd comp~re lllllniCdons (tldd, IIIII, 
twl, or, 1liW, cmp) bave a vendon wbicb aapa on 28-blt overflow. 
1bele IDiaucdaas opeme on &he fuD 32-bit WOld. bul 28-bit 
overflow oc:cura If diller of &he sources or die result do not bave. 
lmepr tap (0000 or 1111). Tbe crap on 28-llk owrtow a11ow1 Plo
lol uilbmedc apendons to be complied to flit. life code wblcb 
avoids eltD"a iniUuc:dona for taa overflow c:llec:tinl- If a 28-bit 
overflow does occur, lhe crap roudne canllipallll ovatow enar or 
eaaven die dMa 1n1o 111 al&emadve • .,.....ar-on. 

. plex algorithm. if one is atvm lnformadoa about lhe arpmenu 
being unified, die pnenl algoridlm can be pady limpllfied. 1bis 
is one of die advllll.qes of die w AM IDstnlc:don let over an imer
prerer. Our compiler lakes tbis priDdple funher llld propqates 
IDformadoniD simplify unific:adon 11 much 11 poalble. 

ADalysis of die patmidva aeceaaay to 1U11P0ft aniJlcadon of a 
Prolog vuiable wtda 111 IIGiD (21] modvala lhe linlle-qde unify
lmmediMe IDiaucdon (lUll) wbicb biDdllbe - to lbe variable if 
the vuiable is unboaDd., IIIII Olbea wile lela diem for eqaality. 

UaiflcadOil of ..... Vlriable wldl • COIIIpOIIDd lleiiD abo 
belleftta flam ipedaiiUppOI'L Analylds of the prtmidvea aeceaary 
to support unillcadon of a Proloi variable widl a lilt or IINCIUre [21] 

.--



Proi!Ta!TI Argument Tvne C%) Cost ( cvcles) 

get_list variable lisl other IWl two-way 

prover 18.7 so.s 0.8 1.20 1.40 
mera_qson 42.1 42.0 16.0 I.S8 2.32 
simple_analyzer 24.4 67.4 8.3 1.33 1.74 
chat _parser u 84.8 6.4 us 1.37 
avera2e 23.5 68.7 7.9 1.32 1.71 

get_struclllre variable structure other swt cwo-way 
prover "1h.7 73.3 0.0 1.27 1.53 
mera_qson 37.6 62.4 0.0 1.38 1.75 
simple_analyzer 13.5 86.5 0.0 1.14 1.27 
chat _parser 44.0 :i2.5 3.5 1.48 1.98 
avera2e 30.4 68.7 0.9 1.31 1.64 

Table4 
W AM Variable/Compound Term Unification Statistics 

This table gives die percent occurrence of lbe argwnent type for 
variable/compound tenn unification in lbe W AM (Bet_lisl and get_SII'UC!lllre 
instructions). Columns 2-4 give die percent occurrence or variable, 
list/Sinlclllre, and Olher types. The swt column gives lbe average time to 
execu1e the three-way branch assuming that lbe execution times for the 
three directions, (variable. li.WsauctlR, other), 1re (2, 1, 2) cycles respec
tively. Likewise, the two-way column assumes that die dwe-way brancb is 
simulaled using two two-way branches and that the execution limea far the 
three directions~ (3, l, 4). The swistics for tables 4 and 5 were gathered 
using the VLSI-PLM [4] microarchit«U~~e simulalor. 

motivates the switch-tag instruction (swt ), a three-way branch based 
on the tag of one register. One direction of the branch i·; talcen if the 
tag is an unbound variable; a second direction is w.en if the tag 
matches a specified immediate tag (usually list or SD'UetW'e); and a 
third direction is talcen for all other tags. 1be three-way branch 
could be implemented using two two-way branches, however, W AM 
execution statistics (Table 4) show that there is a small but 
significant performance advantage 10 the three-way branch. 

The LOW RISC processor [8) provides a S-way branch and the 
Cannel-2 processor [10) provides a 10-way branch based on the tag 
of a single regiSter. W AM execution statistics show that such gen
erality is unnecessary for unification of a Prolog variable with a com
pound tenn. 

When the compUer cannot determine any information about the 
types of the arguments ro be unified, then general unification must be 
used. In this case one can still talce advantage of dynamical proper
ties of the argument types. 1be common cases of general unification 
should be done quickly in-line and infrequent cases passed 10 a gen
eral unification subroutine. Analysis of W AM execution (Table S) 
indicateS that about 70% of all general unifications are simple bind
ings of an unbound variable with a nonvariable. 1bese statistics 
motivate the switch-bind instruction (swb ), a three-way branch 
based on the tags of two regiSters. 1be conditions of the three 
branch direcdons are: varlablelnonvarlable, nonvarlable/Yarlable, 
and otherwise (order of the argumems matters). This allows the 
common cases of vllriablehlonvariable and aonvarlable/Yariable to 
be done in-line. A general unification 111broutine is c:al1ed for all 
other cases. Note that although rhe quick IUCCell and quick failure 
cases are simple to check for, their execudon frequency is low 
enough that we have chosm not ro do these checks in-UDe. 

1be Pegasus processor [9] supports pneral uniflcadon with a 
16-way btlnch based on two tag bits lhlm each of two re,;stm. T...e 
LIBRA proceaor (11] bas a "partial unify" instnJc:tion. 1bls 
JingJe.qde inslruc:don performs either a aop, a store, a call or a 
branch depending on rhe tap and c:cmparlson of the two IIJIDDents. 
It execura the varlablelnonvariable caae of pnenl unification in 

.ArKument TYDe ('l) 

Program quiet quick var nonvar var recursive 
success failure nonvar var var 

prover 15.6 15.6 0.0 61.4 0.0 7.5 
mera_qsort 0.0 0.0 0.0 S0.5 49.5 0.0 
simple_analyzer 0.1 2.1 13.3 ~u.) 11.5 2.1 
clw_parser 0.3 11.8 13.6 69.3 2.3 2.5 
average 4.0 7.4 6.7 62.9 15.8 3.0 

TableS 
W AM General Unification S..atisi.ics 

This table gives the percent occurrence of various argwnent types passed to 
general unification in lbe WAM (Bet_value and unify_value inslnictions). 
In the quiclc success column boch arguments IRi identicaiJy equal. In the 
quick failure column both argwnents are nonvariable and have unequal tags 
or both IRi atomic and ~ unequal. In the vartnonvar column the lint argu
ment is a variable and die second is a nonvariable. Likewise, in the 
nonvartvar column the lint argument is nonVIriable and the second is vari
able. In the '181/var column bod! arguments 1re v.riable. The lasl column 
contains the mnaining cases which must be passed ro a recursive 
unific:.tion subroutine. 

fo~r cyc~es (not counting dereferencing of the arguments). Using 
SWltch-bmd (swb ), BAM executes this case in five cycles. Although 
the partial unify instruction of the LIBRA has a slight performance 
advantage, its complexity does not tit with our goal of minimally 
extending a general purpose ar:~:!ecture. 

4. Compilation or Prolog 

A significant aspect or our project was the simulWieOUS 
development of an optimizing Prolog compUer [21,23). 1be com
piler incorporates techniques for determinism extraction and use or 
destructive assignment. 1be compiler acceP'5 standard Prolog and 
produces code for a simple non-WAM abstract machine. Although 
the compiler uses stacks and data Structures similar 10 w AM imple
mentations, it does not use the W AM during compilation. but instead 
directly compiles to its own abstract machine. Automatic mode gen
~ration (type lnferencing) is implemented using abstract interpreta
tion [24). Jr derives ground, uninitialized variable [22). and derefer
ence modes. Optimizations are still being implemented, and we 
expect our performance numbers to improve compared 10 the 
numbers listed in the following sections. 

Compilation of Prolog is done in three stages. FU'St, the com
piler produces code for its abstract machine. Second, this code is 
macro-expanded into the BAM instruction set. Finally, the BAM 
code is optimized by a peephole optimizer and instruction reordering 
stage that maximizes the use of the double-word bus and minimizes 
the number of nops and pipeline stalls. 

5. Cosa/Beneflt ADalysls of Architectural Features ud lnstr'uc· 
tlons 

In section 3 we moeivated our instruc:don selec1ion based on 
several soun:es of Information: work on abstract instruction sets for 
~pUers, boaom-up analysis or microardliteaural ftq\lirements for 
hi&h performance Prolog. and analysis of W AM euc:udon ltalistics. 
In Ibis ICCtion we pve a more ri&OJOUS validadon of the an:biteaural 
design and instruction selec:don by analyzina the cost lnd perfor
mance benefits or eacb special purpose feature lnd Instruction. 
There bas been IOIDC WOrk to detennine such laUIIS for OCher 
designs [9, 10, JS], but no complete malysls bas been done. 

5.L Cost of Features 
Table 6 showstbe lmplemeuwton COli of those features wtlich 

• 

• 

• 

• 

• 

• 

• 
.. -

• 

• 

• 

• 



• 
• 

• 

• 

• 

• 

• 

• 

• 

• 

Feature Active Ilea Dei;ign compleltity lnslructions affected 
segment mapping ~.8'1> -ulO'I> compiled -
tagged-immediate 2.2'1> 100'1. compiled ldi. cmpi, sti. Rid, lea, uni 
double-word memory port 1.9'1> 95'1> compiled; S'l> ~hand ldd, std. stdc. pushd, pushdc 

fast tag logic 1.6'1> ·1 00'1. compiled btae4. btgne, swt, swb, drcf, uni 
mulli<ycle/conditional 0.1'1> 100'1. compiled sa, std. pushd, pusht. drcf. uni 
ta2 overflow deleCt -o.O'I> 100'1. by hand (10 gates) cmp28 add28. sub28 and28 a28. xor28 
lDtal special featureS 10.6'1. 99'1. compiled; 1'1> by hand 

Table6 
Cost of Special AtdlitcciWal Features 

For each special feature of lhe BAM processor. this table Jives tbe perc:enaage of .aive ~rea (II'IIISisuJrs and wires) required 
to implement the feature, lhe design compleltity of lhe layout, and a list of insuuccions which depeDd on lhe fealiR. 1be 
design complexity is given as a percentage of the layout that was IUIOIIIItically genenled (using tilers. routers. eu:.) and the 
peccentage tbal was laid out by band. ·100'1. compiled indicates that less than 30 pies - placed by hand. Multi
cyde/conditional is a subset of inlemal opcodes lhe 0.1'1> aclive ~rea refers to the entire intemal opcode implemenllcion. 

extend the BAM beyond a general purpose archil.eChl!e. Implemen
tation cost is expressed in terms of chip area required to implement 
the feature and in terms of VLSI design effort required. The chip 
area is meas~ in percent of total active area which includes ooth 
transistor and wiring area. The chip contains approximately 110.000 
transistors. and the total active area is 91 square millimeters using 
1.2 J.L CMOS. The VLSI layout was done using a symbolic layout 
editor with custom designed, parameterized cdls. The building 
blocks were assembled into larger units using a datapath compiler, 
PLA compiler, tiler, and router. The design effort for each feature is 
given as a percentage of its design tlw was automatically performed 
by the design tools. The last column of Table 6 lists those instruc
tions which depend on a given feature. We do DOt give each 
feature's effect on the cycle time, since the microarchitecture and 
logic designs were done carefully to prevent these features from 
being on the critical path. 

