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!N'rERNAL WAVE WAKES ·OF A BODY MOVING IN A STAATIFIED FLUID 
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I. INTRODUCTION 

WhP.n a srip travels with constant veloc:i.ty along the surface of 

a liquid, it creates behind it a ~1a'J<P which is called a "ship <1a.ve" 

pattern. A similar pattErn is produced by a submerged object moving 
parallel to the surface. The usual analyses of such patterns apply 
to liquids of uniform density in which only one type of propagating 
wave, called a surface wave, is possible. We shall consider ship 
wave patterns in horizontally stratified liquids in which one or more 
propagating internCJ.l ~1aves ex:i.st in addition to the surface wave. 
Keller and Levy (Ref. 1) have s~own that in any such liquid the ship 
wave pattern is a superposition of separate patterns, one for each 
propagating internal or surface wave. They have also obtained formulas 
for the wave height and particle velocity as functions of position 
throughout the pattern. From these formulas one can see that for a 
~ubmerged object the patterns corresponding to some of the internal 
waves can have larger ampl~tudes than that corresponding to the sur­
face wave. Therefore we shall examine the internal wave patterns in 
detail for a simplified, out realistic density profile in which in­
finitE>ly many propagating internal we.ves occur. Previously Hudimac 
(Ref. 2) studied the special case of a two-layer fluid in which just 

on2 propagating internal wave exists. 
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II. WAKE GEOMETRY 

To describe the wake of a horizontally moving object, we replace 

the object by a point which we call the source. We introduce cartesian 

coordinates in the horizontal x,z plane cnntaining the source, with 
the x-axis along the path of the source am! the origin at the position 

of the source at time t = 0. If the speed of the source is -v then 

the coordinates x
0
(t'), z

0
(t') of the source at time t' are 

:X (t') = -vt', z (t') = 0 
0 0 

(2.1) 

We wish to detet~ine the wake corresponding to waves of a partic­
ular type emitted by the source, i.e., to the surface wave or to the 

n-th internal wave. We suppose that the source emits waves of this 
type with all frequencies w and that the \'lave has a definite propaga­

tion constant or wave number k. It is converient to express Q as a 

function of k, 

w ::: w(k) (2.2) 

The functional relation (2.2) is detel~ined by the density profile, 

and will be considered later. 

Let us consider the phase -~(x,z,k,~) at the point x,z at time 
t = 0 of the wave of wave number k emitted by the source at time -T, 
T ~ 0. If the \'lave is emitted at phase zero then 

(2.3) 
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Here r is defined by 

We seek those values of k and ,. for which r/J is station-3-ry. 'J:'t,is 

re~uirement yields the the two con~itions* 

(2.5) 

0 = -~ = kr - w 'PT "i 
(2.6) 

From these equations we find that 

(2.7) 

v(x -x)/r = c = wfk. 0 . . 
(2.8) 

Here we have introduced the group veiocity c
9 

and the phase velocity 
c defined by the last equalities in (2.7) and (2.8). Equation (2.7) 

shows that the wave from the source x (-T),O travels to x,z at the 
0 

group velocity c • Equation (2.8) shows that the trace on the x-axis, 
g 

of the str?.ight li:te perpenc1icular to the ray from x0 (-T) ,o to x,z, 

travels with the source velocity -v. 

The two equations (~.7), (2.8) determine the values of k and,. 

which make ¢ stationary. ~~en these valu~s are used in (2.3), (2.3) 
\oJill yield the stationary value of the phase at each point x,z. These 
results are just Equations (11.5) and (ll.£) of Ref. l, which we l~ve 
red··::'ived in a simpler way. We now use (2. 7) to w!'ite ,. = r/c9 r1nd 

(2.8) to write w = kc. Then we can rewrite (2.3) as 

-¢ = kr(l - cfc ) g 

~Letter subscripts denote partial differentiation. 
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t 
Next (2.8) and (2.4) yield, if c ~ v, 

(2.10) 

From (2.1) and (2.7), 

(2.11) 

Let us now eliminate x
0 

from (2.10) by means of (2.11) and then 

eliminate r by means of (2.9). Thus WP. obtain .--;_...----=-

[
1 - (cc/v2

)] _ [c9 ~ 1 - (c/v)
2 J 

(rpv/k) c - c ' z - (r/J/k) c - c 
g g 

(2.12) 

Thus if c ~ v, (2.12) is the parametric equation of the wavefront 0 = 
constant, where r/J is the station&cy value of the phase and k is the 

parameter. 

6 
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!II • i-ONG WAVES AND THE FAR WAKE 

Suppose that for k small, the funct:i.on w(k) in ( 2. 2) has the pow­

er series expansion 

(3.1) 

Then 
(3.2) 

(3. 3) 

Now (2.12) becomes 

(3.4) 

.• .] (3.5) 

It is clear from (3.4) ·and (3.5) that for long waves, for which k is 

small, both x and z are large. 

7 

r 



~ ~-

-, 

.. 
' 

! 
! 
I 

To eliminate k we solve (3.4) fo~ k and substitute into (3.5), 

obtaining 

z = + ..• ( 3. 6) 

If w(k) is not analytic around k = 0, (3.1) is not valid and 
therefore (3.6) does r,ot apply. This is the case for ordin~ry surface 

waves in water of constant density a"'cl infinite depth, since for them 
1, 

w(k) = (gk)?.. Then (2.12) becomes 

~ 
z = *(l - +.) 

\ v !.< 
x = -2¢v ~ ( 1 - _£_ ) , 

(gk) 2v2k 

(3.7) 

From (3. 7) we see that k must be restricted to the range k > gjv
2 

in 
o~er that z be real, so a smali-k expansion is not applicable in this 

case. 
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IV. SHORT \>lAVES AND THE NEAR WAKE 

For short wav~s or large k, we assume that w(k) has the asympto­

tic expansion 

(4.1) 

Then (4.2) 

(4.3) 

Upon using (4.2) and (4. 3) in (2.12) and (2.B) \lle obtain 

X = [. 

-2, -1 - ':t ) -3 1-v .NK -N2k-- •. , (2N2k + 
(fjv /k) _] _

3 Nk .. - 3N
2
k - ••• 

[ 3N2 -2 ] 
~ c~v/N)l1 + ~ k + ••• • (4.4) 

z = r(2l
,, -3 -5 ( -2 2 -2 -2 -4 
•2k +4N4k + ••• ) 1-v N k +2V NN

2
k + 

(<b/k) -1 -3 . . 
Nk - 3N2k - , •• 

. ~ ... ) ] 

(4.5) 

Solving (4.4) for k and substituting the result into (4.5) yields 

z = 2N2 fJV 3/2 . 
(:?7v3N2r/l)~ (x - T) + ••• (4,6) 
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From (4.6) we see that each wavefront ~ = 
¢v/N on the path z = 0. 

constant has a cusp at x = 

In the case of ordinary suz·face waves in water of constant density 
and finite or infinite depth, (4.1) d0es not hold so neither do~s (4.6). 

For infinite depth (3.7) yields fork large, 

+ ••• (4.7) 

Then all wavefronts enter the origin x = 0 on the path z = 0. The 
result (4. 7) 'also holds for the finite depth case when the density is 

constant. 
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v. EXAMPLE 

A. THE DISPERSION EQUATION 

Let v(y) be the y dependent factor of the vertical component of 

fluid velocity in a time hannonic wave of artgular frequency w and 

wavenwr.ber k il1 a fluid of density p (y) and depth h. Then v(y) 
0 

satisfies the ~quations 

vyy g-1N2vy + k2(w- 2N2 - 1) v = O, 0 ~ y ~ -h 

vy(O) = k2w- 2gv(O) 

v(-h) = 0. 

(5.1) 

(5.2) 

(5.3) 

(Ref. l, Eqs. 5.14- 5.18). 
fined by 

2 II II II 
Here N (y.) is the Vaisala frequency de-

(5.4) 

This problem has nontrivial solutions only if k
2 

is an eigenvalue. 

We .shall take for p
0

(y) tha following function 

(5.5) 
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The layer between y
1 

and y
2 

is the the~1ocline, within which N
2 

is 

constant, and outside it N2 = 0. Now the coefficients i~ (5.1) are 

piece-wise constant so (5.1) can be solved explicitly. If we ignore 

the term g-1N2vy in (S.l), the solution is simply 

v(y) = sinh (ky + ~) 

v(y) ~ C cos k~y + D sin k~y y1 ~ Y ~ Y2 

v(y) = B sinh k(y + h) y2 ~ y ~ -h 

Here v is defined by 

Condition (5.3) is satisfied by (5.8), while (5.2) yields 

2 tanh ~ = w /kg 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

At y
1 

and y
2 

both v and vy must be continuous. This reqcirement 

yields the four cunditions 

c cos kvy1 + D ~in kvy1 = sinh (ky1 + ~) 

c cos kvy2 + D sin kvy;~ = B sinh k(y2 + h) 

-\1 c sin k~y1 + vD cos kvy1 = cosh (ky1 + 

-v C sin kvy2 + vD cos kvy,., = B cosh k(y2 :.! 

We now combine (5.11) and (5.13) to obtain 

Simi.lar.·ly we get from ( 5 .12) and ( S. J.4) 

12 
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[C cos kvy
2

+D sin kvy2]cosh k(y2+h) 

+v(C sin kvy2-D cos kvy2]sir~ k(y2+h) = 0 
( 5.16) 

In order for (5.15) and (5.16) to have nontrivial solutions for C and 
D, the determinant of the coeffici~nt matrix must vanish. This yields 

the dispersion equation 

ta~"l kv(y
1
-y

2
)[l+v2•.:anh (ky1+cr) tanh k(y2+h)] 

(5.17) 

B. FAR WAKE 

Let us examin~ (5.17) for k small, tentatively assuming that 
w ~ kc(O) ask t~~ds to zero. Then {5.9) yields v- N/kc(O), (5.10) 

yields cr- kc2fg ~nd {5.17) becomes at k = 0 

. Nc-l[yl-Y2-h+(c2/g)] 
tan [ (N/c)(y:Cy2 )J =- 2 ( 5.18) 

1 + ~c- [y1~cc2/g))Cy2+h) 

This ~s an equation for c(O) which has infinitely many solutions which 

we ~r~ll call cn(O), n = 0,1,2, •••. To describe them we write 

c (0) = Ns 
n nn + a ' n 

n - 2 < an < n/2 (5.19) 

Here we have introduced the thennocline th.;.ckness s defined by 

(5.20) 

Then (5.18) becomes the following tr3nscendental equation for a~: 

tan a = n 

13 
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For n large (5.21) yields 

s(h-s) 
an ,..., - _n_ey.::.l~(:;..h;..:+:..!y-2 .... ) 

If h >>sand h >> \y2\> (5.22) becomes 

s an ,..., - ---- , n >> 1 
nnyl 

For n = O, (5.21) becon1es 

(5.22) 

(5.23) 

( 5.24·) 

If \y
2

1 <<hand Nfs/g « 1, we can reolace tan a0 by a0 in (S.24). 

The resulting biquadratic equation has ::.s its t\~o positiv<;; ~ol.utit'ilS 

Ns 
a~ •• (gh)?i 

(-s-)~ 
-Yl 

(5.25) 

( s. ?.6) 

Let us now use the results (5.23), (5.25), and (5.~G) in (S.l~) 

and introduce the effective gravit~ g' defined by 

Then (5.19) yields 

c~(O) ,., (gh)~ 

c~(O) - (g'\y1 1 )~ 

14 
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3ince w . ...., l<c, it follc~<•s that c {0) = c(O) fer each mode. g 

C NEA~ v/T-.KE 

(5.30) 

No~" we st:all examin~ (5.17) fer k lar-g1:, assuming that w "'N as 

k te1-.ds to infinity. Then ( S .17) Le~ornes 

tan l<vs - -2v 
(5.31) 

Sin~;e " is small, the solutions of (S.3l) are 

kvs -~ n-:- •. 2v 
(5.32) 

By. using the definition (5.9) i.;f '-' we obtain frc.m (5. 32) 

w = N [1 + (k~:2) 2r~- N [l- ~(k~:2) 2 ]- N - N2k-
2 

- ... (5.33) 

2 Here N
2 

= (nn/s) N. Therefore from (5.33) we obtain 

( 5. 34) 

(5.35) 

These re5ults hold only for n # 0 as we see from (5.32). 