Segment mapping requires the greatest area of the special 
features. 'Ibis area is primarily due to the 32 by 24-bit register file 
which contains the segment map. 'Ibis register file is used to extend 
the address space as well as perform tag mapping. A smaller register 
file tailored to tag mapping alone would lake less area. The next 
greatest area consuming feature is the tagged-immediate generation 
circuitry. 'Ibis is due in pan to the use of three distinct instruction 
formats for tagged-immediates. The double-word memory port 
requires extra pons on the general purpose register file to support the 
increased bandwidth. The area listed is the difference in size 
between our four/five-port regiSter file and the more usual tbree-pon 
reafster file. The extra pads required by the double-word bus are DOt 
included in the cost. After the fast tal logic, the remainina features 
use a very small ponioo of the total acdve area. 

5.2. Bene&ts or Features 
To determine the performance beuefit of each fea~~W, we cal· 

cu1aled the cycle count iDcruse caused by omitting the use of all 
ins1ructlons lhat depend on the feature (2SJ. For example, if omitting 
the instructions ldd, std, stdc, JHUhd, lnd pushdc increases execution 
dme from 100 cycles to 111 cycles. then the perfoi'IIIIDCe benefit due 
to tbe double-word memory port is 11 ,._ An iniiNcdon II omitted 
by repJacinc it with Its macro-expmsion into simpler instnlcdons. 
An effort wu made to determine optimal expiDiions, lnd after 
macro-apmsiou. peephole opdmizadon lnd iDstnlc:don reotderiDa 
ue perfotmed. Omillioa of 1ep1ent mapping requiJa dial apllcit 
i1111J'UCtions be iDsened tD mask 111 bits before llged-poinlera ue 
used • addressea. A decailed descriplion or tbe aoalysilleebnlques 
II JiveD in [26]. 

Tillie 7 11111 tbe performance benefit of die f'eatares lfven in 

Table 6. Fast tag logic, double-word memory pon. segmem map
ping, multi-cycle suppon. and tagged-immedille suppon are con
sistenlly important fea~. Tag overflow detection is imponant 
only in progmns v.ilich mate heavy use of integer arithmetic. The 
overall Prolog support column is delcrmincd by using only the 
instructions from Table 1 (and non-tagged versions of ldi lnd C!"Pi), 
omitting segment mapping and all insaucdons in Tables 2 and 3. 

To summarize, the specialized support added for Prolog does 
DOt require unreasonable amounts of chip space or band layoutjl1,. 
active area for all Prolog related fealures), lnd it provides a perfor
mance benefit of 7()'1,. 

5.3. Benefits or Individual Instructions 
Table 8 provides a similar aualysis applied to individual 

instructions or instruction groups, ralber dian to architeaural 
features. Significant (greater than one percent) performance benefit 
is obtained from a majority of the special purpose instructions (dref, 
llminiiii'NU, leD, push/die, swt, and btgeqtne ). The multi-cycle 
pointer dereference instruction (drq) has an .venae execution time 
of 1.6 cycles. Macro-expansion of drq into an explicit loop 
increases the average dereference time to 2.2 cycles. Although the 
beuefit of drq per dereference is only 0.6 cycle, the total perfor
mance benefit is significant because of iiS frequent use. S<me of tbe 
smaller benchmuts, however, show DO benefit for drtf due to the 
complete elimination of dereferencing by compiler optimizalion. 
Unsigned maximum (III'NU) is used during environment and dloice 
point crealion. Omission of III'NU causes 1be time to determine the 
top of ltiCk to iDcruse from one to lbree cycles. Taged1JOimer 
creation (leD) Is a frequent operation. and its emission adds an extra 
cycle for tag Insertion (using or). Ellminadon of aut.o-inctement 
addressing (pusla, pushd, piiShd.c) requires one extra cycle for each 
block allocation. The three-way branch on tal (lwr) can be replaced 
by two btgeq insuucdons, addiJia an e:ara cycle to two or tbe branch 
directions. Ellminadon of 1be ~way bnncb on 111 (bqeqt~~e) 
would require a two IJISINCdon c:ompue and bnncb.. 

The remaininl instnlcdons have less tbiD one perceal nerqe 
performance benefiL Because the VLS1-PLM spends aboul5,. of its 
time trai1ina variable addreaes. we included lpeCial support in 1be 
BAM (pusl&t). ~r. due to 1be compiler'a use of uninitialized 
vlriables, wldcb do DOt bave to be crailed, tnWna time is n:duced to 
1.4,. In 1be BAM. OmiUina pfiiN ClllleS a slow down of 0.7,., 
wldcb conaponds tD trail time iDc:lasina from 2 to 3 qda. Pidim
inary .Wysls asina ~ WAM fbr 1be cbatJ1mer 
benr.hmart indic:ared 1lw die bene& for pop would be 1.5,.. Com
pOer opdmludcln of ll'aillnlba ftlduced dds laUlL Similarly, com
piler opd:nlzadarl reduca 1be IIIIIDber ol aeneraJ unilk:adons, 

,. -



Bendlnwt Fealure Pafonnance Bendit ('I>) 

Wlll& double-ward -=cmaat -~le tilled- ll&ovedow aUProlos\ 
lo2ic memarvDOrt manoinR conditional immediale deulct .. ~· 

log10 2.4 8.1 S.3 0.0 9.3 0.0 30.0 
ops8 6.6 14.7 4.2 2.6 9.2 0.6 42.6 
rimes10 6.2 14.1 4.0 1.0 12.0 0.0 47.1 
divide10 S.6 1S.4 3.6 1.7 13.5 0.0 46.9 
areverse 14.0 14.6 22.1 0.7 25.0 0.0 99.8 
qsort 11.1 4.1 10.6 1.6 14.0 13.0 75.5 
IUialise 24.0 18.2 9.4 7.0 5.0 2.3 83.5 
query 0.0 3.6 1.7 0.0 2.3 2.7 12.6 
mu 36.0 14.S 20.0 15.3 8.0 0.1 95.9 
qucens_8 6.9 17.0 5.9 0.7 3.0 34.6 105.9 
poly_10 18.8 9.8 8.9 3.3 9.7 3.1 71.S 
lak 0.0 8.3 4.2 2.8 4.2 28.1 66.6 

prover 18.3 20.6 7.4 6.3 9.0 0.0 72.6 
meca_qsort 19.6 17.6 12.8 10.7 su 0.6 72.3 
simple_analyzer 20.S 12.4 12.3 10.6 5.6 5.0 67.6 
chat_paner 17.3 17.9 8.8 8.8 7.7 0.0 67.7 
average 18.9 17.1 10.3 9.1 7.9 1.4 70.1 

Table? 
Performance Benefit of Special Architectural Feanues 

Instruction Paformance Balefit ('I>) 

Benclurwt umill push == nusht 

IIi 
dref umax lea oushdlc swt swb llli Slid 1100 

log10 0.0 0.3 S.3 2.2 0.2 1.9 o.o 0.0 0.0 0.2 0.0 
ops8 0.9 3.2 5.0 3.2 0.9 2.s 0.3 0.0 0.0 0.4 0.0 
times10 0.0 4.1 S.9 4.2 1.1 2.0 0.0 0.0 0.0 1.1 0.0 
divide10 0.0 3.7 7.1 3.8 1.0 1.8 0.0 0.0 0.0 1.0 0.0 
ntevene 0.0 1.4 22.8 11.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 
qsort 0.0 1.6 10.6 3.7 4.S 0.0 0.0 0.0 0.0 0.0 0.0 
serialile 3.7 6.1 2.8 2.6 2.S 1.1 o.s 1.4 0.0 0.1 0.4 
query 0.0 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 
mu 10.9 1.6 3.4 2.7 4.8 4.4 2.1 o.s 0.7 0.0 0.3 
qucens_8 0.0 2.6 2.3 33 2.9 1.3 0.0 0.0 0.0 0.0 0.0 
poly_10 0.9 3.2 S.4 2.8 2.8 0.8 0.4 0.1 0.0 0.0 0.0 
tak 0.0 2.8 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
prover 1.3 3.4 2.3 3.S 2.2 1.2 0.3 0.2 0.7 0.4 0.2 
Jneel..cpan S.8 5.0 3.2 2.4 2.6 0.8 0.7 o.s 0.1 0.2 0.2 
simple_analyzer 7.3 3.3 2.S 1.4 1.6 I.S 0.3 0.2 0.1 0.3 0.0 
chaLoarser 3.S 3.3 3.0 2.4 1.7 1.6 1.6 1.6 0.7 0.2 0.7 
average 4.5 3.8 2.8 2.4 2.0 1.3 0.7 0.6 0.4 03 03 

TableS 
Performance Benefit of lndividuallnstrudions 

Tables 7 aad I Jive die pen:eat periJrmance llenefit for ea:ll ipeCial falure and iDilructiaft d cbe BAM proc:eaor. 'I1Ie lasl 
column of Table 7 lilts cbe perfC~r~M~~~:e llenefit d aepnent mappi11a llld all illslructiOliS Pea ill Tablel 2 and 3. Avenps 11e 
calcul""AS usina only die liSt foar beacllmarb wllicb 11e ~ve of well wriaen, medium li2led (1()().1000 line) Pn1q 
proarama. All bellcllmlrts are c:ampiled widliUIOIDIIic mode ,enerabon. and c:acbe dfects are DOl iDcluded. 

mfnlmlzJna die bale&t of """. Our lllidal audJea also OYel'ai• 
dmatecl die bale&ts of spedatauppon for unlllcadon of ar.oms (lUll, 
stt, sad). Altmu&h pruht, .rwb, pop, IIIII, Ill, ml srtd provide aw
ginal performance benefit. lbefr lmplc:meawtoa uses only ~ 
already required by oilier IDstruclioos. 