D. SURFACE WAVES 
If w tends to infinity as k does, we must proceed differ~ntly. 

Then v 2 ...., -1 and ( 5 .17) become's 

tanh ks (l-tanh(ky1+~)tanh k(y
2
+h)) "'tanh(ky1+~)-tanh k(y2+h) (5.36) 
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Thus 

1 - tanh (ky
1
+a)- tanh (ky1+a) - 1 (5.37) 

It follows that~ must tend to+~ ask does. Then (5.10) yields 

. ~ 
w- (kg)"' (5.38) 

This is the result for the surface wave. 

E. DEEP OCEANS 

In the oceans ~he depth is so large that kh >> l even for the 
smalles~ practical value of k. In this case it is possible to simplify 

some of the preceding results. For example, in (5.17), we can set 
·tanh k(y 

2
+h) = 1 + • • • . • Then the solution of ( 5 .17) for small k can 

be c;arried beyond the leading tenn given in ( 5. 29) and ( 5. 30) with the 

result 

Ul: n = 0 (5.39) 

( 
I • ~ 

g S) k[l - S k ) 
nn 2:-:2 + • • • ' n·n 

n >> 1 (5.40) 
w = 

In writing these ~esults we have assumed that wi/9IY1 1 << 1, since in 

the oceans this number is typically of the order 10-3. 
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VI. \'/AVE HEIGHT DUE TO A MOVING SOURCE OR DIPOLE 

The wave height Tl (x,z,t) has been determined for a unit 
source 

point source of fluid moving with the constant velocity -v at the 
depth y

0
• Th~ asymptotic form of Tl far from the source is sourct-

1 " B T1 (x+vt,z) ~ -r- '- 2 2 ~ ~ cos (kr-wT+n/4) 
source r~ (v -c ) v 

(6.1) 

(Ref. 1, Eq. 11.14). The sum in (1) is over the modes of wave propaga­
tion, and for each mode over the roots k and T of (2.7) and (2.8). The 

functions ~tk) and c{k) = w/k a~e deteTmined for each mode as in Sec­

tion 5 and B is given ~y Ref. 1, (10.9). 

2 ~ -1 [w2-N2(C)]w(yo) 
lnr-1 w ----:l?.t"-2,_...--·---=----

ww [w·-N (O)]wk(O) -gwky (O)] 
B = - (6.2) 

Here w(y) = p
0

(y) v(y) where v(y) is a nontrivial solution of (5.1) 

and (5.3). 

If the source is a dipole of unit strength oriented along its . 

direction of motion, the wave height Tid. 1 can be obtained by differ-
~po e 

entiating. (6.1) with respect to -x. Only the phase -f/J of the cosine 
need be differentiated and in view of (2.5) its derivative is -krx + 
WTx· Alternatively we can obtain -f/Jx from (2.12). In either way we 

obtain 

k(c-c ) B 
Tldipole(x+vt,z) ,..... - :E· g 2 2 ~ sin (kr-wT+i) (6.3) 

v(l-cc v- )(v -c ) 
9 

17 

; 
' ..• , 
J 
~ 
; 



------~-

,--~--···-

·~ 
' 

;-

. 
l· 

With the help of (2.3), (2.10) and (2.13), the aquations (6.1) 

and (6.3) can be written in the shorter forms: 

1) . = L; + cos (¢-n/4) 
source z~ 

·qd. 
1 

="'B¢r sin (0-n/4) 
~po e L.. xzv 

(6.4) 

(6. S) 

In the example of Sec. V, we have N(O) = o, vk = y cosh (ky+a), and 

vky = cosh (ky+a) + ky sinh (ky+a). Then (6.2) becomes 

B = w l~n 2 ~~ Po<Yo)v(yo) 
g cosh a nKww p0(o) 

(6 .6) 
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VII. ILLUSTRATION 

A. NORMALIZATION 

Figur.es {~) and (2) are drawn for a density distribution consist­

ing of a 11 thermocline11 of thickness s = y1-y2 within which N
2 

is con­
stant, and outside which N2 = 0 (i.e., the case treated in Section V). 

We collect the dimensionless formulae used in the construction. All 
distances are normalized with respect to the thermociine thickness s: 

X = x/s,. Y = y/s, Z = z/s; X = ks (7 .1) 

II II tl 

and all frequencies to the Vaisala frequency N, so that 

0 = wjN, C = 0/K = cf(Ns), V = v/(Ns) (7.2) 

F = v/c = VK/0 is a 11 Froude Number," measuring source velocity rela­

tive to the speed of internal. waves. We consider only F > l.. 

The dimensionless amplitude along any line of constant phase 

¢ = 0, 2n, ..• is given by 

where 

T}source 2·· ~ B 
5 = Ns572 z~v 

11dipole 
s 

19 
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(6.5 1 ) 

(6.6') 
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The expression p (y )v(y )/p (0) in (6.6 1 ) depends on the depth of the 
0 0 0 0 

source, y = sY , in accordance with (5.5) - (5.8). The simplest case 
0 0 

is that of the source above the thermocline, Y
0 

~ Y1 in which case we 

find 

(7.3) 

B~ NEAR WAKE 

Equation (4.6) with N
2 

determined by (5.33) can be ~Titten in the 

dimensionless form 
3 

z ,.., ...!P_ 12(X-¢N) 12 
nTT 3¢N 

(7.4) 

Here~= 2n, 4n, ••• , and r. = 1,2 ••. designate successive crests for 
various modes. The cases ~ = 0 and n = 0 are bEyond the scope of the 
present approx~mation. The wave crest can now be constructed for any 

specified n and ~· 

For given n, 0, X, and Z, the amplitudes can be obtained as follows. 

First we eliminate N
2 

bettoteen (4. 3) and (4. 5) to obtain z = cg~/N + ••• 
with c

9 
determined by (5.35). This leads to the dimensionless formula 

2 3 
Z ,.., 0(nn) (K+2) 

from which K can be calculated. Furthermore from ( 5. 3 3) and from the 

definition of F we have 

n,.., 1- ~(Rh)2 (7,6) 

F = VK/0 (7.7) 
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By differentiating (7.6) we find 

(7 .8) 

I 
C. FAR WAKE 

I Equation (3.6) can now be written 

..,.. 
I .. where F

0 
and X

0 
are given by 

F =~ 
0 ;ul 

(7.9) 

( 7 .10) 

(7.11) 

The mode n = 0 correspond3 essentially to a thermocline displacement, 
and the ~odes n = 1,2, .•• to thermocline di~tortions. We need to tr.eat 

these cas~s separately. 

Frobl (3.1), (5.39) and (5.40) we find 

wl = 'I . ~ (g Y1l) s w2 = Cg'IY1 1 )~jy1 \/2 for n = 0 

1 
(g 's) ~s(nn)- 3 

w = (g's)'::!/nn, w2 = for n >> 1 
1 

By using (7.12) and (7.13) in (7.10) we obtain 

We now define o{n) by 

F = nnV for n >> 1 
0 

o(n) = 2 for n = o; o(n) = 1 for n » 1 

(7.12) 

(7.13) 

(7 .14) 

(7 .15) 



Then from (7.11) - (7.15) we obtain 

(6V2F 
X .,. ---... 2,..;;.o_ 

0 o(n)(F
0
-l) 

We now use (7.12) and (7.13) in (3.5) to get 

6¢F (F2-l)~ z __ ....;:o=--71o~--
V2K2 

(7.16) 

(7.17) 

From (7.17) we can find Kin terms of Z and ¢. Then £1~1~1 (3.39) and 

(5.40) we find 

(7 .18) 

Differentiation of (7.18) yields 

(7.19) 

D. RESULTS 

vJI:! have computed wakes for the following cases: 

Source depth Yo = 30 m 

Thermocline depth yl = 50 m 

Thermocline thickness s = 10m 

" U !I 10-2 sec-l Vaisala frequency N = 

Figura (1) and (2) portray the near walc..e for- the cases V = ./m and J.O, 
corresponding to source velocities v = VNs = 0.316 m/s and 1 m/s, 
respectively. The X-axis extends from X = 0 to 200, corresponding to 
2 km ft~ scale; the horizontal Z-axis is drawn to the same scale. 
·With increasing v, the wake field is rapidly concentrated along the 
source axis, particularly for large n and f/J. \4e have (improperly) 
used the n >> .l. approximation for the cases n = 1, 2. The case n = 0 
is Deyond the scope of the p~sent treat~ent for the n~ar way~, and 
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the far wake is off-scale in the example shown. The comp~ted source 
functions diminish rapidly with distance from the source axis. Unlike 
the case of a surface (Ktlvin) wake, internal sources moving at quite 
moderate velocities through typically stratified fluids produce in­
ternal wakes that .3.re sharply concentrated along the source axis. 
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Fl GURE ) • The near field for a source velocity V = 3. 16. The 
dashed cur.res marked <P= 0 correspond to the far field solution 
and are sketched for orientation only. 
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ABSTRACT 

The internal waves produced by either a moving body or the 
collapsing wake behind a moving body in a stratified fluid are calcu­
lated asymptotically (at large distances behind tr~ source) on the 
hypotheses of s~ll disturbances, the Boussinesq approximation, and 
the slender-body ap9roximation (the transverse dimensions of the body 
and wake are small compared with the wavelengths ot the significant 
internal waves). 

Explicit results are given for two, complementary models: (a) 
a constant-N model, in which the density gradient is'constant and (b) 
a ~ ther.mocline model, in which the density gradient peaks sharply 
in a thin layer and is elsewhere negligible. The internal-\<ave spec­
trum is continuous in (a) and discl'€!te in (b); however, only the domi­
nant mode is included in the explicit results given for (b). 

A WKB solution also is given for a thermocl~ne model. This 
approximation does not give an adequate representation of the dominant 
mode but does provide estimates of the contribut~ons of ~he higher 
mode~; that are neglected in the thin-thennocline model. These contri­
butions of the higher modes that are neglected in the thin-thermocline 
model. These contributions are t~~ically negligible relative to that 
of the dominant mode in the neighboUl.'hood of the maximwr., fl~ee-surface 

disturbance. 
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I. INTRODUCTION 

We consider the disturbance generated by a horizontally moving 
source in an .incompressible, inviscid, vertically stratified fluid. 
This disturbance comprises the ~ field, which dies out more or less 
rapidly with distance from the source, and the radiated field which 
consists of internal gravity waves. We focus primarily on the radiateo 
field, but emphasize that there may be situations of interest in which 
the amplitude t•f the near field is not small compd:.--ed with that of the 
radiated field. LT'l particuJ.ar, the radiated field in <1 steady flow 
(uniform translation of the source) appears only in the lee of the 
source, so that the near field must be taken into account in calcu­
lating the disturbance forward of, or directly ovel', the source. 

Tha appropriate similarity parameter for the generation of inter­
nal waves by a moving source is the reduced frequenc~ (or inverse 
Froude number) 

0 = Nt/U (1.1) 

II t1 II 

where N is a characteristic value of the intrinsic (or Vaisala) fre-
quency of internal waves (see Eq. 2.9 below), tis a clVtracteristic 
length of the source, and u is its speed. The frequency spectrum of 
the internal waves is (0, N ). The intensity is tunically a rapidly max · Jr 

increasing function of 0 (and, therefore, a decreasing func~ion cf U) 

for 0 < 0 , say, where 0 is a characteristic value of 0, of order c c 
unity, at which nonlinear phenomena intervene. Intarna1-wave genera-
tion is wenk for 0 >> 0 , and as 0 ... "" (U .... 0) the flow tends to a 

c '" 
~type, in which a horizontal column of fluid is pushed in front 
of the body. / 

30 

J 

..,. . 
J. 



. I 

.r 
J 
:r 

: I .,.. .. r ' .., 

... 
~I 

., 

1 

·-------·---------...-~---_..,. ·'·· ......... .... 

We develop the equationG of motion in S~c. II on the hypotheses 
of small disturbances and the Boussinesq approximation (in which only 
the buoyancy effects of density stratification are included, the iner­
tial effects being neglected). We obtain formal solutions of these 
equations in Sec. III with the aid of integral transforms and special­
ize these to a moving dipole (by which a body may be approximated if 
0 << 1) in Sec. IV and to a slender: collapsifig wake (a region of 
stirred fltdd) aft of a moving body in Sec. V. We give explicit cal­
culations of the internal-wave field for a constant-N model in Sec. 
VI and for a thermocline model, in which N peaks sha~ly in a region 
of l::..mi ted vertical extent, in Sec. VI! and Sec. VIII • 

The constant-N model is characterized by a continuous spectrum 
(since we assume the fluid to be either infinite or semiinfi.nite) and 
may be representative for laboratory configurations, although finite­
depth effects could be important in such configurations. The thermo­
cline model is characterized by a discrete spectrum and affords a more 
realistic model for the ocean; we give explicit results only for the 
dominant mode on the hypothesis th&t the thickness of the the~cline 
is small compared with both its depth and the wavelength. We give a 
WKB solution for the thermocline mockl in Sec. IX. This so!ution does 
not given an adequate description of the dominn~t mode for a thin 
thennocline, but it does provide adeGuate estim1tes fo:c the higher 
modes. 

The disturbance produced by a moving body has been calculated 
previously by Hudimac {Ref. 1) for a two-layer model of the ocean and 
by Keller and Levy (Ref. 2), Lighthill (unpublished papers), and Mei 

(Ref. 6) for various models. There is a close analogy between two­
dimensional, time-dependent disturbances and three-dimensional dis­
turbances produced by a uniformly translating source. Kellet• has 
obtained resul~s similar to (but more general and less explicit than) 
those roported here. f.lany reports from Hydror,autics, Inc. also deal 
With the problem, both experimentally and theoretically. Nevertheless, 
it appet~'I.:'Fl that soma of the resuJ.ts given here are new. Perhaps the 
most interesting are the asymptotic approximations to the respective, 

31 

... 



,....----,---~----------·-·--··----,--.---~-····-·--·------···-----· 

-: 

lateral strains produced at the free surface by the displacement 

(dipole) and wake (quadrupole) effects of a submarine that is sm~ll 
compared .,.lith the length of the internal waves, i.e., n << 1. Thus 

we have 
9 

2 l- -'21" l: 1 

\'lld\- 0.4a ~b"(h+\d-h\) ''(Nh/U~d-~) (1.2) 

5 11 
\11

0
\ ~. o.sa4b4 (h+\d-h\) T(Nd/Nh) 2 CU/~)~ -~, 

•, q 
(1. 3) 

w~ere a, t, d and U ar~ the radius, length, depth and speed of the 
submarine~ o and h are the thickness and depth of the thermocline, 

N
0 

and Nh are the :i.ntrinsic frequencies at depths d and h, and xd 
and ~ are the respGctive distances behind the submarine and the plane 

q 
in which its wake begins to collapse. 
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II, EQUATIONS OF MOTION 

We consider small disturbances in an inviscid, incompl:"dssible, 

Doussinesq fluid in which the (hydrostatic) equilibrium distributions 
of density and pressure are p (z) and p (z} and z is measured positive 

0 0 
upwards. Invoking the requirement that particl~ density be conserved 

and linea~lzing the equations of motion, we obtain 

and 

* p (z)-p 
1 
(zH 

0 I') 

V·~ = m, 

p v =- ~ - g{O, O, p), 
0"'1: 

' 

(2.1) 

(2.2) 

(2.-3) 

where p denotes the density, v the vertical displacement of a particle, 
~ the velocity, m the source strength per unit volume, and p the pres­
sure, each as a function of the Cartesian coordinates (x,y,z) and the 

time t; letter subscript~ denote partial differentiation, and the 
triplet { .. , -, -} denotes the Cartesian components of a vector. We 
seek_a ~elution of (2.1)-(2.3) for a prescribed source density that is 
introduced at t = 0, an initial displacement v

0
(x,y,z), and an initial 

velr.city Yo(x,y,z). 

Let ¢ be a potential such that 

(2.4a) 

and 

(2.4b) 
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Substitutin.J (2.4'b) into (2.2) and invoking the continuity eq..:aticn for 

~) 

we obtain 

where 

V•v = 0, 
--<> 

M> + +zt = m, 

(2.S) 

(2.6) 

(2.7) 

is the two-dimensional Laplacian, and the operators ox and oy imply 
partial differentiation with respect to x and y. \ole have asswned that 

m = 0 at t = 0; if m = m
0 

at t = 0, we need only replace the right­
hand side of (2.~) by m and m by m-m in (2.6). Substituting (2.4a,b) 

0 0 
into (2.1) and the z-component of (2.3) [the x- and y-components of 
(2.3) are satisfied identically by (2.4a,b)], eliminating¢ through 
(2.6), and invoking the Boussinesq approximation (thereby neglecting 

I h • Po except were 1t is multipled by g), we obtain 

(2.8) 

where 

(2.9) 

11 " 1f is the square of the intrinsic (Vaisala) frequency. 

We seek the solution of (2.8) forth~ initial conditions (whic~ 

foll0\'1 from our definitions) 

v = t 0 , ~ = *t = m = o (2.J.O) 

and the boundary conditions 

I 
J 
l 
T 

J 
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l¢1, lvl < ... <lxl, IYI- "') (2.lla) 

and 

; = 0 (z = o, -D), (2.llb) 

corresponding to a fr~e surface at z = 0 (which acts approximately as 

a rigid boundary for internal waves) and a rigid bottom c.t z ·· -D. 

A convenient measure of the disturbance at .the free surface is 

the lateral strain, 

(2.12) 

which plays a significant role in calculating the interaction between 

the internal waves and p~~-existing surface waves. 
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III. FORMAL SOLUTION 

We define the transforms 

• = .t:J ;; ~) 
. X y 

where 

CD 

£.( ) =! e-at( 

0 

CD 

;; ( 
. X 

) =! e -iO'X ( 

_CD 

)dt, £.-1( ) 

-1 
)dx, :Jx ( 

• -aa~· 'o - x y'o' 

i= 

= (2rri )-l j e crt ( 

-i<D 

CD 

) + (2n)-l j eiQ"..<( 

-"' 

(:,.la,b,c) 

)dcr (~a > 0), 

(3. 2a ,b) 

)dr.r, (3.3a,b) 

and similarly for :Jy' with x and a replaced by y and B, respectively. 

Transforming (2.8) and invoking (2.J.O) and ~2.lla), we place the resul-t 

in the form 

(o2 - }.,2)(t '- a-lvo) = o-1M K2cr- 3N2V ' (3.4) 
z z + 0 

where 

}., = KJi+(N/o)?. (StX > 0) (3.5) 

K = Q:;! (K ~ 0)' (3.6) 

and oz implies partial differentiation \<lith respect to z. The bou"ldary 

conditions for t are given by (2.llb). 

The Green's f..tnction for (3.4) and (2.1.lb) is det:ennined by 
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(3.7) 

and 

G(O,C) = G(-D,C) = 0 (3.8) 

and yields the formcl solution (nfter integrating the term i~ M by 
parts): 

We have suppressed the explicit dependence of the transforms on a, B 
and a; the integrals <'re ovel.' the domains o.f M and t 0 , which we assume 

to be of finite exten~, and 6 is Dirac's delta function. 

Transformi~g (2.6), we obtai~ 

(3.10) 

\.,hich completes the reduction o.f the formal solutJ.on to the detennina­
tion of the Green's function and the evaluation of inverse transforms • 
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IV. MOVING DIPOLE 

We now consider th~ disturbance pryduced by the dipcle 

m = UDox6(x+Ut)6(y)5(z+d) (t > 0), (4.1) 

which is int:roduced at x = y = t = 0 and z = -d and moves along the 

negative-x axis with the uniform speed U. The parameter D is the 

dipole moment and has the dimensions of volume (see below). Trans­

forming (4.1) in accordance 1r1ith (3.lb), we obtain 

(4.2) 

Substituting (4.2) into (3.9) and assuming the fluid to be initially 

undistu~be~ (v
0 

= 0), we obtain 

-1 . -1 < ) I 'It'= -UDieta (a-l.ot\) GC z,, ' = -d (4. 3) 

The asymptotic limit of * as r. - m is determined by the pole of 

~ Ldplace transform at a = ietU (corresponding to ot ~ Uox in the 

equations of motion)~ lrthich yields 

where 

~-1~- DG (z)eidUt (t - ~), 
1 

3:3 

(4.4) 

(4.5) 
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We determine the behAviour of >., que. function of t'i, in ( 4. 5) fl.•om the 
antecedent requiremeut that RX > 0 as o approacht:s the imagir.ary axis 

from the right: 

(4.6a) 

(4.6b) 

where k = k(z) = N(z)/U (4.7) 

(~also has an essential singularit~ at o = O, which makes no contri­
bution to the wave field, and branch points assuciated with the branch 

points of k, qua function cf o, which contribute transients that die 
out at least as rapidly as 1/t.) Taking the inverse Fourier transform 

of (4.4), we obtain 

(4.8) 

where the subscript d implies dipole. 

Substituting (4.2) and (4.3) into (3.10) a':"ld !;)roceeding as above, 

we obtain the corresponding result 

(4.9) 

Substituting (4.9) into (2.12), we obtain 

(4.10) 

We apply these results to: (i) ~ bodie5 of characteristic 
length a and arbitrary shape and (ii) slend~r bodies of charact·eristic 

transverse and axial lengths a and t, where, by hypothesis, 
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ka 5 N(-d)a/U << 1 (4.11) 

and 

e = ajt << 1 (4.12) 

We add that a slender body for which kt << 1 is also ~all. 

The solution to the problem of a small body moving ~t.::i.th uniform 
speed ll follows frOJn the fact that the flo~o1 in the neighbourhood of 

the body is locally potential (ka << 1 implies that the effects of 
stratification are ne:gligi ble over a region of scale a) • Invoking the 

well-known result that the potential flO\" past a body is equivalent 
to that induced by a dipole at dis~ances R that are large compared 

with a, we may match the potential-flow solution to the solution 

(4.8) in an intermediate region a << R << l/k and then use (4.8) and 

(4.9) to determine the far fiel~ (Raylei~-scatt~ring approximat]on). 

The dipole moment is giv.enby Lamb (Sec. 12la, Ref. 5). 

(ka<<l), (4.13) 

where V is the volume of the body and p v ... its virtual mass with re-o .. 
spect to axial translation in a homogeneous fluid of density p0 (-d). 

The solution to the slender-body pl'oblem follows by analogy with 

the corresponding problem in aerodynamics, cf. Ward (Ref. 7). Omitting 
the details, we obtain 

(ka << 1, a << t) (4.14) 

and an analogous result for ~. where S(x) is the cross-sectional area 
of the body, and the in'.:egral extends over the body., ~e remark that 

(4.14) reduces to ld if k~ << 1, corresponding to the feet that V* << 

V for a slender body. 
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V. COLLAPSE OF MIXING REGION 

We consider next the collapse of a small ·[in the sense of (4.11)] 

mass .of fluid that has been stirred--for example, by turbulence--in 
such a way as to conserve its mass but alter its potential energy with 

respect to a horizontal plane through its original center of gravity, 

say z = -d. Our definition of d then implies 

JJJ (z+d)p
0

(z)dV = 0, 

conservation of mass implies 

and the potentia.l energy is given by 

E
0 

= g JJJ (z+d)p
0

(z-7
0

)dV * -g JJJ (z+d)p~(zH0dV 
= Qp

0
(-d)N

2
(-d), 

·-where Q is the quadrupole moment 0f the -:.·egion. 