An inreresdng CODClullon about die 1111111ber of direcdons 
Deeded in multi-way briDchel can be made fJoal dae measure
meats. Multi-way brmcbea • lmplemeruct In die BAM wllb the 
IWf and 6tl16 IDiauc:doas, wbicb • bodl liDIJe-cycle tine-way 
bnndla (Table 3). Swt II used for unillc:adon of c:ampound Derma. 
lor wbic:b ..-er lban a line-way bnncb II DOt needed (Tible 4 llld 
(2JD. Swb II ued forunUlc:adoa oflmDa wbole typea• unknown 
a c:ampDe dine. II t*el c. of~ of lbele c:11e1 (Table 5), wblc:h 
lives 111 oa ac=m dille ~ (Table 1). If eome 

single-c:yde bnnch toot care or 100'5 or lbele cases. we c:atc:ulare 
the funber Improvement would be about 0.'711. Given the additional 
complexity lbat IUCh a bnDch Implies, we conc:lude dial a multi-way 
braDc:b witb more lban lbree direcdoaa is 1101 elfecdve for ProlOJ. 

" Performaace ....... 
Table 9 campues die perfonDance of die BAM pmcessor 10 

tbat or odler Protoa systems. 1be n:sults for BAM are llmularcd 
ISSUIJlini a 30 MHz dock llld lndude CMdJead clue ., cadlc misses 
(19). 1be slmulalled l)'llleiD bas 121 KB inllruc:dao llld daa caches. 
1be c:ac:bes are cUrecc IIUipped lnd uae a write blc:t policy. 1bey • 
nm In warm aan. dW Is. eacb benchawt II nm twice lnd lbe rauks 
of the fim nm ue lpored. Clcbe etrec:1s are IIJnific:n oaly for the 
Jut five proarams m Table 9. 1be cadlc overbcad II pasea for 
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Benchmart Qu;l!IUS VLSI-PLM KCM BAM 
IIOIPIDda IIIIIDIItDdn 

loglO 0.468 (31..5) 0.137 (9.22) 0.039 (2.62) 0.0263 (I.n) 0.0149 (1.00) 
ops8 0.767 (40.8) 0.177 (9.41) 0.059 (3.14) 0.0289 (1..54) 0.0188 (1.00) 
times10 1.05 (39.4) 0..247 (9.26) 0.082 (3.08) 0.0403 (1..51) 0.0267 (1.00) 
divide10 1.27 (42.4) 0.287 (9..58) 0.091 (3.04) 0.0433 (1.44) 0.0300 (1.00) 
nrevc:rse 4.87 (36.2) 2.10 (15.6) 0.65 (4.83) 0.308 (2.28) 0.135 (1.00) 
qson 16.9 (86.2) 4..24 (21.6) 1.32 (6.73) 0.371 (1.89) 0.196 (1.00) 
serialise 10.8 (23.0) 2.47 (S.27) 1.22 (2.60) 0.516 (1.10) 0.469 (1.00) 
query 72.3 (18.9) - 12.6 (3.30} 5.22 (1.37} 3.82 (1.00} 

mu 28.3 (JS.O} 5.18 (6.41) - 1.02 (1.26) 0.808 (1.00) 
prover 2A.1 (26.2) 6.83 (7.41) - 1.07 (1.16) 0.921 (1.00} 
queens_8 73.7 (6S.1) 28.8 (2S.4) - 1.88 (1.66) 1.13 (1.00} 
me&a_qson 231 (49.0) 44.5 (9.4S) - S.2S (1.11) 4.71 (1.00} 
simple_lll&lyzu 636 (19.0) - - 36.9 (1.10} 33.4 (1.00} 
poly_10 1420 (40.0) 307 (1.6S} - 62.5 (1.76} 35.5 (1.00) 
talc 3300 (62.8} 940 (17.9) - 71.1 (l.JS) 52.6 (1.00) 
chat _parser 3590 (27.0} 781 (5.87) - 161 (1.21) 133 (1.00) 
geometric mean (36.7) • (10.3} (3.48) (1.44) (1.00) 

Table9 
Performance Results 

This &able compares the perfC11'111111CC of BAM with dill of sevcn1 ather Prolog implemencations for which balchmart results ~re 
availablo-QuiniUS Pro1og, the VLSI-PLM, and lhe KCM. Each result is pm;ented as a rime in milliseconds followed in 
parentheses by the ralio 10 lhe best BAM lime. The QuiniUS Prolog results are for compiled code execubn& under QuiniUS Prolog 
Release 2.0 on a Sun 3/60. 1be VLSI·PLM [4] results ~re simulated assuming a cycle lime or 100 ns with ao c:acbe misses. 1be 
KCM R.SIIlts [6] are derived from ICIUil measurements of a system with a cycle rime of 80 ns. The BAM results are simulated 
assuming a 30 MHz clock and 128 KB inswc:tion and data caches [19}. For BAM. die GUlO W!Ddes and 110 W!Ddes columns gi~~e 
results with and without automatic mode genemioa. Results ~re presented for lhe weU-known Warren bcllchmarts (lhe first 
eight in lhe &able), of which query is modified to use integer division in place of the originallloating point; for mu, which proves a 
theorem of Hofstadter's "mu-JIIIIh"; for prover, a simple lheorem prover. for queens_8, which solves the eight queens problem 
using an incmnenlal generate-and-test Sll'atel)'; for meca_qson, a me&a·interpreter running Wamn's qson; for simple_analyzer, a 
Bow analyze£ analyzing Wan-en's qson; for poly_10, which symbolic:ally nises a polynomial to the tenth power; for tat, which 
executes recursive integer arithmetic; and for cbal..JIII'Sef, which panes a 5el or English sentences. Funher informalion about 111e 
benchmarts may be found in [28]. The benclunarts are available by anonymous ftp from arpa.berteley.edu. 

simple_analyzer. poly_lO, and tat; for these programs the overhead slightly larger than that or the KCM. This is due 10 direct cxxnpila-
ranges from 11% to 38%. For meta_qsort and cbat_parser the over· lion iruo simple instnlctions, the success of flow analysis in reducing 
head is less than 3%. code size, and the lppR)priareness of the BAM instnlction set for 

Although programs are usually compiled with automllic mode Prolog. 
generation, we have included numbers without modes to show the 
effect on performance. 11le averap performance improvement due 
to automatic mode generation is 1.44. 11le number is bigher for 
some of the smaller benchmarks because mode generllion is lble to 
do a bener job for them. For example, the qsort 11111 queens_& bench· 
marks perform well because the mode informllion allows the com
piler to eliminate most choice poinl crellion 11111 teplace variable 
binding with destructive assignment.. 1be number is lower for the 
simple_analyzer bendlmark because It ases bullt·ln predicates 
heavily. 

11le KCM (6), one of the best WAM lmplemenwions, has a 
relatively large amowu of lpCdeJiml hardware to eucut.e a W AM· 
like instnlction set efliciendy, whereas lhe BAM processor uses 
modest hardware to support an opdmizlna compiler. We find that 
the speed advantage of the BAM over die KCM is equal to or greater 
than the cycle time rllio. 

A common measure of Prolog ipeed is logical Inferences per 
second (UPS). In general this quantity is ambiguous; bowever, it is 
well defined for the naive reverse bencllmark. 1be uec:utlon lime 
for naive reverse with autcmadc modes (Table 9) gives a perfor· 
m~~~ce of 3.68 mWion LIPS. 

Table 10 compares the aadc code sizes of die BAM. die KCM 
(6), and the SPUR (27) reladve to the PLM (3]. Macro expension of 
w AM code Into SPUR instrucllons causes the large code size of lbe 
SPUR. Stade code lize for the BAM is IUiplisiqly smlll, only 

bytes 
instructions 

BAM/PLM KCM/PLM 
3.1 3.0 
2.6 1.1 

TableiO 
Static code size ntios 

SPUR/PLM 
14.1 

12.0 

This table gives the lillie code sizes ol die BAM. lhe ICCM, llld lhe 
SPUR relative 10 the Pl.M, a miao-coclecl implemmll!ion oldie W AM 
(3]. 1be BAM code size is calculaled from prover, ~qson, 
simple_analyzu, llld ~- Tbe KCM code lize is from [6]. 
The SPUR code size is from [27]. 

7. Conclusions 

11le primary goal of our raean:h has been 10 dellermine a 
minimal set of euensions to a general purpose arcbitec:blre necessary 
for achieving bigh performance logic pi'OiniiiUIIina. At die same 
lime, bowever, performmce of the general purpose an:bit.eclW'e has 
DOt been compromised. We have idenlilled llged-lmmrdiet.e ~ 
port. 1egment meppina, double-word memory bus. special logic for 
fast bnnch oo fll, and muld<)de lnlbucdOD support u Important 
Prolog specific felblrel. Our llleiiUreiDeUII juaify die utility or 
push, pointer dereference, and llged-poilller creation lnsUuctions. 
Our special instNcdOilS for ll'ailing llld uniflcadon of IIDIDS, how· 
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ever, are of marginal benefit Finally, we conclude that a multi-way 11. J. W. Mills, "LIBRA: A High-Performance Balanced Com-
branch with more than three directions is not effective for Prolog. puler Archiaecture for Prolog," Ph.D. Thesis, Arizona swe 

. We have demonstrated that one can extend a general purpose Universiry, December 1988. 
archirecture to include explicit suppon for symbolic languages such 12. G. Radin. "The 801 Minicomputer," Symposium on Architec-
as Prolog wilh modest increase in chip area (11%) and yet llllin a rural Suppon for ProgrlJIMiing Lartguages and Operating Sys- • significant performance benefit (70%). tons (ASPLOS 1), pp. 39 -47,March 1982. 
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Abstract 

The rapid prototyping of microprocessors requires a high level of automation. An 
environment suitable for developing application programs which accelerate rhe duign pro
cess should provide an ejjicient method for manipulating diUa and a powerful programming 
environment. This paper describes the bene/Us we have discovered by using PROLOG as the 
foundation for ASP, a suite of CAD tools tailored towards the automtUic generation of 
microprocessors. PROLOG provides an inherent relational dauzbase which is ideal for 
describing and manipulating a host of elements at all phases of a design, from a behavioral 
description to a circuit layout. PROLOG also lends itself to heurisrical as well as algo
rithmic programming styles. 

1. Introduction 

There are many characteristics inherent to data elements in Computer Aided Design 
(CAD) that make them difficult to represent in a database [1-2]. The difficulty lies in exp~
ing the many differem relationships between elements. For example, a wire elemem may be 
related to other wire elements by node, by layer, and by location. A CAD tool should be able 
to generate a set of elements by any of these relations. This paper will show that the relational 
database inherent in Prolog is well suited for the requirements of a CAD database. An imple
memation of objects which cover the entire design process is presented. 