( 5 .1) 

(5.2) 

(5.3a) 

. ( 5. 3b) 

Considering now th~ second integral in (3. 9) , we expand G ( z, C) · 

about ' = -d to obtain 

( 5.4) 
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and reduce (3.lc) to 

(5.5) 

by virtue of our assumption that the dimensions of the mass are ~· 
Substjtuting (5.5) into (5.4), we find that the first integral on the 

right-hand Sl.de vanishes while the second reduces to O.N
2

(-d) by virtue 

of (5.2), (5.3), and the Boussinesq approximation. Substituting the 

resulting approximation into (3. 9), we obtain 

(5.6) 

We apply this last result ~o a collapsing wake in the lee of a 

small moving obstacle on the hypothesis that the fluid in the wake is 
mixed, and perhaps also augmented by turbulent entrainment, over a dis­

tance x
0 

behind the obstacle, at which point the turbulent wake begins 

to collapse and releases the potential energy UE' (x ) per Uitit time. 
. 0 

The resulting, asymptotic (as t - ~) disturbance then is given by 

t 

1-*o- -Q'(x
0

)N2 (-d)f d'i.£~~~.:t~!UT-X ::t~1 lK 2a- 3G,(x,-d)} (t ~co) (5.7) 

- ~ 0 

Carrying out the integration with respect to T and invok~ng the fact 
that (as in Sec. IV above) the inverse-Laplace transform of the result 

is dominated by the pole at a = iaU, we obtain 

(5.8) 

where: k is given by (4.7); G
1 

is given by (4.5); Q'(x0 ) is the cross­

sectional quadrupole moment of the wake, is defin~d as in (S.3b),_and 

has the dimensions of (length)4 ; ·the subscript q implies ~adrupole. 

Similarly, 
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VI. CONSTANr-N MODEL 

We new consider the specific model of a fluid in which N (and, 

hence, also k) is constant. This is a realistic model for thos<: lab­

oratory configurations in which the effects of lateral boundaries may 

be neglected. It is not a realistic model for typical oceanic config­

urations, but it does provide an extreme complement to the thermocline 

model of the following sections. We: give special <..:'1side·ration to the 

limiting case D = =, which is appropriate for oceanic applications. 

The solution of (3.7) and (3.8) is given by 

G(z,O = sinh(>..z)sinh[A(C+D)] 
XsinhO.D) (z > 0 (6.1) 

wherein z and C must be interchanged if z < C. 'f1e observe that G is 
2 a meromorphic function of >.. , and therefore of each of ~. ~ and cr, 

for finite D, and has the Fourier-series representation 

.., 
~ sin(nnz/D)sin(nnC/D) 

G(z,C) = -2DLJ 2 
n=l (~D) 2 + (nn) 

(6.2) 

We cons~der first the limiting case D - m, for which (6.1) re­

duces to 

(&.3) 

which has the branch points of >.., qua function of each of ots B and cr. 

Substituting (&.3), together with the complementary result for. z < C, 
into (4.5), we plac~ the result in the form 

->..1 \z+d\ 
G1Cz) = ~e sgn(z+d) 

:\1 Cz-d) 
~e , (6.4) 
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where ').,lis given by (4.6). We may interpret (6.4) i~ te=ms of a 
source at z = -d and an image at z = d.-{( We carry out a detailed anal­

ysis only for the first term and move the origin to z = -d with t1:e 

implicit unclet•standing that z must t.e replaced by z+d and the image 
solution incorporated in the final results. In brief, we consider a 

(dipole or quadrupole) source at the origin of an unbounded fluid in 

which N is constant, 

G(z,t;;) I -1 -A\z-"1 = -~A e ~ , (6.5) 

and 
(6.6) 

Substituting (6.6) into (4.9) and invoking (4.6b), we obtain 
CX> CX> 

~d(x,y,z) = -(DU/8n2)j{j( (a2+s2 )-~(k2-a2 )~eix(a,B)dadB, (6.7) 

_CD _CD 

where 

X :: rtX + By + H 1 \ z\ , (6.8a) 

= C"tX + BY+ a-1(k2-rt2 )~(rt2+B 2 )~\zl (6.8b) 

Similar results may be obtained for vd' ~ and * by substituting (6.6) q q 
into (4.8), (5.9) and (5.8), respectively. We recall that x now is 

measured in a reference frame moving· 1rith the sourc~ (x replaces x + 

Ut in the development of Sees. II-IV above) and that ~d is an asympto­
tic solution that is strictly valid only for kx - = (although experi­

ence suggests that the as.ymptotic approximation is likely to be quali­

tatively valid for only moderately large values of kx, say kx > 1). 

We obtain stationary-phase approximations to ~d' td' ft>q and tq 
in the appendix to this analysis. Introducing the spherical polar 

coordinates R, e and cp according to 
-')., 1 z-dl =- 1 1 'sgn(z-d). 

·'The image term in (6. 4) also .nay be expressed as +~ 



2 2 ~ x = Rcose, r = (y +Z ) = Rsin8, y = rcos~, 

z= rsincp (0 <6 <n, 0 <.p <2n) (6.9) 

and letting kR - m with 9 and ~ fixed, we find that x(~,S) has two (no) 

points of stationary phase if e < (>) ~n, reflecting the fact that 

internal gravity waves (for whi~h the group velocity exceeds tne phase 
velocity) appear only downstream of their source in a steady flow. 

Substituting ~he resulting approximations into (2.4b), •.o~e obtain the 

velocity fields 

~ ,..._ -(k2DU/2nR) ~cot9siJa't,-::o}c:p+sin2esin2tr)~sin(kRsinq>) 

(kR - "', 0 < 9 < ~n) , (6 .10) 

3 

and ~ (k 3Q 'U/2nR) ~csc 3e (cos 2~sin2e sin2
cp )~cos(kRsin<p) 

(6.11) 

where 
~ = [-sinS, cos9coscp, cosPsincp} 

is the uni~ vector in ~he direction of increasing 9; both~ and~ 
are asymptotically transverse to a spherical surface with center at 

R = 0 (a well kno~ln prop~rty of internal gravity waves). 

The maximum velocities given by the approximations (6.10) and 

(6.12) are achieved in the neighbourhood of 6 == 0; howeve~'. the approx­
imations are not uniformly valid as ~ - 0, partially in consequence of 
the restriction kr >> 1 (implicit in the staionary-phase approximation) 

and partially in con~equence of the slender-body approximation, which 

does not give an adequate description of the interference among the 
sho~e~ waves (which are especially imporccn~ in the neighbourhood of 
e = O) that originate at variOIJS points of a source of finite cross 
section. Ass~~ing r << x in (6.10) and (6.11), but imposing the re­

striction kr >> 1 (so that 1/kR << 9 << l), \ole obtain 
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(6 .13) 

and 

where 
'£ = (0, y, z}. (6.15) 

The corresponding approximations to the lateral strains, as de­
fined by (4.10) and (5.10), are (we omit the details but emphasize 

that the results calculated from ¢d and ¢q have been doubled to incor­
porate the "effects of the l'especti.ve image solucions at the free suL'-

face) 

(6.16) 

and 

11q- -Ck3Q'/rr)x3 jyj 5r- 9cos(l<xd/r) (kx » kr >> 1), (6.17) 

wherein r = (y2 + d2 )~. The maxima of ~d and ~q ~~th respect to jyl 

are given by 

~d = (kD/8rrd2)(kx)sin(kx/J2) at y = d << x (6.18) 

and 

~q = -0.045(Q'/~d4 )(kx) 3cos(2kx/3) at y = ~~d ~< x. (6.19) 

The loci of consr.ant phase for ~d and ~q are hyperbolae, corresponding 
to the intersections of the conical, stationary-phase surfaces, 

kRsin~ = x<as' J
5
), with the free surface; the loci corresponding to 

t:he approximations of (6.16) and (6.17) are 

2 2 
Ckx/x) - (y/d) = 1. (5.20) 
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It does not appear possible to obtain a simple, asymptotic approx­

imation (for kx >> l) to (6.7) that is uniformly valid with respect to 

kr; however, we can obtain an approximation that is valid at y = 0 

(although still suffering frG111 ·the aforementioned deficiency of the 

slender-body appt•oximation) by first evaluating the Fourier integral 

over a [Erdelyi et al, Ref. 8, S~c 1.5(27)], whence 

(6.21) 

where the rc.:il pat·i: 0f the radical is non-negative, and K0 is a modi­

fied Bessel function of the second kind. Diff~rentiating (6.21) twice 

with respect to y, integrating with respect to x, setting y = 0 and 
z = d (in the reference frame with origin at the source), and doubling 

the result to incorp<)rate the effect of t:he image solution, we obtain 

~d(x,O) ~ (D/2n2d)Jf -=laiK1 {d(a2 -k2 )~)ei~~da. (6.22) 

-= 
The dominant contribution to 'the integral in (6.22) comes from the 

neighbourhood of a = k, which yields 

(6.23) 

Similarly, we obtain 

(6 .24) 
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VII. THERMOCLINE MODEL 

We consider n0\>1 the discr·cte spectrum of internal waves associ­

ated with a thermocline model, for which (by definition) 

(7 .1) 

and 

(7.2) 

where -h is the vertical coordinate of the thermocline, that is the 

·plane in which N(z) achieves its maximum value, Nh; ~P is the total 
increase in density across the thermocline (Ap << p by hypothesis); 

and g' is a reduced gravitational acceleration. Setting 

a = iw (7. 3) 

in (3.5) and (3.7), ~e obtain 

( 
2 2 ~ 2 oz + (K/w) N (z) - K }G(z,(;) = o(z-0 (7.4) 

Invoking the assumptions, (7.1) and (7.2) above: that N
2

(z) > 0 

and that the integral of N2(z) is bounded ·(a non·trivial restriction if 
D = =), we infer from Sturm-Liouville theory that there exists a dis­

* crete set of eigenvalues, say K , and eigenfunctions, say fn(7.), that 
n 

satisfy 

~'It 
as 
it 
as 

would be more conventional ~o regard the wave speed, en = wjK , 
the eigenvalue for the Sturm-I.iouville · problem, but we fl.nd 
r:1ore convenient for the sub5equent development to introduce K n 
the eigenvalue and to regard both w and K as prescribed. 

4G 



(a2 'l 2 
+ (KnN/w):. ,( )f (z) - o, z n 

(7. 5) 

f (0) = f (-D) = o, 
n n 

(7 .6) 

and 0 

/<Nfw)2
fmfndz = 0 (7.7) 

mn 
-D. 

where o is the Kronecker delta. mn . 
Expanding G in the fn in the usual 

way, we obtain 

(7 .8) 

Substituting (7.8) into (4.5), we obtain 

(7.9) 

wherP. f'(-d) ~ (df/dC)c=-d' 

Referring t:o Sees. IV and V above, we seek the far field (kx >> 1) 

of a moving source. Substituting (7.9) into (4.8)-(4.10) and (5.8)­

(5.10), invoking the Fourier. integral 

(7 .10) 

and setting w = u~. we obtain 

"' 
(~d'*d} = -(Dj4n)~~ Yn-!ciax-YniYit~(-d) 

n -"' 

• f (i~U/K~)f~ ( z)[l-1 ~~-lyne- (I o·! -Yn) I Y I), f n (z) }d~ 

(7.11) 
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(7.12) 

Tid = 
a> 

- (D/4n)'l: £ K- 2£ ' ( -d )f' ( O)eiorx( y e-Yn I Y '-\crl e -lcr1 I )dcr, 
n _., n n n n 

(7.13) 

and 

00 

llq = (k2 (-d)Q'(x0)/4n}~ J (ivn/a3 )f~(-d)f1~(0)eicrx-Yn!Yidcr, 
n _., 

(7.14) 

where (7.15) 

and f~(O) 5 dfn/dz at z = 0. 
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VIII. THIN 'rH~RMOCLINE APPROXIMATION 

We carry the development of the preceding SP.ction further for e 
thin thennocline, for •11hich N2(z) differs significantly from zero only 

in a small neighbourhood of z = -h, where it exhibits a single, shaL'P 

peak. We also neglect bottom effe~t~ by setting D = ~. This model is 

perhaps more realistic than, but in any event complements, that of Sec. 