Although some CAD problems are well understood, most of the problems in CAD are 
only partially understood or not wen defined. Problems of this nature are solved by employ
ing heuristics such as simulated 8IUlealing, and rule based expen systems. Problems that are 
well understood such as the simulation and channel routing are solved by proven algorithms . 
Problems that are partially understood may have heuristics imbedded within algorithms. Pro
log suppons both algorithmic as well as heuristic programming techniques which make it an 
ideal candidate for CAD programming. This paper will illustrate many of the Prolog pro
gramming techniques employed in ASP. 

ASP [3] is a full-nnge synthesis system tailored for the development of microproces
sors. It produces VLSI masks from instruction set architecture specifications wriuen in Pro
log. The system is composed of several hierarchical componems that span behavioral, ~r
cuit. and geomeuic synthesis. Behavioral descriptions are tnnsfonned into register transfer 
level descriptions by VIPER [4]. Controller and datapath are realized in sticks by a suite of 
layout tools in VENOM. The blocks are compacted, placed, and routed by Sticks Pack [S). 

'Ibis paper will reveal some of the problems associated with representing data for CAD 
while illustrating the solutions that we have discovered using Prolog. An application of these 
philosophies, Sticks in Prolog (SIP) is explained in detail and the other abstract levels in ASP 
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are introduced. Advantages for using a clause based language for CAD development will be 
presented by describing the programming methodology employed by ASP. 

2. Design Considerations For Implementing CAD Objects 
To model the many complex CAD structures as well as the relationships between struc

rures. many CAD environments use object oriented databases. CAD elements, whether they 
be geometry for a compactor, transition states for a simulator, or logic expressions for a logic 
minimizer can all be expressed in terms of objects. There are two strategies for representing 
CAD elements as objects. 

In one approach the database provides a set of primitive objects (objects such as 
polygons, properties, containers, and paths) that model CAD relationships with a representa
tion policy. For example a container object can be used to describe a common node relation
ship by placing all objects belonging to a node within the container object Similarly, a com
mon layer relationship can be represented by placing all objects that share a common layer 
within the container object [6]. 1be primative objects must be capable of representing every 
data element and relationship that will be necessary for any design. A policy to represent 
CAD elements with the primative objects must be chosen. There may be several possible 
representations of an element within a given set of objects. For example given a data object 
of type BOX containing four integer value fields, a box can be represented as a center coordi
nate with width and length measurements as in CIF, or as a pair of coordinates denoting two 
opposite comers. Relationships between objects must be explicitly defined. Once esta
blished, all CAD applications must adhere to the well defined set of policies. 

In another approach, each CAD element is expressed as an object [7-8]. For example, 
elements such as wires, nets, contacts, transistors, and waveforms are all expressed a~ tailored 
objects. Relationships can be expressed implicitly within the objects by adding data fields. 
For example, a wire element may contain a field describing the layer of the wire or by a 
pointer to another of the same layer. With this methodology, the representation policy is dee
ply imbedded within the data objects. Provisions must be made for adding new objects. For 
example, assume that a system tailored for CMOS circuits must be modified to handle bipolar 
transistors for a BIMOS circuit. If the data fields chosen for the transistor element are inca
pable of representing the bipolar transistor, a new data type must be added to the system. 
Furthermore, all programs that process transistors must be modified to support the new data 
type. The primary issue in developing a set of data objects to represent CAD elements is 
determining how much inherent support to offer [9]. 

2.1. PROLOG as a Database 

Relationships between the elements can be expressed in terms of groups. For example, 
elements in a cell can be grouped by node, by location and by layer. Current object oriented 
databases for CAD have strict set relations [6-8]. For example, many databases categorize 
wires by layer, but not location. To find wires of the same layer, one simply calls a generator 
that returns instances of wires that are of the queried layer. But to find wires of the same 
grid, one cannot simply generate wires based upon the grid information, but must generate 
wires by layer and filter out the wires that are not of a common grid. Data in Prolog is linked 
by structure and by value. Thus, the procedure for generating all wires on the metal 1 layer is 
the same as the procedure for generating all wires on row S, or generating all wires of node 
vdd, or generating all the wires of row S and node vdd in metal 1. Prolog also provides 
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structures such as binary trees and soned lists. These constructs make accesses to the ASP 
Prolog database very unifonn. 

In ASP, each CAD element is expressed as an object. Elements ranging from 
behavioral descriptions of architectures to logic equations for a module generator to offset 
contacts in an ALU layout are all directly expressed in and referenced through Prolog. In 
Prolog there is no syntactic or semantic difference between a procedure call and a database 
query. This makes the introduction of new data types very simple. Clauses that process new 
data types can be easily integrated into the system. There are thiny different representations 
of a design. each with a set of data objects. One of the lowest levels, Sticks in Prolog, will be 
described in detail in the next section. 

2.2. Sticks in PROLOG 

Sticks in Prolog (SIP) is a grid based sticks representation in Prolog that supports 
hierarchy and parameterized elements. Module generators or human designers generate SIP 
files which are convened to mask geometry by the STICKS-PACK compactor. In SIP, VLSI 
elements are modeled as facts. Attributes for the elements are represented as atoms within 
the facts. Currently, the SIP language consists of four facts representing VLSI elements: 

wire(Layer,pt(X1, Y1).pt(X2. Y2). Width. Nez). 
cont(Jype, pt(X1, Y1 ). Offset, Net). 
trQIISistor(Type,pt(SX1. SYJ).pt(GX2. C:"2).pt(DXJ. DYJ). W.L. Nezs.Netg,Nezd). 
pin (pt(XJ. Y 1 ), Layer, Width, LDbel, Cell) . 

Layer are of the atoms: ml, m2,p, pd, nd 

1bese represent the physical layers of the element (metall, meta12, poly, P-diffusion, or N
diffusion). 

Contact offsets are of the atoms: nw, nn, ne, ww, M/. ee, sw, ss, se 

Contact types are of the atoms: mlm2, mlpd, mlnd, mlp 

Width, XY coordinates, W, and L are integers. Nets are atoms that represent the connectivity 
node of the element Elements of the same node are electrically connected. Nodal infonna
tion is extracted by a net extracting program. pt(X, Y) represents a point location at (X, Y). 
Transistors have 3 point locations, one for the source, one for the gate, and one for the drain. 
Each location has a separate node. 

Example: An Inverter in SIP: 

wirl(ml, pt(O,O), pt(OJ ).2,wld). 
wirl(ml, pt(O.l), pt(2.1 ).2,wld). 
wirl(ml, pt(JO,O), pt( 10.5 ).2,vu). 
wirl(ml, pt( 10,1 ), pt(8,1).2,vss) . 
wirl(ml, pt(B.J). pt(2.J).2,0Ul). 
wirl(ml, pt(6.J), pt(6J).2.0111) . 



wiTt!(p, pl(8.2), pt(2.2).2,in). 
wiTt!(p, pl(6.0), pt(6.2).2.in). 

-4· 

trans(nd.pt(2.1 ), pt(2.2). pt(2.3). 4, 2, vdd, in, 0111). 
tran.s(pd, pt(8,1 ), pl(8.2), pt(8,3), 2. 2, vss, in, olll). 
conl(m1pd, (2,1), no/. vdd). 
conl(m1pd, (2,3), nof. olll). 
cont(m1pd, (8,1 ), no/. vss). 
cont(m1pd, (8,3), no/. olll). 
pin(pl(6, O),p, 1, inplll, inv). 
pin(pl(6, S),p, /, Olllplll, inv). 

Different CAD applications often generate different sets of elements. For example, the 
simulator may generate all of the elements that are of nodes adjacent to a given node. The 
compactor may generate all of the elements that are of the same grid and layer as a given ele
ment. The ftoorplanner may generate all of the terminals of a given cell side. With the SIP 
representation, data elements can be generated by any combination of characteristics very 
easily. For example all of the wires that are of ml of node vdd which have a width greater 
than 3 can be generated in two lines of Prolog: 

wire(ml, Ptl, Pa. Width, vdd), 
Width> 3, 

This representation also allows fields to be easily parameterized within a cell. For example, 

In a cell definition we have parameterized an output transistor with the statement: 

parameter(ourputrans, pt(2, 3)). 

A call to the following clause would permit the modification of the W/1. ratio of any ttansis
tor that has been parameterized. 

modlsiu(Nt~~N, N~. Newl):· 
ptiTIJIMlD(Nt~~N.pt(Xloc, Yloc)), 
retr«t(tran.s(Layer, pt(Sy, Sy), pt(Xloc, Yloc), pi(Dz, Dy), _, _. Ns, Ng, Nd))), 
flMm(traM(Layer, pt(Sy, Sy), pi(Xloc, Yloc), pi(Dz, Dy), Neww, Newl, Ns. Ng. Nd))). !. 

modlsiu(NtiiN, Neww, Newl):· 
wriu(' transiltOt' IIIJI/0111'111' ), !. 
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This flexibility allows tools to address and modify specific elements within any context. 
For example. a program that tries to optimize the performance of a circuit containing many 
cells can do so by adjusting the W /L ratio of the output transistors. With the output transis
tors parameterized. the program can reference the output transistors from any cell simply as 
"outputrans" regardless of the transistor's environment. 

SIP provides an excellent abstraction of VLSI layout for an automated module genera
tors that produce sticks layout, for example. the following clause: 

malreinv•I(Vddgrid, Vssgrid.lngrid, Olllgrid, Pw. PI, Nw, Nl):· 
Pdgrid i.s Vddgrid. 1. 
Ndgrid i.s Vssgrid + 1. 
assert(wire(ml,pl(2, Vddgrid),pi(2,Pdgrid),1,1U1k)), 
assen(wire(ml, pl(2, Vssgrid), pt{2, Ndgrid),1. IUik)), 
ll.rSert(wire(ml, pi( 1. Vddgrid), pl(5, Vddgrid),1.1111k)), 
assen(wire(ml, pi( 1, Vssgrid), pt(5, Vssgrid),l,llllk)), 
assert(wire(ml, pl(4, Pdgrid), pt(4, Ndgrid), 1, lUI!)), 
assert( wire( mi. pt(4, Ouzgrid), pt(5, Ouzgrid), 1. llllk)), 
assen(wire(p, pt(3, Pdgrid), pl(3, Ndgrid), 1,1U1k)), 
assen(wire(p, pt(0,1ngrid), pt( 3,/ngrid), /, lUI!)), 
assen(c0111(mld,pt(2. Pdgrid), M/. Wlk)), 
assert( c0111(na1 d, pt(2. Ndgrid), M/. llllk)), 
anert(c0111(mld,pt{4, Pdgrid), M/. Wlk)), 
assen(c0111(mld.pt(4, Pdgrid), Mf,IUI!)), 
assen(v~pd. pi( 1, Pdgrid), pt(2, Pdgrid), pi( 3, Pdg,.id), Pw, Pl,IUI}c. IUik. lUI!)), 
assert(v~nd.pt(1,Ndgrid),pt(2,Ndgrid),pi(3,Ndgrid), Nw,Nl,W, ruak.IUilc)), !. 

will generate an arbitrarily sized invener with variable input and output locations. Nodal 
information is deduced by the extractor. Roms. PLAs, and other regular layout suuctures can 
be generated in a similar fashion. 

3. PROLOG Programming for CAD 

There has been a growing trend in CAD to develop tools that use both algorithmic and 
rule-based programming styles [10-11]. Algorithms are generally fast. but are inefficient at 
handling problems that have many special cases. Rule-based systems are well suited for 
solving problems with many special cases or problems that are not well defined. Rule-based 
systems have generally been slow. Rules in such a system must be looked up and efficient 
management systems have not yet been developed. Many CAD problems, such as simula
tion. have algorithmic solutions. but most problems, such as routing and logic minimization. 
can be solved by a host of methods . 

Prolog provides an enviromnent for both algorithmic and rule-based programming 
Styles. Several examples of both Styles have been implemented in ASP. An example of how 
simulated annealing is implemented in Prolog is illustrated in the Appendix. The clausal 
nature of Prolog allows rules to be easily updated or modified. Algorithms can also be 
expressed in a simple and intuitive manner which makes Prolog a language ideal for rapid 
prototypina. 

Prolo1 source code is typically 10-100 times more dense than C or Fonran source code 
performing the same function. This makes Prolog systems much more readable and 
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maintainable. For a large system such as a silicon compiler, this has turned out to be essen
tial. 

3.1. PROLOG Programming Methodology Employed by ASP 

There are three basic formats for Prolog clauses arc employed by ASP: 

Procedural Clauses: These clauses work to achieve a certain value or state without fail
ing. Examples of such clauses include arithmetical functions and list manipulations. 

r The mindist routine fmds the minimum spacing distance between two objects of layer and 
width. The 'space' routine returns the minimum spacing distance between two layers, and 
the width routine detennines the minimum width of a layer *I 

mindist(Layerl, Widlhl, Layer2, Width2, Distbetwnobjcts):· 
space(Layerl. Layer2. Distance), 
widlh( Layer J, 'M'idthspacel ), 
Widlhmodl is Widtl&l•Widthspacel, 
width(Layer2. Widlhspace2), 
Widthmod2 is Widlh2•Widlhspace2, 
Distbetwnobjcts is Widlhmodl + Widlhmot/2 + Distance. 

Filtering Clauses: These clauses interpret a given set of data elements differently depend
ing upon the values of certain data fields. If-Then, and Case constructs can be expressed 
through these clauses. 

/* checkonstr determines how to space two elements. Each sub-clause filters out a certain 
condition. If the elements are on the same row, the spacing is irrelevant If the elements are 
contacts, they can not be stacked upon each other and must be spaced accordingly. If the ele
ments are not contacts and of the same node, the spacing doesn't matter, otherwise the ele
ments must be spaced •1 

clteckconstr(Layerl. WiiJthl ,Node/, Rowl,Layer2, Widlh2. Node2, Row2, Layer2):
Rowl•Row2. 

clteckcOMtr(Layerl. Width/, Nodel. Rowl, Layer2, Widlh2, Node2. Row2, Layer2):
coniDCts(Layerl, Layer2), 

clteckconstT(Layerl, WidJhl, Nodel, Row/, Layer2, 'M'idlh2, Node2, Row2,Layer2):· 
Nodel=Node2. 

clteclcconstr(Layerl. Widlhl. Nodel, Rowl, Layer2, Widlh2, Node2. Row2, Layer2):· 

Generator Clauses: These clauses generate sets of elements through backtracking or the 
bagof construct in Prolog. 
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t- Malcebox, a routine that craleS boxes from various elements, first processes wires, followed by contacts and 

transistors. */ 

ma/cebo%:-
wire(Layer,pt(Xl, Yl),pt(X2. Y2), Wid, Node), 

foil. 
malcebo%:-

coni(Type. pt(Row, Y). Oset, _), 

foil. 
ma/cebo%:-

triJIU(Type, pt(S:%. Sy ), pt(G%, Gy ), pt( D%, Dy ), W, L. Sn, Gn. Dn), 

foil. 
malceboz. 

4. Conclusion 

Prolog provides a relational database and a powerful programming environment. The 
relational database is easy to use, can represent all CAD objects, and provides a flexible inter
face to the programming environment. The clausal narure of Prolog provides an environment 
suitable for algorithmic and rule based programming styles. The success of ASP has shown 
that Prolog is a robust language well suited for CAD developmenL 

This work was sponsored in pan by Defense Advanced Research Projects Agency 
(DoD) and monitored by Space and Naval Warfare Systems Command under Contract No. 
N00039-84-C-0089 . 
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5. Appendix 

% Simulated Annealing package 
% You provide the move set, stopping criterion. and number of inner loop iterations. 

siman(lnitTemp, StateD, Cost. Finalstate, Finalcost):
doOuter(lnitTemp, StateO, CostO, Finalswe, Finalcost). 

%Outer Loop 

doOuter(Temp, SweO, Cost. SweO, Cost):-
endhere(Temp, SweO, Cost). %Outer loop complete by criterion endhere 

doOuter(O, Temp, State, Cost. Finals tate, Finalcost):
dolnner(O, Temp, State, Cost, Newstate, Newcost), 
updatetemp(Temp, NewT), 
doOuter(NewT, Newstate, Newcost, Finalstate, Finalcost). 

%Inner Loop 

dolnner(Count. Temp, State, Cost, State, Cost):
maxinnerc:ount(Mc:ount), 
Count > McoWlL % inner loop complete 

dolnner(Count, Temp, State, Cost, Finalstate, Fmalc:ost):
gennewswe(State, Newstate, Newc:ost), % create a new state by move 
Deltacost is Cost - Newcost, 
accept(Deltacost, Temp), 
Nextcount is Count + 1, 
dolnner(NextcoWlt, Temp, Newstate, Newc:ost, Finalstate, Finalcost). 

dolnner(Count. Temp, State, Cost, Finalstate, Fmalcost):- % new State not accepted 
NextcoWlt is Count + 1, 
dolnner(Nexu:ount, T. State, Cost, Finalstate, Finalc:ost). 

acc:ept(Deltacost, Temp):- %Good move 
Deltacost =< 0. 

accept(Deltacost, Temp):- %Random factor 
Aexp is -t•Deltacost/I'emp, 
AfactDr is exp(Aexp), 
random(Randnum), 
Randnum < AfactDr. 

updatetemp(l'emp, Newtemp):
Newtemp is Temp •0.04, !. 

nwtinnercounl(lOO). 
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The \ialidation of a l\1ultiprocessor Simulator 

Tam M. Nguyen Vas on P. Srini 

Computer Science Division 
University of California 

Berkeley, CA 94720 

Abstract 

One of the key steps ill performance prediction of multiprocessor syst.ems using simulations is the 
va.lida.tioD process. A step in the ,.a.lida.tion process consists of sequential execution of benchmul: 
programs 011 the multiprocessor simulat.or a.nd a uniprocessor simulator, a.nd comparing the results 
a.nd performance measurements data. The simulated cycle count, simulator overhead, operation 
count, and memory access count are identified to be the ke~· perlo:'IDa.nce data. needed for the 
comparison. This process is illustra.ted using the multiprocessor Nl:Sim for the parallel e.'i:ecution 
o! Prolog programs and the uniproce~sor simulator VPsim. For luge programs, the counts obtained 
from tbe tv.·o simulators are ~·ithin 10% of each other . 
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1 Introduction 

Simulation is an accurate and effectiw• approach in predicting performance of a ne"· multi· 
processor system. taking into accoum the many intricate details in the harciware and soirwa:·e 
ciesig:ns. The degree of accuriiCY depends on Low much cie:ail is inclucied in the simulato:·. To 
ensure that the simulator accurately reflects the real s~·stem (yet. to be built), the simulato:
must be carefully validated for correct functional as well as timing results. 

The Yalidation process is ca.""!ied out primarily by comparing performance dc.ta from the 
ne"· simulator "'ith known data obtained from previo-.:sly validated sources. The ,·alidation 
process itself can be quite tedious a.11d difficult. \Ylth massive amounts of information that 
need to be analyzed. In this paper~ we present our approach to validation. The process 
involves sequential execution of benchmark pro£ra..T.s O!l the multiprocessor simujator and a 
uniprocessor simulator~ comparing results aDd perio:-ma.nce data. 

2 Validation Methodology 

There are many approaches t.o the validation o! a simulation model !Sar88]. The concept o: 
our approach to ,·ali dation is quit.e simple: compa:ing new~ unve:::ified resuh.s with pre,·io-;.:siy 
kno"-n ~swe:::s. The more difficult tasl: is the ca.:eiul conside::-ation of the many d:feren~ 
factors •hat ca:l a.1iect the results and the degree of these effects. The ,·alicat)OD process 
for a compute:- system simula"t-o::- is bes~ done in c. ste~wise fa.shio:c. The e::-:a.ct cie-;.ai!s o: 
tbe Decessa::-y steps depends on the aYailabili-;y o: the !:noY:~ result. or the D~«i$. used fo:
compa:ison. 

ln this pape::~ the te:-m hos~ designates the mad:li!!e on which the simula•o::: is r..rr; ::.110 
target :::eiers to the compute:- a:chitecturei syste:::: bei!!g si::1ulat.ecl. Yaliciatior: refers ;o the 
process oi ensu:-ing that the simulator is coded co::-:::ectiy and that ); a.ccurateiy models the 
ta:get. 

h. '!.be initial phase~ where a paper desip-r: is the only basi~ availabje~ ,·alicia-..io:o oi the 
simulator usually consists o:: 

..:. . M a.nu.a11y checl~ng for correct coding according to the paper design. 

2. Running the simulat.o::- aDd checking for functiona1 correctness, compa.:'ing 
the results v:ith m.anv.ally worked out solutions. 

3. Manu.aliy checking the timing of sub-blocks in the simula.tor. 

4. Run.ning.the si::1ulat.or to obtain timing estimates. 

~. Running simulator v.-itb instrument.atiox: t~'"Iled on to capture dynamic exe
cution statistics. 
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The term ma.nuo.lly used above refer to the ad hoc approach of eyeballing (for steps 1 
and 3). hand calculations {step 2). or writing small, very special purpose software tools to 
accomplish the tasks. This approach is ,·ery tedious and error prone. but is often the only 
possible way at this phase since a paper desi£n is the only available basis. In the last step. 
the monitor facility for instrumentation should not affect the timing. 