\il~ 

The dispersion relation for the dominant mode of a thin thermo­

cline may be expressed in terms of the thennocline parameters Nh and 

b, as defined by (7.1) and (7.2), and the depth of the thermocline on 

the basis of the assumptions 

Nbb/U .= ~b << 1 and b/h << 1. (S.la,b) 

Setting N2 = 0 for jz+hl >>band invoking the bounda~y conditions (7.6) 

and the requirement that f(z) be continuous across z = -has b - 0, we 

choose the solutions above and below the thetmocline in the form 

f(z) _ f r-cschK:h sinhKz) 
- hl IC(z+h) 

e 
(z ~ -h), (8.2) 

where fh a: f( -h). Integrating ( 7. 5) across the thermocline and remark­

ing that both f"-K 2f and N2 vanish except in the immediate neighbour­

hood of z = -h, where f 6 is discontinuous, f = fh, and the integral of 

N2 is given by (7.2), we obtain 

0 

0 = J tf" -~2 f+(Y.lNJw)2 f)dz = ~+ 1
-h+e 

tf' 
-h-e 

-h+e 
+ (t<jw) 2fh 1 N2dz = -K(cothKh + l)'fh'+ g'(KJ.fw)

2
fh. 

-h-e 
(8.3) 
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2 Salvin~ (8.3) for w , we obtain the dispersion relation (Ref. 9, 

(5.3. 7)]~': 

(8.4a) 

., 2 g hK (1-Kh + •.• ) (Kh- 0) (S.4b) 

~ ~g'K (Kh- m). (8.4c) 

Similarly 

(8. Sa) 

1 
- kh(bh)~K(l- ~Kh + ... ) (Kh- 0) (B.Sb) 

~ k (~bK)~ (Kh ~ m) 
h "' 

(B.Sc) 

ar.d 
I 1 ( "h' .. 2Kh 

(~)12(1- 1-2" Je } 

-2Kh ~ 
(l-e ) (8.6a) 

-(g'h)lz(l-11.;.; .•• ) (Kh-0) (8.6b) 

~ l,z(g'/2K)~ (Kh- m). (8.6c) 

W(-! note that (8.6b) and (8.6c) intersect at Kh..: ~and serve as rough 

approxima1:ions (with maximwn errot•s of 20 percent) :for Kh < ~ and 

*The preceding dP.rivation is an abbreviated form of a technique used 
by Lighth:Lll, (Ref. 10) and Drazin & Howard, (Ret. 11). This tech­
nique also may be applied to the higher modes, but: the results are 
rather un~~e~dy. Moreover, the contribution of th~ dominant mode 
to the free-su't'face disturbance will dominate Ute contribut:!"Jns of 
the higher modes if (B.la) is satisfied (see end of Sec. IX bel.ow). 
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Kk > ~. respectively, in the subsequent, stationary-phase approxiffia· 

tions. Substituting (8.2) into (7.7), we obtain 

2 -:?.Kh 
fh = ~K(l-e ). (8.7) 

We emphasize th~t (8.4)-(8.7) hold only for the dominant mode* (n = 1). 

We use the approximations o~ (8.2) and (8.5) to obtain asymptotic 

approximations to the lateral, free-surface strains, Tld and 'llq' on the 
basis of these hypothe~es: (a) the ~ontributions of the higher modes 

(n ~ 2) are negligible compared with that of the dominant mode (we 

omit the subscript 1 with this understanding) and (b) lal << K, for 
I ~ which a sufficient condition 1s U >> (g h) • The latter hypothesis 

petmits the approximation 

y * iK (0 s a << K) (8.8) 

in_plac:e of (7.15) and the neglect of lale-jayl compared with ye-Y\YI 

in (7.13). Invoking these approximatio~s, substituting (8.2) and 
(8.7) into (7.13), setting z = o, and choosing K, rather than a, as 
the variable of integration (thereby regarding a as the eige~value 
for prescribed K in the Stunn-Liou'Ji~l.e probl.!?m), we obtain 

"" 
lld- -(D/?.n)Rjite 2(dr.r/dK)D(K)e-KH+i(ctx-Kjy! Jd:<~ (8.9) 

0 

where 

D(Y.) = (d ~ h) (8 .10) 

-1 

and H = h + ld-hj. (8 .11) 

*The oscillations of fn(z) across the t~ennocline do not permit . 
the approximatton i(z) * fh fo~ n > 1 in the integr&nds of (7.7) 
and (8. 3) 
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We obtain the corresponding approximation to ~q by replacing DK
2 

by 
k2 (o)Q'(x0 )K 4ji~3 in (8.9). The discontinuity at d = h corresponds 
to the discontinuity in f '(z) at z = -h and is an intrinsic character-

istic of the thin-thermocline approximation. 

Carrying out a stationary-phase approximation to (8.9), we 

otJtain 

wh~re K is detennined by 

d~jdK = c
9

/U = IYI/x (H << IYI < (gh')~-1x). (8.13) 

. ~ -1) There J.S no point qf stationary
1 
i>hase, and ••d is O(x rather than 

O(x-~) as x - ~, if IYI > (gh')~/U. A saddl~-point, rather than a 

stationary-phase, approximation must be used if jy\JH is not large; 
K then must be determined by t~placing \Y! by IYI - iH in (8.13) and 

is complex. 

The maximum value of l11dl corresponds roughly to the maximum of 
K2exp(-KH), that is KH * 2, which yields a value of ~that increases 
from 1/h to 2/h as d inc.reases fro1n 0 to h and then remains at 2/d 
for d > h. We n1ay refine these estimates, at least for d < 4h, 
by utilizing the asymptotic approximation (S.Sc), the substitution of 

which into (8.12) on the assumption that K is real <\YI >>H) yields 

(8.14) 

We find that the maximum value of (8.14) occurs at Kh = 1.0 for d << h, 
Kh::: 2.1 for d = h-, and Kh = 2.25 for d > h, so that: KH = 2 provide:; 

an adequate basis for an estimate, namely (we tdke D * 1) 

I ~ I = 0.2Dr.'t(Ux)-~! (d < 4~) 
d max ::~ 

(8.15) 

at 
!YI/x * (q'H)~/4U (d < 4h). (8.16a) 

ss 

-, 
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If d > 4h, we must use (8.6b) in place of (8.6c), the principal effect 

of which is to replace H- 9/ 4 by d- 2h-t in (6.15) and (8.16a) by 

\y\/x * (g'h)~- 1[1-(2h/d)] (d > 4h). (8.16]:\) 

The counterparts of (8.12) and (8.14) for ~q are 

(8.17) 

(8.18) 

The maximum value cf I~ I occurs at KH * ~1/4, where the devi~~ion 
q 

of D(K) from unity is small, so that 

at jyj/x * 0,2(g'H)~/U (d < S.Sh) (8.20a) 

or jy\fx * (g'h)~-~[~-2.75(h/d)] (d > S.Sh). (8.20b) 

We also note that 

(8.2~) 

We use this ~ast result to compare the lateral surface strains 

produced by the dipo~e ~ffect of a small, prolate ellipsoid of radiu~ 
~ and length ~ and its wake on the hypothesis that the wake is (or 

has the same potentia~ energy as a wake that is) fully mixed and of 
radius ~; then D * 2rra2.f../3 and Q' = rra4/4. Substituting these result's 

into (8.21), we obtain 
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(8.22a) 

u 
(g'H)iii 

(8.22.b) 

The factors a2/Dt might lie between 10-2 and 10-
1 

for a typical sub­

marine, U/cg might lie between 10 dud 10
2

, and (N(-d)/~]2 
is less 

than unity and might be as small as 10-2 if the submarine is well out­

side of tlle thermocline. It follows that, within the limitations of 
the hypotheses implicit in our model, the dipole effect is likely to 
dominate the wake effect. Both effects achieve their maxima if the 
submarine is in the thermocline (d * h * H) and fall off rapidly with 

increasing d/h. 
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IX. WKB APPR!i>XI!o'..ATION 

The WKB approximation to the solution of the Sturm-Liouville prOb­

lem posed by (7.5) and (7.6) may be expected to yield qualitatively 
accutate resuits for all but the dominant mode (n = 1 below), althouJh 
the implicit assumption that N2(z) is a slowly varying function ren­

ders it quantitatively ~ccurate only for those modes for which Knb 
>> 1. It is generally inadequate for even a qualitative description 

of the dominant mode of a thin thermocline, for which K1b << 1 and 
N2(z) varies rapidly near z = -h. It is consistent ~~th the WKB 
approximation to neglect the effects of both upper and lO\'Ier bounda­

ries (the implicit restrictions are K h >> l and K ID-hl >> 1, re-n n · 
spectively; the violation of the forme~ restriction is likely to be 
qualitatively significant only for the dominant mode, while the latter 
restriction is almost always satisfied in a real ocean). Bearing 
th~se remarks in mind, we rewrite the Sturm-Liouville problem of (7.5)-

(7.7) in the form 

and 

where 

f (±"') = o, 
n 

... 
j( wfmfndz = 6mn' _ ... 

(9.1) 

(9.2) 

(?.3) 

(9.4) 

is the ~eighting function, and Kn is the eigenvaluP. ~he results 
presented in (7.8) through (7.15) remain valid for this revised 

formulation. 
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We proceed on the assumptions that N2(z) satisfies (7.1) and has 

only a single peak (N = Nh at z = -h) and that lwl < ~ (waves for 
which \wl > Nh are not propagated); then w(z) has only two zeros, say 

z.(, and zu' such that 

(9. Sa) 

and w(z) > 0 (z, < z < z ). 
I ,_ U 

(9.Sb) 

We also define arg w'},z = 0 "'or w > 0 and infer arg w'},z = ~n for ~~ < 0 

from the requirement ~a > 0 (or, equivalently, Jw < 0) and the fa~ts 
that N'(z,) > 0 and N'(z ) < 0. We then may pose the WKB phase ir.te-

"' u 
gral in the forms 

P(z) .:o 

where 

~nd 

z u r P(z ) 
+ i<lu(z) 

r wljdz > 0 
z.(. 

- iQ.(,(z) 

, z.(, 

~(z) =~ (-w)ljdz 
z 

(z.(, 

(z > z) 

< z < zu) ' (9.6) 

(z < z.c) 

(9.7a) 

(9.7b) 

Invoking the fact that w - -1 outside of the thermocline, we obtain 

ot<z), <lu<z) ~ jz+h\ (\z+hl >>b). (9.8) 

The WKB solution of (9.1) and (9.2) is given by the follO\'ling (we 

omit the details but note that the problem is analogous to that of the 

hatmonic oscillator in quantum mechanics) 
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n-1 · 1 (-) c~~l-KnOU(z). (z > zu) 

fn(z) = C lw<z) i -~ 2cos(KnP(z)-tn} (zt < z < zu) (9.9) 
n 

exp( -KnQ.t ( z)) (z < zt) 

except in the neighbourhoods of z = zt and z ~ zu' where Airy-integral 
representations must be invoked. The corresponding approximations to 

the eigenvalues are given by 

(n = 1, 2, ... ) . 