Once the initial simulator is validated. it may be used as a basis for validating other 
simulation systems. The validntion process ca..'1 now be done with a gre?.ter degree of au
tomation. and thus achieving greater efficiency. However. great care must still be taken to 
understand the factors that cause discrepancies. 

The validation process of a multiprocessor ~ystem 1 sim.ulato:- involves the following steps: 

l. sequential execution on on.t: processor. This is done to test the processor 
module of the simulator and the relevant support modules such as assembler 
and loader. 

2. parallel execution on one proce$SOr. This is a degener~t-e case~ done t.o mea
sure the overhead of parallel executiox: . 

3. parallel execution on two processors. This is a special case for testing in
terprocessor communication with no interference since there is exactly one 
sender and one receiver . 

4.. parallel ezecu.tion on three or more processors. Trus js the general case of 
pa.raljel execution. w-ith potential io: interference OD shared resources such 
as the memory and com.."''lunication channels. It is also used to test the full 
extent o: the parallel execution mociel. As more processo:s are a.dcied to the 
con..-~guratio!l~ the satu:ation o: shareci resources will occu: ancl bottlenecks 
will appear. 

In this paper~ we present the application o! the first step o: ,-alidation o! a multiprocesso: 
simulato:~ using a pre,·iously ,-alidated uniprocesso: simulator as a basis. Since there are 
a:chitecture and execution model -..-a...-iation.s in the two simulators~ their results are compared 
for proximity~ not for exact equality. The follo,·.-i:og sections pro,·ide details on the simulators 
and the validation approach. 

3 Simulator Descriptions 

The .-alidation process is demonstrated using two simulators: l'Psim a.nd Nu.Sim. Both 
simulators pro,·icie a.n abstract machine engine ior fast execution o! the Prolog language. 
VPsim is a previousl~· w.lidat.ed simulator to be used as the basis of comparison for l\-uSim . 

, The term multiproccuor svsrem if used t.o include both the multiprocessor archit.ecture and the parallel 
execution model 

2 



3.1 VPsim 

\"Psim is a register t::ansier le,·el simulator for the \"LSI-PL:\f !ST);•ss). This chip is a VLSI 
implemem<nion of a high performance engine for Prolog. a modified version o{ the abstract 
machine proposed by Warren [\Yar83]. VPsim is written in tl1e C language. consisting of 45(10 
lines of C code and 9000 lines of microcode operations (register transfers. CPl.~ operations 

- and microbrancbes). 

To ,·erify VPsim 's functional correctn.ess. a wide ,·ariety of Prolog programs were run 
on \·Psim and compared with those obtained !rom runs on software Prolog em·iro:J.menu 
such as Quintus Prolog. Because \·Psim is microcode driven. the microst.ates automa~icaliy 
pro,·ide accurate timing. with each microstate being e~ecuted in exactly one processor cycle. 
Gate and transistor level simulations of the VLSI-PLM chip are compared against the results 
from \ "Psim. The fabricated chip bas passed an extensive testing process and has successfuliy 
e~ecuted a number of benchmark programs. \\'ork is in progress t.o interiilce the chip with 
a cache and memory board to be used as a coprocessor for the Si.!!\ workstation. 

From the pe:spective of this paper~ VPsim is a solid simulator that bas been weD tested 
and has been verified by the hardware. It is an a'·a.ilable resource that can be used as a basis 
for testing other simulation systems. 

3.2 NuSim 
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To ca:ry out our s-.udy in parallel e~ecution of Prolog, we need an accurate and £e:-:ible too~ to e 
be used as a t.estbed for new ideas. \\'e approach our stuciy from a syst.em designe:-·s poi~< of 
..-iew~ working with the complet.e syste~ fro::r. soft,~·a:e execution model tO ha:d,·.-a:e s·.:::>por~ 
for high performance. \\"e are particda:ly interestec in pra.ctica.l designs that can be bci1~ ::: 
reasol:labie time. For these reasons, we base our :11uh.iprocesso:r study o~ our knowledge c.:lC 
e:>:pe::ience w-ith sequential executio!! of ?rolog oo the VLSJ-PLM. ln addition t.o the Prolog • 
specific instructions~ the chip conta!::s a ::n: .. "!lber o! simpje geueraJ pu:pose jD~n·uct;o=~ a::.d 
p:O:mi-.ive support fo: s~·nchroni:z.atio::. This m~es it a good ca.nciidate building block for a 
muhiprocessor system. 

A siroular.o; ca.n best sen·e our interest. in hudl""are support for high pe:io:-:na.nce. The 
result obtained from a simulation run ::re£ects a composite effect of ma:1y intricate details 
that can not be easily formulated or calculated. By va:ying the parameters of the simulato::: 
the e..-lect that each pua.mete: has o:o o"erall pe.1o:ma.nce can be measured. 

\Ve have construct.ec a ne'"" simula.t;on system~ called Nu.Sim.. to facilita.te our studies o! 
puallel e:-:ecution models a.nd the UDcierlying multiprocessor a.rchit.ectures. This simulator 
i:-a.mewo::i: a.llo''"S ior the complete system !imula.tio:c: from the instructio:l set le"e} to tb~ 
memor~· architecture level "-itb caches and coherency protocols. The key feat.ur~ o! thl~ 
simula.tor fra.mewo::k is £exibilir~·. which allo"·s for e>..~e:csive instrumentation and co:otinual 
updates llld changes. The modula: design identifies main futures of the executio~ model 
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parallel ucculion 
model module ~m&naauoa 

OUipUI 

a.:1d the architectures being si:nulated as cleanly sepa:a.ted modules ,o;;tb clea.:iy cie:l::::~ed 

iut.erfa.ces. This al!ows io: easy modifications to the i:ocih·iciual modules to suppon ne,~· 
executio::::~ mociels al'ld architectures. 

!\.:Sim is an eve~i-C.=:iveD simciator~ ";tb tb~ events beii!g memo:-y accesses orcierec 
by t~:.:.1e. Tills te~iq".le simula.t.es a ::nultiprocesso:- '\!Sing c. 'lmiprocessor. !\ l!Si:n co::sisu 
of 16000 lines of C code and two smell :naciline ciepe::::~cieDt routiDes to save and resi..ore the 
co:-outiDe S'-aci:s. 1• is ia..i:ly portable. C\!..""!'entJ~· :~:ling u:1cie: ~.3 BSD t:~x o::t t:Oe \".~X 7£5 
c..!ld Sil!: 3, ana UDder System V t:Ii:·: o~ an lr.te1 356 perso:oa1 compute:. 

Figure 1 shows the structl!re of the J\uSim simula.<.o:. J,vo of tbe major modujes of 
the si:nuiat.o: are the processor module and the memo~ ~ysiem moduje.' Tbe processor 
module emulates the VLSI-PLM ins:ructio:o set: a.:1d is thus co:npuable to VPsi:::l. T!Je 
memo~· syste::o simulates a mv.lti [BelS5] me:nory a:c:hltecture, mtb eacb processor ha,;:lg 
a local cache a..nd all ca.ches co:n::numca.te mth ma.i:: memo~· '-ia a sing:ie bus. The caches 
a.re kept consistent '-ia a hardv.-are consisten~· protocol. lD the conte>."t of this pa.pe:: these 
two modu1es ior::n tile core of the simulator t.o '\"hich the '\-alicia.:ion process is applied. The 
ques:io:l a.t ha.::1d js: .bow well does !\uSim si:nula.te c. VLSI-PLM? 



3.3 Simulator Differences 

Althoufil both :\t1Sim auc \·Psim es~emiall~: simulate the YLSI-PL~,1 cr:ij). they were cre
r.teci ior Ye:-y ciifferen~ pt1!"J)O~es. \"Psi~1 w<t~ designed <t!' b simul11tor io:- a Yery specific 
microarcilitecture o: c; Prolog processor. De:.aJs of the \"l.S1-PL\l :njcro;..:·chitectt1re are 
"hard-\Yired .. into t!Je microcode. iu te:-ms of what micro-operatious are possible al.l.ci the 
cousrraints in packill£ the micro-operations into a micro-state. Oll the other band. :\uSirn 
was concei,·ed ~ il more ge11eraJ purpose mul:iproces~or simt1lator for s;u.c:tem in.t.egratior. .. 
clealing at c>Jllevels from hardware arcbirecrure to software execution model. lt "·ill be used 
to expe::iment ,.,.ith differeo~ architectures and cxecutiou mociel tracieoffs. 

B .. cause of the ciifferem goal!:' in creatiug tile simulators. there are a number of differences 
herwtcll them. These differerJces are identified to help us uncierstaud the differences iu pe::
io:·manc<> nt1mbe:s. The follo,·::ng are some differences between \"Psim and !\t1Sim (running 
sequen~ial cocie): 

• simulation level. \"Psim is ~ register-transfe:·-Jevel. cycle-by-cyde simule:· 
tio::::. while ?\uSim is an eYent d:-iveii simuiat.a: which step by memory access. 
The dock of \"Psin1 is increment-ed ea6 cycje. v:hi1e tile dock of :'\ t1Si:::n is 
incremerlted by a ..-cJue obtcJDed irom ta.ble loo:Kup. 

• cdr-codin&. \"?s::n uses cd,·-coa:ins. w~ile ::\t1Si:n does no':.. Cdr-coding is 
a co:::-!pressed represem.atio!: ior list elemellts s•.orec i:J coDsecuti,•e memo:-:; 
iocatio:Js. h recr.:.ires a bi; iO inciicate if the nex• iocation is the ca.-;- oi ti:le 
next eleme:Jt. Cci.r-cociing is eli::ni:oateci because jr.s complexi:y has ca.u~ec 
::Ja.::lY s-...otie i:mgs i~ the :::llcrococie wh.i.l~ co::n.::ioutiub i.i-.-:.1e to the overall 
ne:io::-rnance iDooe71. . . . 

• instruction fetch. 1\t1Si:::n cioes inst:-uction ierc± o~ demanc. a.:Jd accounts 
ti:r:1e ior al! fetches. \"Psim cioes prefe;chiug ... ·.-:i:.ici: does not cha:-ge time for 
all ietc.hes, b~-. may spe:::ld ti:ne to fetch ur.necessa=i!y . 

• memory system. :\usim has a cac:be/memo:-y system ,,]th rea!istic ,-aJues 
for memo::· a.ccess time. h acco~nu time for ca.cile misses and block tra.nsie:-s 
irom memory. \ "Psim has single (processor) cyde memory. 