The normalization of (9.3) imp:ie$ 

We calculate K on the basis of the parabolic appt~ximation 
n 

(9.10) 

(9.ll) 

(9.12) 

If we assume that (9.~2) is valid fo't' a~~ \-z.-'h\ < s and that N
2 = 0 

in lz+hl > s, (7.2) implies b = 4s/3. If we assume that N
2 = N~exp 

(-(Z+h)'2/s2}, for all z and is approximated by (9.12) in zt < z < zu' 
(7.2) implies b = n~s.] Substituting (9.12) into (9.l0); we obtain* 

v~here, here and throughout this section, k e k(-h). 

t~s result is exact if N(z) is described exactly by (9.12), 
for which (9.1) is Hermite's equation, and the f (z) are 
Hennite functions. r. 
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We proceed on the hypothesis that 

\a. I << I K I ' n 
(9.14) 

by virtue o£ which ~1e may approximate (7 .15) by 

y * iK , n n 
(9.15) 

where argyn is determined by the requirements Ryn ~ 0 and J~ < 0, and 
negJ.ect the term in exp(-la.y\) in (7.11) and (7.13). \<le also use the 
approximations of (9.8) outside of the thermocline. Invoking these 
approximations, substituting (9.9) into (7.13), and restricting the 

range of integration to that of the propagated waves Cia.\ < k ; waves 
for which lui > k are not propagated and are negligible for kx >> 1) 

~d ~ -(D/2n)~ A RlkiK 2eia.x-(2n-l)iKl(jyj-iH)d~ 
n=l n 0 1 

(h, \d-hl >> s) , (9.16) 

where 
(9.17) 

K
1 

is given by (9.13b), and His given by (8.11). Introducing the 

change of variable 

a. = k sinC (9.18) 

and the parameter 

~n = (2n-l)(kxs)-1 C\y\-iH) (-~n < arg~ < 0)., 
(9 .19) 

we rewrite (9.16) in the form 

~d ,.., -(kD/2ns2) tAnR ~~ isin2t;,sec3CeikxsinC(l-·JJ.nsec20dt;,. (9.20) 

n-1 0 
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The integrand of (9.20) has a saddle point ~t the point deter­

mir&ed parametrically by 

sin' = a./k = (9.2la,b) 

where vn is a complex number. The contribution of this point dominates 
the asymptotic approximation (as kx ~.~)to the integral (after an 
appropriate deformation of the path of integration) if IIJ.nl < 1 and 

. !1-~-~onl is not small. Carrying out the saddle-point approximation, we 

obtain 

2 ~. 

~d ~ (kD/s )~1Adn(kx, ~Jon) , 

3 3 

A = ~(nkx)-~A R{v2 (1-v~)- 2 C1+v2 )~(3+v2 )-~ei(Xn-3n/4)} 
dn n n n n n 

(9.22a,b) · 

where (9.23) 

Similarly, starting from (7.14), we obtain 
... 

Tlq "' [N(-d)/~] 2 [0.' (x0)/s
4 ]L Aqn(kx, IJ.n) , 

n=l . 
7 

Aqn = ~(nkx)-~(2n-1)2A R(v~(l-v2 )- ~'l+v2 )~(3+v2 )-~ei(Xn- 3n/4 )} 
n n n n n 

(9.24a,b) 

The largest terms in the modal summations of (9.22) and (9.24) 

are those, if any, for which liJ.nl is small and, from (9.2lb), 

v = 1- (~ )~ + O(jiJ. l> n n ~ 
(9.25) 

Substituting (9.25) into (9.23) and retaining only the dominant terms 

in each of the r~~l and imaginary part~, we obtain 

Xn * kx- 1(2n-l)~(kx/s;~((y2+H2 )~-IYIJ~ 5 kx- iXni 
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Sub tituting (9.25) into (9.21) and (9.13b), we obtain 

so the approximation (9.25) is consistent with th~ restriction 

We use the approxim~tions (9.25) and (9.26) to obtain the esti-

and lA I qn 

1?: 5 57 7 

* 2- 1r n-~[n+(2n-1)-l]-1(2n-l)~(kx)4s4(y2+H2 )- ~e-Xni 
(9.29) 

Ass ing IYI >> H, we find tha"t: !Adnl has its maximum at 

\y\/H = (2/9)(2n-l)(H/s)kx >> 1 {9.30) 

and similarly for I A I , with 2i9 replaced by '2/ 49. These maxima are 
qn 

fai ly sharp (in IYI/H) and therefore can be achieved by only a single 

mod at any given point. The corresponding maxima in l~dl and l~ql' 
neg ecting all modes except that for which (9.30) and its counterpart 

for 1-Adq I are satisfied, are 

and 

3 

I ~ I D.025(2n-1)-~(kD/s~2)(kx)-~ 
d max= 

7 

In I = 0.15(2n-1)-~[N(-d)/Nh]2(Q'(x0 )/s~2J<kx)-~ q max 

(9.31) 

(9.32) 

Co aring these maxima ~th those of (8.15) and (8.19) "forb ::o: 4s/3 
an n = 2 (typically the most impoL~ant of the higher modes), we 
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conclude that the contribution~ of the higher modes, relative to those 

of the dominant mode, to I~ I and I~ I are not likely to exceed 
O.OS(H/s) 3/ 2 and 0.12(s/H)3?4 , respe~tively. The former ratio could 
be 1a-r9er thar. unity, but only for H/s such that all contributions to 
llldl would be very small; the latter ratio is certair.ly small--typi-

-1 -2 cally between 10 and 10 • 
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APPENDIX TO ANALYSIS B 

STATIONARY-PHASE APPROXIMATIONS 

We require stationary-phase approximations to integrals of the 

form· 
tO ., 

I = (2rr)-1J f(a.,S)eiX(a,s)da.da 
-OJ -= 

(Al) 

whe (A2) 

z > 0, and R = (x2 
+ y2 + z2 )~ - m. 

Considedng first the a-integration, we find that X 1;as a point 

of tationary phase at 

(A3) 

at hich point 

(A4) 

and 3 

Xea = (a.z)-2(k2-a.2)-l(k2z2-a2r2)2sgna (AS) 

C3r ying out the stationary-phase approximation to the 8-integral, 

we btain 

3 "' . 

I- (2rr)- 2~ (fX~~)S=B (a.)exp[iX(a,e 5 (a.)) + ~~rrsgna.}da. • (A6) 
CD ' S 
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The integral in (A6) h0s two points of stationary phase at 

a = as = ± kxz/rR = ± kcosGsin~ (A7) 

and 8 = 8 = -a yx/r2 = ~ kcos2ecsc6sinmcoscp 5 5 T 
(AB) 

if x > 0 and no points of stationar.y phase if x < 0; R, 6 and cp are 

polar coordinates, defined by (6.9) above. We also obtain 

and 

X(a ,~ ) = ± kzR/r = ± kRsincp s s 

~ 2 2 2 2 2 -~ 
X~e = ± (r'R/kx z)(y R +z r ) , 

(A9) 

(AlO) 

(All) 

> 
wher~ the upper and lower signs co~espond to as < 0. Assuming that 
f(-Q, ~) is the complex conjugate of f(a, 6), we find tP~t the con­
tributions of the two points to the stationary-phase approximation to 

I are ccmplex conjugates, with the end result 

(Al2a) 

= (k/,TR)cot:6sincp(cos 2cp.t·s~ ... n26sin2cp)~{f(a5 , B
5

)eikRsil¥j)} (x > 0). 

(Al2b) 

Comparing (6.7) anJ the corxasponding representations of vd' ¢q, 

and v q to (Al), we obtai~, 

(Al3) 

a!"'d 
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Substituting (Al3) and (Al4) into (Al2b), we obtain 

•cos(kRsinr.p) (kR ..., oo, 0 < 9 < ~TT) (AlS) 

2 . 2 
(k Q1/2nR)(-Ucscr.p, cot9}secAcsc 9 

3 

• ( cos
2

fjl-t sin
2
9sin2q>lsin(kRsintf>) (kR - CD' D < e < ~rr) 

(Al6) 

Substituting (AlS) and (Al6) into (2.4b), we obtain (6.10) and (6.1lj. 
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SUPPORTING ANALYSIS C 

THE INTERACTION OF INTERNAL WAVES AND GRAVITY WAVES 
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We wish to stu~y the effects. on rather small surface waves, and 

s~~ecifically on their heig1lt and slope, of the existence of internal 
waves in the region of ocean through which the surface waves are mov­
ing. Surface ·waves damp exponentially in depth in a distance compara­
ble to their wavelength, so for sma~l surface waves, we can assume that 
the dimensions of the internal \o~ave are very J.arye compared to those 
of the surface waves, anc therefore the internal wave can be well rep­

resented by a horizontal depth independent current. We describe this 
with a velocity field gcx,y,t), which is a function only of time, of 
the horizontal coordinates x, y, and with no vertical component. Fur­
thermore, we may expect the times and horizontal distances over which 
U varies to be much greater than those over which the surface waves of 

interest vary. 

We shall ignore viscous and other dissipative effects for the sur­

face waves; that is, w~ shall as£ume that damping is unimportant over 

horizontal distances comparable to the region occupied by the internal 
wave. Typically, we shall be interes~ed in dimensions of surface waves 

which dissipate in distances considerably longer than that. On the 
other hand, . since the size of the effects we are interested in will be 
characterized by the parameter U/cg' where c

9 
is the group velocity of 

the surface wave, we are also most 1r.terested in slow (i.e., short 
wavelength) gravity waves. Yet these are also the waves that dissipate 
most quickly. We must therefore strike ~ balance between the two re­

quirements. 

Finally, we shall assume incompressible irrotational flow in the 
region of ocean occupied by the surface waves. Irrotational flow is 

described by a velocity potential ¢ which satisfies 

(1) 
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There are three bound~ry conditions on the solution to the equation: 

(l) At tne surface, the vertical velocity of the fluid o0/oz is ~ne 
same ~s the time d~rivative of the height of the surface h(x,y,t), so 

that 

dh ah o0 dt = dt + (V¢ • V)h = dZ 

and Bernoulli's equution relates h to the derivatives of ¢: 

a¢ 2 at ·r ~ (V¢) = -gh • 

(2) 

(3) 

(2) The second boundary condition is the assumption that at large depths 

~ approaches the imposed velocity £ 

J!(x,y,a:'t) ----- J.!(x,y,t) 
. z- _ ... 

or if t i& the velocity potential for ~ so tha~ 

¢(x,y,z,t) ----• t(x,y,t) 
Z - -CD 

(3) The final boundary ~ondition is the initial condition that for 
times far in the past the imposed flow vanishes and the wave approaches 

a freely propagating wave 00 , 

¢(x,y,z,t)-----• 0
0 
(x,y,z,t) 

t -"" 

~(x,y,t) ---- 0 
t ... -"" 

(4) 

The effect of the imposed flow on the propagation of surface waves 
is expected to be small since the velocity of the surface current is, 
in general, much smaller than that of the surface wave in open sea 
conditions. The hydrodynamic equations adumbrated above may therefore 
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be expanded in powers of ~ and only the linear term retained. We 

begin by writing 

( 5) 

where ¢
0 

is the velocity potential the initial wave would have had in 
the absence of the surface current and ~1 is the correction due to its 

presence. 