• Prolog builtins. \ ·Psi:n treats so:ne Prolog bv.ilr.in..~ OLDguage predefined 
routines) as e>:ternal functions. a:nd sl:.ips da;.a outside the VLSl-PL;\1 pro
cesso:: io:: processing by the host. A '-a:ying a..:no~n• oi t:me is cha:ged io:: 
tbe da.ta shlpme~:n (3 to 10 cycles). bu-. no ti:ne is cb.a.:gec fo:- executi!:lg 
the exte.~a.l It1::J.Ctio::.. \ "Psi:n also ir:lpJenle::rm so:'l"le Projo£ b'cihins iD -:.!le 
lib:a:y usi::J.g YLSI-PLM assembly code. !\uS:m. o::l the othe: ha.Da. executes 
ill Prolog builtins inside the p:-ocesso:. and cha:ges time fo:- them as no:mcJ 
instructions. ln !\uSim. all buihins are written i:o C cocie. 

. .... 

• 

• 

• 

• 

• 

• 

• 

• 
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4 The Validation Example 

In this section. we will compare the perio:-mauce results of :\uSim to those of \'Psim ro see 
how closely ~ uSim simulates a YLSJ-PL:\1 processor. :\iany benchmarb were ru11 on both 
XuSim a.ud YPsim. and their execution ou~puts were compared fo:- functioual co::-rectness. 
A group o{ benchmarks were chosen for closer timiug e\·aiuation. These beiJcnmarks differ 
widely in static code size and dyna.'11ic memory usage aud execution time . 

We h<we identified a number of measurements for comparisou. The~· are: static code size. 
cycle count. simulation O\"erhead. operation count. and memory access count. Each type of 
measurement proYide a differeut perspective of the simulatiou results. helping to understand 
the similarity and differences bet"·eeu the two simulators and at tbe same time ,·alidatius 
the results o! !\ uSim. 

Table 1· Benchm.arJ: Code Si=e(; 07Jd De~c,-iutirm! 

Benchma:-k I !\5 code I \'P code I !\S.'\'P I Desc:riptio11 
bintree 181 19& 0.91 build a 6-nocie binar~· tree 

compiling the bintree progra.'!l 
compiling po::-tion o£ the compile:
towers oi hanoi for 8 disks 

compile:_bintree 11409 12485 0.91 
co::npile:~lml 11613 12750 0.91 

ha.IJoi 
mumath 
new chat 

nreYl 
palin25 
puzzle 

qs.: 
qs4_.-ne~a 

oueens8 I 
;·educe: I 

saca 1 

tal: I 
CO:ll 

con6 
n'oo 

91 

262 
8018 

16-f 
290 

115S 

2~9, 
457 
'lo· I _ .... ~ 

2Qj7 I 

2663 I 
69 ! 
55 
71 

4.1 Static Code Size 

82 
~51 

8~ !6 
109 
"·c ~~~ 

1049 

163 
397 
304 

2020 
:636 I 

77 1 

46 
4S 
69 

' . l ! . .!. 

1.0~ Ho!s~G.dte:-'s mumat~ problem for m.uiiu 
0.95 parsing sent.ence~ with the chat parser 
1.50 naJve reYerse a 30-element lis~ 
1.12 palindrome for a 25-cha:-act.e: st:-ing 
~ .1 0 soh·e e: puzzle 
1.53 quicksort on 50 numbe:s 
!.~3 Prolog me~a i:::lte:-prete::- ru ... ,.,ing qs.; 
0.97 &-queens pro'oiem 
1.00 a gl·aph reduce:- ior T-comoin.aior.s 
2 .0~ static data ciePencienc·; aLaj,·sis 
0.90 I soh·es e: recur;h·e}~· cie~oed function 
1.13 concatenation of 3- a.nc 2-eleme::::~t lists) 
1.15 pa.i:::-wise pa:-titioD of a 5-e1ement list 
1.03 compute 5:b fibonacci num'oe: 

Table 1 sho,~s tbe descriptions and the static code sizes (in number of lines) ior the same 
benchmark compiled using different options ior e~ecutior: under !\uSim (!\S) and \"Psim 
(\"P ). The three smallest benciJ.:na.:ks (con!~ con6~ e1d fibo) are listed separately at the 
bottom. The ratios l"·tSjVP show that static NS code and VP code are fo:- the most part 
well v:ithin 10% of one another. The ones tha.t shO\":" big '-a..ooiances are due to the lack of 
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cdr-coding in !\ uSi:n. which requires two im~ructiou$ to build an element ( ca: aDd cdr) o: a 
list. For examJJle. nrtvl builci1. a list oi 30 eiements before reYersing it aDd q~4 build~ a llSt 
of 50 elements before quick-so::-tiug i:.. 

4.2 Cycle Count (Simulated Time) 

Columns l'P cycles and NS/l'P cycles of Table: 2 show the cycle count of YP!im aud the 
ratio o! :!'\uSim/VPsim cycles. respectively. The hit. ra.tio column shows results for !\uSim 

• 

• 

• 

configured t.o a 4•\\·ay associative, 641{ byte cache with a block size of 16 bytes. e 
From these columns. we observe that: 

• Simulated time of !\uSi:n i~ quite comparable to VPsim ·(column NS/VP 
cycle.to ,·a]ue i!' approximately 1) fo::- the large benchmarh (compile:_bintre'!, 
compiler..plml. newchat. queensS. reducer, and t.ak). 

• :!\usim cyde count i~ wo::!'e than VPsim in the small benchmarks due t.o ]o,·: 
hit ratio· (cache cold start). For example. coni. con6. and fibo have the lowest 
hit ratios ~1ong the bench..~arks. r:1easuring at 88. 7%. 95. 79£., and 95.6~ .. 
respectiveiy. 

• Kon-cci:- coded lists also contnbutes a l;ttle to the degradatio~ i~ periormanc~ 
io:- a s:na.l1 benchmark such as n.ret·l which has ~ ciecent hit ratio of 98.39<.. 

4.3 Simulation Overhead 

• 

• 

• 

Although the time that the simulat.ors require t.o ru.D is la:gely i::Jdepe:'lcie:l< o: the co:-:-ec-:.ness • 
oi the results. i~ is interesting to compare simulation overhead of the two simulato:rs beca..:.se 
they simuiate at two different le,·els and follow ciifferent simulatioil me-:.hociologies. 

The following e>.-planations refer to Table 2: 

• Column VP $!JStime provides the sys1.em simulation time (the time taken to 
run the simulator Oil the host in seconds), alld column NS/l'P systime pro
,·icies the !\uSim to VPsim ra-.io. These numbers are obtained irom r..mcing 
simulations OD a st~!\ 3/60 , ... itb 16MB of memory. These values give a feel 
for the response time of the simulato:s, ranging from .5 sec tCJ 5920 sees (or 
l. 64 hours). 

• The ot•erh.eo.d columns ce pro,·ided as the ra.tio of cycle coun't (discussed 
in section 4.2) to !~·stem simulation time, assu.."'liD& lOOns c~~cle time fo:- the 
!\l;Sim processor and the VLSI-PLM chip. For example, a '·alue s~ch a! 2000 

• 

• 

• 



I t • 

(. 

• 

• 

• 

• 

I • 

• 

• 

• 

• 

• 

Table 2· Cvcle Covnt ond Sim.v.lation Time .. 

VP NS/YP NS VP 1\S/VP \'P !\Sj\'P 
Benchmark cycles cycles hit ratio ~ystime ~~·stime overhd o'·erhd 

bin tree 9875 1.30 9i.S 3.5 1.43 35-t-t 
compiler.bintree 2208006 0.99 99.5 529.5 0.87 2398 

·compiler..plm1 599i896 0.89 99.6 1-i26.4 0.75 2378 
hanoj i8884 1.50 99.9 21.4 1.17 2713 

mumatb 9690i 1.26 99.8 26.2 0.92 2i04 
newchat 6911008 1.09 99.9 1315.9 1.01 1904 

nreY1 21192 1.38 98.3 6.1 1.31 2878 
palin25 25026 1.08 98.6 7.4 1.08 2957 
puzzle 39456475 O.G7 99.9 5920.2 0.~3 1500 

qs4 43190 0.98 98.9 11.9 0.92 .,-.. 
-~~;) 

qs4.meta 348051 1.17 98.9 113.6 0.65 326-t 
queensS 19759942 1.04 100.0 3354.2 1.18 1697 
reducer 2543554 1.07 99.5 439.8 1.11 1729 

sdda 85382 1.14 98.5 28.0 0.93 3279 
tak 9398259 0.96 99.2 2461.5 O.G2 2619 

con1 256 2.96 88.i 0.5 6.00 19531 
con6 130i 1.52 95.i 0.7 4.29 5356 
fibo ???· __ .. ., 

1.44 95.6 1.2 2.50 5393 

in these columns means that it took 2000 seconds of the S"L~K 3/60 time to 
simulate 1 second of the VLSI-PLM. 

The worst numbers in the overhead columns appear in the three smaliest 
benchmarks con1. con6: and fibo. This is due to the initial O\'erhead oi sta:i
ing up the simulators. Also in the three smallest benchmarks. the o,·e::head 
of N1:.Sim is much higher thall VPsim (l. 73 to 2.~2 times ~·orse). This is 
because NuSim iakes more time to startup. being a multip::ocessor simula<.o:: 
and ha,·ing to assemble the bencl:unark int-o a.ssembiy code. For the large: 
benchmarks~ the NuSim is more efficient tha!! VPsim. Excluding the three 
smallest benchmarks. the average ove::hea.ds oi !\uSim and VPsim are 2203 
and 2555, respectively. Thus !\usi:n is 16% more efficient. 

• Even though NuSim simulates the VLSI-PLM at a slightly higher level thall 
the register-transfer level of VPsim. it is not that much more efficient be
cause VPsim microcode is "£at-:: whHe NuSim C-routines are hierarchically 
structured. The cost of structured code depends on the efficiency of the code 
generated by the C compiler ior subroutine calls and returns . 

1.10 
0.67 
0.85 
O.i8 
0.73 
0.92 
0.95 
1.00 
0.65 
0.94 
0.56 
1.13 
1.04 
0.82 
0.65 
2.03 
2.82 
1. 73 

SimulaiioD of the VLSI-PLM oD a st-:-!\ 3/60 is more than 2000 times slower than actual 
execution on a VLSI-PLM because of the follomng reasons: 
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• Dato. and control trar1sfers are processed sequentially. In a real machine. it 
would be done in parallel. The YLSI-PL]\1 bas a two stage pipeline. with 
the dat.a unit and microsequencer exec.uting in parallel. The VLSI-PL?\1 data 
unit is also capable of doing 8 simultaneous transfers in one cycle. 