The equations governing ~l are obtained by substituting Eq. (5) 

in Eqs. (1) th1vugh (4) and retaining only terms linear in ¢1 and ~. 
Noting that ~ and ~0 separately satisfy Eqs. (l) through (4), we have 

with the boundary conditions 

and 

02~ 0¢1 0 l + 9rz + 2at 7 
+ 

0
1
(x,y,z,t)-------. 

t ... _.., 

¢
1
(x,y,z,t) 

Z -t _m 

0 

0 

((Vt + ll¢1 ) • ?¢ ] + ~ 
0 

(V¢
1 

+ 'Y't) 

'V¢ • v[v¢ . (vt + <:J¢
1

)] : o . 
0 0 

(6) 

(7) 

(8) 

• V(Q¢0)2 

As a consequence of ~he small l~plitude assumption, terms which are 
quadratic in ¢

0 
are n~gligible in comparison with those linP.ar in ¢0 • 

Further, since ~~ is a small correction to ¢0 , terms like ¢1¢0 may be 

neglectec! in comparison with ¢1 . 

The bou.ndary condition at the surface then becomes 
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(9) 

The problem is now to solve Eq. (6) with the boundary conditions (7) 

to (9). The general solution of Laplace's equation (Eq. (6)) which 

satisfies the boundary condition (0) may be written 

n. (x t) -fd
2

k dw i(!s·~ - wt) ekz · (k w) ~1 _,z, - 3 e al _, 
. (2n) 

Since ¢
0

, the·unperturbed flow, also satisfies Eqs~ (6) and (8), it 
has a similar Foul.•ier decomposition with FouriE'r transform a (k,w). 0-

Here and in the following, ~ will mean a two-dimensional vector in 

the xy plane. Equation (9) then becomes 

2iw a1 (}S_,w) = -=--,or~ F(')S,w) 
gk - w 

where F(k,w) is the fruxrier transform of (U• V¢0 )z=O given in terms 

of u and the Fourier transform of U by 
0 

(10) 

~-s solves the problem of determining the perturbation ¢1 to a 
small amplitude surface wave ¢

0 
caused by an arbitrary surface cur­

rent ~· The quantity of chief interest, however, is not the velocity 

potential ¢ hut rather the height h. If we write oh for the change 
in height caused by the surface current, then we have from Eq. (3) 

Here we have re~a~ned only terms linear in U) have neglect~d terms in 
¢~, ~0¢1 , and hav6 used the fact that there is no vertical displace­
ment from the velccity potential ~ in accordance with assumptions (1) 

through (4). For o¢1/ot we have 
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2w2 2] F()S,w) 

gk w 

i(k•X - wt) 
e """""" 

=fd
2

k dw [- 2 + 2gk ] 3 2 (2n) gk - w 
F(}S,W) 

i(k ·x - wt) 
e -""" 

2 !J_ • il¢ + 2fd
2

k dw gk F(k,W) 
0 ( 2n) 3 gk - w 2 . 

i(k•x - wt) e -,..., • = -

Thus for 6h we have 

6h(x,t) = """ o + d k dw 2k u • 11¢ I 2 i(k•x - wt) e ..... """ 
""" g. (2n) 3 w2 - gk 

or in terms of the Fourier transforms of ¢ and U ( cf. Eq. (10)) 
0 

6h(J5,, t) = q " U(k-o W-'V) • 9 U • il¢0 + 
1
. f d

2
k dw_ 2k fd2 

d 
g 3 2 3 """ ,... ~· ;:; 

(2n) w - gk (2n) 

i(k•X - wt) e ........ (11) 

In general, the nonlinear effects on the unperturbed wave will 

be of the order of magnitude 

typically a number like l/SO. These effects are therefore large com­
pared with the effect of the surface currer.t which might optimisti­
cally be of the order of several percent. For a calculation of the 
total wave, these nonlinear effects cannot be neglected. If, however, 
one is, as here, mainly interested in the change in the wave structure 
due to the surface current as calculated from Eq. (ll), then the change 
arising from the linear part of the wave will be larger by the factvr 
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(hmax/2nk) than that coming from the nonlinear correction. To calcu­
late 6h from Eq. (Jl), we can therefore replace a0 with the value 
appro~rlate for a plane wave with wave vector k , frequency w = (g k )~, "'0 0 0 

and amplitude A: 

= (2n) 3 A 6( 2 ) (k-k ) 5(w-w
0

) • - ""() 

One finds, then, that 

Writing 
+Ill 

( W-w ) --{ ei(w-w0 )t' ( 1 
1 .!:! )S.-k

0
, 'J !! )S.-~, t ) dt , 

_co 

the w integration can be performed by evaluating 
+CO 

I dW e -iW(t-t') --
- I(t-t 1

) • 

2n 2 k. 
-IJ) w - g 

(13) 

In order that ~l vanish for large negative times the poles in 
the denomd.nator of the integrand. in Eq. (13) must be displaced slightly 

into the lower-half-complex-w-plane. One then has 

I(t--t-') =l- __L (e-i..A(g (t"~t') _ ei..;~ (t-t')l 

2JK9 

t < t' 

t > t
1 

Making these sub~titutions in Eq. (12) and displacing the ~ integra­

tion by an amount ~' one has 

t 

+ ~ f J(;c,t,t ') 
_co 
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where 

+iW (t-t') k • U(k t') ei~·~ e o "'"'0 _ ,..,• 

Now, the wavelength of the internal wave is much longer than that of 
the surfaee wave and gCk,t) will be sharply peaked about ~=0. We may 

therefore expand 6 lglk+k 1 about k=O • ~ ,_'""'0 1'¥ 

Writing £g 
>'le have 

J(x,t,t') 

ls•lsa 
(1 + ~ :-r- + •••• ) 

ko 

for the group velocity of the surface wave; 

[w
0 

+ £g · ~] ~ · ~(k,t') 

ik • [x- c (t-t')] 2iw (t-t') i~ • [x + c (t-t')] 
[e .... '"" "'9 · -e 0 e "" ""'9 ] • 

Since the surface current varies slowly in time as well as space 
[assumption (4)]; the second term will be small compared to the first. 

Therefore 

f
d2k i}& • [~ - ~(t-t ')] 

= [w - i ~ · V] ~ ~. g<)s., t ') e 
0 (2n) 

= [w
0 

i £g . v] ~ • ~(~- ~(t-t'), t') . 

If •,.,re denote the height of the unperturbed wave by h0 (,2S., t) , so tl::.1t 
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i A w i(~ . ~. - w t) 
h

0 
(~,t) 

0 0 = ... e g 

then we may write 

1\ t 
oh _ k . 1!<~. t) +j ~ - ~ ~ ""'() UtI [- i . 17] k . 1![~-£.-(t-t'), t'J. n-- 2 c 0 ""0 ~o 

0 g _ ... 

The height of a wave can change at a given point and at a given time 
not only because the amplitude of the wave changes, hut also because 
the phase changes. Since it is the change in amplitude which is of 
chief interest as far as the identifica~~on of the current is con­
cerned, it is in1portant to separate these two effects. 

The general wav·~ can be written 

h(x,t) = A(x,t) eiX(~,t) 

where A and X are real. For small oA, oX perturbations away from un­

p~rturbed va~ues A
0 

and X
0

, we have 

Thus 

" }S
0 

1d,(x,t) 
= --pf'2-:c=--g--

t 

v f ~- g[~-£g(t-t'), t
1
]dt

1 

t 

and oX. = Im (~h) - - ~ • j gCJS.-c9(t-t 
1

), t 
1

) dt 
1 

_ ... 

The first term in the amplitude enhancement is a~ instantaneous effect 
and ver)• small. The second tenn is a time integrated effect and de-

. pends on the gradient:· of the flow. 
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In addition to the change in amplitude, the change in wavelength, 

frequency, and mean square slope are also of interest. The change in 
the wave number 6~ and the change in the frequency 6w may be obtained 

from the change in phase 6X through the relations 

6~ = 9(6X) , 6w = - ~(6X)/~t . 

The mean square slope in m2 is given by the time average of (Vh)
2 

• 

The time average is taken over a period of the surface wave, a time 
which is short compared with the characteristic variation time of the 
surface C\ll'rent. In this case the time average may be expressed in 

terms of the complex waves by 

In ter:ns of the ch.:mge in amplitude and phase, one can then easily 

find for the change in mean square slcpe 

. (14) 

or, since 

this can be written as 

2 6(kA) 

~ 

Inserting expressions for 6X and 6AiA into Eq. (14), one has, finally, 

A t 
6m2 --~.;;.o_' _1!_<_~_,_t_) J. J 
~ = - 3 <~·v). g[z _ £g<t-t'), ·t'] dt' . 
mo cg -~ 
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In order to investigate the magnitude of possible enhancements 

of amplitude and slcpe, let us assume that the surface flow g has the 

form of a wave propagating with a phase velocity C in a direction 

specified by a unit vect~r n: 

In this case we have 

t 

- ~ (~ • 17) f dt' ~ U(n . ~~-c t)+(n • c -C)t'] 
...., 1-:. ""9 ...., "'g 

-"" 

and a similar expression for the mean square slope change. Suppose 
now we follow a crest in the internal wave which for simplicity we 
assume to occur when the phase of g vanishes. Then ~is related to 

t by 

and 11-•e have 

oA ~ • ,l!(O) it 
J\ = 2 c - !r.i (~ • n> ~ · Q_[(C- £g" ~)(t-t')] dt' , 

g -~ 

where u' denotes the derivative of U with respect to its argument. 
..... -

Surface waves which have these component~ of the group velocity 

in the direction of propagation of the internal wave equal to the 
internal waves's phase velocity may experience· a large enhancement 

from the second term. For these waves 

A 

£g • ~ = c 

and the enhancements in slope and amplitude are 

so 



" 

:r 
.r 

2 ~ • ~(0) 
~ = - "3 (~ • A) (~ • U(O)) T ' 

£ c ~ - ~ -m g 

and 

t U(O) 
6A _ ---..o ---- _ 1z (~ 
~ - 2 c

9 
o 

A A 
• n) (k

0 
• U(O)) T 

where·T is the time that the surface and internal waves have been in­

teracting. If T is long enough this time-integrated effect will be 

appreciable and will dominate the instantaneous first term. 

As a particular example, let us take for g a sine wave with wave 

number ~' frequency n, and the surface current in the direction of 

propagation. 

~ = t U0 sin (~ • ~ - n t) . 

If we denote by 8 the angle between~ and~' then 6A/A and 6m
2
;m

2 

may be written 

= u0 cos 8 _ 
3 

(TKU ) cos2e [sin T K(cg cos 8 - C)] 
c o T R(c co~ e - c) 

g g 

and (15) 

2 [sin T K(c9 cos a ~ C)] 
- ~ (TKU

0
) cos 6 -T K(cg cos 6 C) 

The most favorabl~ case is for waves traveling in tr~ same direction 

as the internal waves with cg = C. For these waves, the dominant 

effect is 

6A A::- - ~ TKU.o 
6m2 _ 
2'"- - 3 TKU 
m o 
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For .,.1aves which travel at an angle with respect to the internal \o,'~Ve 
but have their component of c in the internal wave iirection e~ual 

g 2 
to C, there is the same enhancement decreased by a factor cos·e. 

Waves whose velocity component in the direction of in~e~nal wave 

propagation is greater or less than C will eventually pull ahead or 
lag behind the internal <lave. This is indicated mathematically by the 

decrease of the bracketed factor in Eq. (lS) for large T if c9 • cos 9 

;/;c. 
There will ~hus be a strong time-integrated amplitude and slope 

enhancement for the special class of •o~~aves which ride along with the 
internal wave. This effect is proportional to the gradient of the 

surfa~e current and to the time of interaction. This time, in turn, 

will at best be the minimum of the characteristic times of decrease 

of the internal tllave and the surface wave due to dissipative effects. 