• The host processor is less po"·erful than the target processor for symbolic 
computation and the host memory access time is slower than the target 
memory access time. The St~:\ 3/60 that we use has a 20!\IHz MC6SO:?O 
and 16~IB of main memory (300ns access time). There is no cache. The 
\.LSI-PLM is a complex processor with tag processing capability. 

• The code generated b~- the C compiler affects the execution time of the host. 
For ·example. inefficient subroutine calls and returns penalize the hierarchical 
structure of NuSim C code. 

• The presence of extensive instrumentation code in the simulat-ors for extract· 
ing pe:-fonnauce results siows down executio:l on the host. 

• The operating $~'stem characteristic of the host can greatly aJfecr perfor
mance. The SVS 3/60 runs 4.3 BSD l:nix a.nd ,·inual memory. The CPC 
accesses a shared file sen·er co~necred '·ia Ethernet. and thus pageiaults are 
''ery e"-"J>ensive. 

'!he factors abo,•e blenc t.ogether i!l the real uniprocesso:- system anci it is difficul~ ;,o 
measure them separately. Thls is the rea.so~ why a simuiat.or is :oeedeci io: e:>.-pe:ime:n:.a<.io~ 
with i:odh·idua! syst-em parameters. Fo:- simulating a mui~:processor co~Sguratio::., the e,·e:n 
d::,·en approach of l'\uSim may be accelerated by u~e oi' a ia.st.e: uniprocesso:, o: a multi· 
:processo:- host. as demo:ostrated ·oy [\\'ilS7. Jon66}. For tile greatest efficiency i~ sir.1-.;atio:::. 
c: direct e::ecution. approacb such as the one proposed by Fuji:noto IFC58] may be usee. 
"here the benchmark is compi1ed into code directly execm.able by the host. iustr~me:::<atiou 
counters are insened by the compiler into the code to measure performance io:- the ta:get 
machine. 

4.4 Operation Count 

In Prolog. the metric Logical Inference$ Per Second in units of 1000 (KLIPS) is ofteD used for 
measuring the pe:i'ormance of Prolog e:ogine~. A logical inference can be ciefined as a Prolog 
function call, which indude VLSI-PLM i:ostructions co.lis, executes, and escape~ for Prolog 
builtins. This metric is quite inaccurate siDce the logical i:Uerence can :oot be measured 
exactly. Tbe amount o! wod: done by a Pro1og function call depeDcis o~ the n.u.mber and 
type of arguments in Prolog. For parallel executiot~. the KLIPS mea.sureme.:1;: has even less 
significaDce. Multiprocessors may do more ''"ork but do not necessa..··il~- achieve the final 
result aDY ia.ste:! i! the additional computa.tions do not contribute directly to the result. 

Q 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Table 3: Looical Inference Covn t 
:t\S NS !\S ,-p YP VP T\Sf\~P 

Benchmark calls escapes KLIPS calls escapes KLIPS KLIPS 
bin tree -- 151 177 128 101 232 O.i6 I I 

compiler ..bin tree 15113 i186 102 20886 2539 lOG 0.96 

compiler _plml 4259i 22318 122 67060 3992 118 1.03 
hanoi i67 i65 129 10:!2 511 194 0.67 

mumatb 1211 82 106 1221 73 134 O.i9 
newchat 66905 60 89 66911 55 97 0.92 

nre,·l 497 2 li1 497 3 236 O.i2 
palin25 228 97 121 -. 323 3 130 0.93 
puzzle 19i96 6016 10 21800 4015 - 1.50 I 

qs4 381 231 144 610 3 142 1.02 
qs4..meta 2694 720 84 3795 3 109 0.77 

queens8 i645i 151736 111 228009 165 115 0.96 
reducer 15091 6305 i~ 18815 2491 84 0.94 

sdda 552 408 99 715 249 113 0.87 
tak 63609 111317 195 174924 3 186 1.05 

coul 4 2 79 ' 3 273 0.29 ':1 

con6 6 30 181 6 31 283 0.64 
fibo 15 23 118 36 3 175 0.6S 

Table 3 shows the number of normal calis/executes and Prolog builtin invocations (o:: 
escapes). Since VPsim does calls to libra:y routines for some oi the builtins, it has a much 
higher calis count and fewer escape count than Nl:Sim. ln order ior KLIPS to be a useful 
measure. the condition xst:All + .'!\" Se·CIJ~ :::::: VPCGII + 1"PeiCGpe sbould bold tr.J.e. Tbe iollo,·:ing 
results sho''" that this condition does noi bold, due to tbe implementation ,-a ... ··iations o! 
N~Sim and VPsim (described in section 3.3). 

Each of the KLIPS columns is calculat-ed by 

where cycle$ is obtained from Table 2. The unit. for calls and escape.!: is the logical inference. 
The constant factor of 10000 comes from the KLIPS unit conversion: 

1 !\LIP= 10
9 

nsec"' 1 cycle • 1 ]{ 
1 .5:ec 100 n~ec 1000 

Tbe NS KLIPS and l'P KLIPS columns differ widely: showing once again the problem '~-lth 
tms metric. For compa...-ison purpose: the timing iniormation in table 2 is mucb more useful 
than this metric . 
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4.5 Memory Accesses 

Table 4 compares the number of memory acces~es made in running the simulatiom on f\uSim 
and the \'Psim. l'P to~_ ref~ gives the total count of memory reference!: to give a sense of the 

• 

• 

order of magnitude of memory accesses. which range from about 100 to oYe:· 12 m!lliori. The e 1

' 

next 4 columns show t.he ratios of accesses between ?\ uSim and \ "Psim for total references. 
instruction fetches, reads~ and writes. 

Table 4.: Mcm.or-u Re(cren.ct~ 
YP !\Sf\"? YP 1\Sf\'P VP ?'.5/\'P YP 

Be11chmarl: total..refs ref!' iferch ifetch reach read!' writes 
biutree ~COl 1.19 '>"'>--..J-1 1.03 l&GS l.SO 150G 

compiler .biutree 1259775 1.07 4704C4 1.18 42Gll0 l.OG 3C320-i 
compiler_phnl 3511904 0.9G 13S079G 0.95 llG1595 1.04 969513 

ha.uoi 51S11 l.3S 21441 l.C5 13776 1.2G 1G594 
mumatl1 53052 1.2~ 1E25S 1. iS 18G39 1.03 1Gl55 
newcha.t 3695155 1.16 1376937 1.50 115SO:,OG 0.95 1159712 

nreYl S~73 
, -, ..... ~ .. 4812 1.97 201'; 0.81 1G.;4 

palin25 12759 1.10 5695 1.31 ~114 O.S9 ::?950 
puzzle 1160044{i O.Sl 771251 1.59 9498G5; 0.72 1330541 

qs4 24302 0.93 11141 1.0-: 5509 O.S7 7652 
qs4..meta 197469 1.13 70542 1 . .:2 GlG'i1 0.97 6~256 

queeDsS 1235~397 1.09 5220239 !.25 4248614 0.!?9 2SS55·H 

reducer 13G705S 1.14 4C22S5 1.46 5071-44 0.99 397659 
sdda 48313 1.13 17831 1.33 1G752 l.OS ::5~30 

t-al: 597923S 0.63 3291760 0.66 2033643 :.1S J.653S35 
C0%:.1 P.: ., .. 55 2.07 -- 2.S.4 22 -··· .:.• 

cone 499 , --.... .:>~ 163 1.84 170 l.SG 166 
fibo 1207 l.lO G.;S 1.13 ., •. ~ -·>J 

. ., . 
J.._ ... 3'. 

\\'e observe the follo"ing: 

• ~uSim fetches instructions on demand, while VPsim does prefetching. !\uSi:n 
instructions are encoded in word streams, ,..,.ith the opcode and ea.ch opera.Dd 
taking up o:::1e 32-bit word. VPsim has the code stored in string tabjes. but 
the microcode generates prefetch signals to simulate a:n encoding of S-bit 
opcode a.:1d 32-bit a:gumetots. 

• The total reference ratios a.re for most ~.>enchma:ks a:e about 1. The big va.ri
a.o.ions are for conl (:2.11)~ conG (1.58)~ a:ad nrevl (1..31). The va.:1ations are 
perfect exa.:npjes o! worst case perio:-ma.nce ''l"ithout cdr-coding (in ~\;.Sim), 
which would require more instruction ietc.hes, reads and m-ites. Fo:- the 1a.rger 
benchmarks, cdr-coding makes little difference. 

• The if etch ratios show that the word-encoding of !\ uSim require more ietciles, 
as eA-pected. However. for t.IJ)~ ~uSim fetches much less (iietch ratio oi 0.66) 

, , 

1\Sf\'P 
"•rite~ 

0.82 
0.93 
o.ss 
1.12 
1.03 
0.97 
l.OG 
0.99 
0.99 
0.7~ 

0.9G 
0.96 
O.S7 
0.95 
C.9C. 

•. 551 
l.O.f 

0.95 . 

• 

• 

• 

• 

• 

• 

• 

• 
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• 
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• 

• 

• 

• 
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becau~e ma=:· subtractions are done and :\uSim use the builtin inst:-uc~ion 
is/2, while VPsim does a call to the library routine su.b/3 which require a 
longer sequence of simpler instructions . 

5 Discussion 

Simulation is an important part of system integration. In this paper, we have sho,·:n a 
methodology for ,-alidating the simulator of a multiprocessor system. '\~e applied this scheme 
t.o validate the processor a.od the memory module of a multiprocessor simulator ( !\ uSim) 
by comparing it with a pre,·iously ,·alidat.ed uniprocessor simulator (VPsi:11). Benchmarks 
of various sizes were execut.ed sequentially on both simulators, and different performance 
measurements were e\·aluat.ed and compared against one another . 

Because the simulation result is a composite result of many factors, we chose a num
ber of measurements for comparison to obtain different perspectives on performance and to 
understand the reasons of the Yariations. The chosen measurements were: code size, cycle 
count. simulation overhead. operation count. and memory access counts. The different mea
surements indicate that the Yariations are significant only for the small benchmarks, where 
startup time and slight model differences are a big percentage of total execution time. For 
large programs. NuSim is within 1071. of the VLSI-PLM timing. Perhaps more important))·, 
all \·aria.tions CaD be accounted for. 'Ve can thus conclude that !\uSim is represeno.ative of a 
VLSI-PLM in a multiprocessor system. '\7itb NuSim, we can continue our study of imple
men-:.able multiprocessor systems for parallel execution of numeric and s~·mbolic progra:m, 
using jogic programming. '\:e also believe that the chosen measurements ca.n be used in 
,·a.iiciating othe:- simulation syst.ems . 
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