If the lesser of these times is long enough, there may be an appreci-

able enhancement. 
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I. INTRODUCTION 

We shall be concerned with the scattering of electromagnetic 
radiation from the ocean surface, with emphasis on frequP.ncies in the. 

microwave region. In order to simplify our calculations we have cho­

sen to study a model in which the electromagnetic wave is taken to be 

a scalar field. We believe that such a model brings out all the 

essential physical phenomena involved in the scattering pr~cess, ex­
cept possibly in scattering from the sea at low ang~.es of elevation. 
When the scattering occurs near Brewster's angle, the scattering of 
vertically polarized waves should be strongly suppressed, a phenomenon 

which our scalar model cannot reproduce. In any ca~e our approxima­
tion scheme for studying scalar waves breaks down at small angle~ be­
cause of the phenomena of shadowing and multiple reflection. 

The actual extension of the theory presented here to the full 
problem of vactor electromagnetic waves is perfec~ly straightforward. 
T.te resulting formulas for polarization, etc. will be given in a fu­
ture, more detailed report. In the follmring discussion ..,1e also 
ignore Doppler effects arising from the fR~t that the ocean surface 
is constantly in motion. These effects, which are not believed to be 
important in the present context, will also be treated in the later 

r-eport. 
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II, SCAT.I'ER!NG FROl~ THE OCEAN SURFACE 

At any instant the air-water interface is given by the surface 
z = h(x,y), the origin being so chosen that if we ave:t•age over marw 
instants, (h(x,y)) = 0. We assume that the illumina~ing radar pulse 

is of such a short duration that during the time it is actually inci­
dent on the sea surface, h(x,y) changes ty a negli~ible amount. Since 
radar pulses are, typically, microseconds long, this approximation 
should be excellent. Our problem, then, divides into two parts: (a) 
given a plane electromagnetic wave, of wave vector k, incident on a 

fixed sea surface z = h(x,y), find the wave scattered in any direction 
and (b) find the average power scattered in any direction where the 
average is taken over many values of h(x,y) corresponding either to 
many oifferent times or many illuminated patches on the sea surface. 
Since we are neglecting instantaneous motions of the sea surface, we 
can say nothing about possible doppler shif~ing of the frequency of 
the scattered wave. 

For frequencies in the microwave region, the index of refraction 
of sea water is well represented by 

n = n (1 + ia/wn2 
&

0
) 

0 0 

where n = 80, o = 3mhos/meter, and E is the dielectric constant of 
vacuum.

0 
The quantity C/wn~ e = 107fv

0
describes the relative impor­

tance of conduction and displacement currents in the equation of mo­
tion. At microwave fl:•equencies, v· e: 1010 cps, and the imaginary part 
of the index of l'efraction is total.ly negligib~e. Therafore we may 
safely think of our ~rob~em as that of computing the scattering of 
electromagnetic waves from the interface between two purely dielectric 
media with indiCe$ of refraction 1 and 80 respectively. 
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Boundary value· problems of this kind can, unfortun,.tely, be 
solved exactly only if the boundary surface is quite simple: p:;.ane, 
elliptir.:, etc. The!'efore we are forced to resort to appt'Ox:!.iaate 
methods. In general, there ar~ t\IIO sorts of boundary which admit 

simple Gpproximate solutions. In the first case, supposE that the 

radius of curvature of the boundary surface is everywhere large ~om­

pared to the wavelength of the· incident radiation. We can then apply 

geometrical optics to compute the intensity of scattered radiation. 
In the second case, suppose 'i.:hat the deviation,' A, of the surface 
from one.which has a known solution is everywhere small compared to 
the radar wave length 1. Then, by a simple form of perturbation the­
ory1 the scattering can be computed correct to order 6/A (we will 
shortly show how this is done). Therefore if the sea surface h(x 1y) 

can be written as h = h
0 

+ h1 , where h1 is everywhere small comp.ared 
to X. a~d the radius of curvature of h

0 
is everywhere large compared 

to A, we can combine the above two approximatio~ methods to get a 
decent solution. Whether or not this can be done clearly depends on 
the detailed nature o:c t-he sea surface. 

At any instant the sea surface, h(x), can be written as a Fourier 
integral h(x) = J di< a (k) eiK·x. We can obviously make the decompo­
sition h = h

0 
+ h

1 
where 

h
1 

= f dlt a(K) eil<.•x 

k>kc 

and kc is for the moment arbitrary. We can then show that if kc is 
prop~rly chosen the surface h has a mean radius of curvature which 

. 0 
is large compared With the radar wavelength, wh:i.le the mean magnitude 
of h1 is ev~rywhere small compared to the radar wavelength, Since the 
sea surface is a random process we can really tallt only about the 
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mean valuec of the coefficients a(k). All such information is con­

tained in the correlation function 

p(x) = (h(x)h(O)) 

which has been determJ.ned experimentally to have the fonn 

k2 
p(x) = c f dR ~ eil<·x 

k k 
1 

C = ~ X 10- 3 
n . 

The cutoff k
1 

corresponds to the gravity waves moving with the wind 

velocity and the cutoff k2 corresponds to very short (say, lmm) cap­
illary waves. 'l'he corresponding functions for the surfaces h0 and h1 
are then 

The mean square 

H2 = pl(O) = 

height H2 of the surf•J.ce h1 

k2 

2nC f dk/k
3 = nC (k-2 -k-2) 

c 2 
kc 

l.s 

= 

iR·x e 

then 

2xl0- 3k~ 2 

and the mean squa~e radius of curvature, R2, of the surface h0 is 

given by 
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~/R2 ::: (V.2)2po(X) 

k 

= 2rrC j 0

kdk 

k~ 

We sh~u~d ~ik~ to satisfy simultaneous~y the conditions H/X << ~·ar.6 
J../R << ~' where J.. is the radar wave~ength. According trJ the above 
equa-cJ.ons H/X = 0.007A,/>., and AjR = 0.29 }../>.

0
, so that if we choose 

>.
0 
~ 6>., we have H/\ ~ J../Rc 0.05. With such sma~l values for the 

expansion parameters, we feel safe in computing the scattering ft~m 
the sut·face h

0 
by geometries~ optics and in computing the extra effect 

of the surface h~ by perturbation theory. We emphasize that our 
aQility to make both expansion parameters small simultaneous~y is a 
stroke of good luck depending on the detai~ed statistics~ structure 
of ocean waves. It probab~y is not possib~e for other sorts of ran­
dom surface. 

We now have to show how this approximate ca~cu~ation is carried 
out in de ted~. In order to demonstrate the ideas invo~ved we study 

. the scattering of a p~ane sca~ar wave from a surface h(x,y) which can 
be decomposed into two surfaces h

0 
and h~ in the manner just described. 

Once we have so~ved this prob~em it is not hard to fo~d in the com­
plications due to the vector nature of the electromagnetic fie~d. 

In a medium of varying d:!.e~ecti"ic constant n(x), we assume the 
wave function t to satisfy 

[v2 + k2 n(x)] y(x) = o, k = wjc. 

This means that if n(x) has a discontinu:i.ty on a surface, then t and 
. ' 

it:~S normal derivative must be continuous across that surface. In the 
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case at hand, n(x) takes on either of two constant values 1, or n, 
the diele-ctric constant of sea1-1ater, jumping from one value to the 
other at the s1.~rface z = h(x,y). \<Je then want to fin<l the solution 

il<·x 
to this equation when a unit amplitude plane v1ave, *in = e 
k = k(cosS, O, -sinS) i.> incident on the sea surface from above. (See 

Fig. l). 

Ccrresponding to ti~e division of the surface z = h(x,y) into a 
part, h

0 
(x ,y), with small curvature, and a pa1t with small amplitude, 

h
1

Cx,y), we can write n(x) = n
0

(x) + n1(x). n
0

(x) takes on the values 

nand 1 an:d describes the air-sea interfo.ce z = h (x,y). n1 (x) takes 
. 0 

on the values o·, ±(n-1) and is nonzero only in a sm.:..ll region around 

the surface z = h
0

(x,y) as is described in Fig- 2. 

Let us suppose that the solution to the scattering Droblem_for 
the surface z = h

0
(x,y) is known and let it be called ~0 • Let us also 

define 6~ by + = t
0
+ov where v is the desired solution for the surface 

z = (h
0 

+ h
1

) (x,y). We can combine the two equations 

to give 

This equation, in turn, can be put into integral form if we introduce 

the Green's function, G
0
(x,x'), which is a solution of 

(~2 + k2 n (x)) G (x,x') = 6(x-x') • 
X 0 0 

This allows us to wr.i te 
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Since nl is nonzero only in a volwne which goes to zero as h1 goes to 

zero, 6!( is of order hl. To this order, therefore, we can replace +, 

within the integr·al, by t : 
0 

To the sa:~e order, we can actually replace the volume integral 
by a surface integr~l over the surface z = h0 (x,y). The equations 
of motion satisfied by v and G imply that at this boundary surface, 

0 0 
both these functions and their normal derivatives are continuous. · 
Therefore the effect on the integral of their v~riation over the small 

volume in which n
1 

is nonze:r.•o is higher than first order in h1 • We 

can therefore write 

where the surface integ~al is taken over z = h0 (x,y), x'(S) is ~he 
thr~::c-dimensicnal position vector of the element of surface, and :fi1 
is the nonnal distance between the surface z "'' h and z = h +h1 0 . 0 

(taken positive or negative: according as z = h0 +h1 lies abo·.,e or be­

low z = h ). Finally, it is convenient to convert this into an inte­
o 

gral over the plane surface z = 0, taking p = (x,y) to be the position 

vector in that surface 

where x<ii) = (p' ho (p)) and hl is exactly the quantity ear~.ier called 
h

1
, the vP.rtical distance between the two surfaces z = h0 and z = 

h
0
+h

1
• The geometry of the transformation is best explained by Fig. 

3. Therefore, if we know v and G on the surface z = h , we can 
0 0 0 

calculate 5t, correct to orde~ h1 • 

According to our assl•mntion, the radius of curvature of h is -··y . 0 

everywhere large compared t•:> the wavelength of the illwninating radi-
ation, so that scattering can safely be computed via geometrical optics. 
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In particular, we need to know t
0 

~n the surface z = h0 • Geometrical 
optics means thatJ if we neglect multiple scattering anrl shadowing, 
the field at a point on the surface can be computed by replacing the 
curved surface by its local tangent plane and imagining the given 
incident wave to be scattering from it. It is easy to show that if · 
the incident wave is eiR·x, the total field at a plane bo~ndary be­

tween regions with dielectric constants n and 1 is 

2cosa iK•X e 
coso. ..- Jn-sin2a 

where coset = P..·A, ~ being the unit normal to the boundary. 

We also need to know C
0
(x,x') with x' on the surface. from the 

equation satisfied by G , it is clear that G (x,x 1
) represents the 

0 0 
total field generatP.d at X1 by placing a unit source at i, given the 
boundary specified by n (x). If x' is near the surface, and if we ne-. . . 0 . 

glect multiple scattering and shadowing, the geometrical optics approx-

imation to G
0 

is gotten by replacing the curved surface by its local 
tangent plane. The solution for G in the presence of a plane boundary 

0 
is well known. If we set i = P.. 'R, take x on the boundary, and let 
R...a:., it becomes 

2cosa.' 
1 r . 2 I 

COS« T ~ - S~n a 

a.' being the angle between~~ and the local surf 'e normal. 

We now can write down our expression for the field ot(x) when x 
is far away from the $Urface: 

where 

T(a) = 2coSC1/(cd~ ..- 4h-sin2a) 

• 

• 

T 
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We are particularly interested in the field scatterP.d back along the 
/1 /1 

direction of the incident beam, in which case k' = -k, and 

It turns out to be convenient, for purposes of ccmputing the 

average backscattered power, to recast the exprP.ssion for 5Y in a 
sligh•-:ly differen·c form. F::.rst of .all, we note that the reflection 
coefficient is a function of cos~ = -~·tt where ~ is the local surface 

/1 - -m,r;nal. In turn, n is a simple fvnction of "'-h (p), so that we can p 0 

·,.;rite T = T(~-h (p)). If we introduce the Fourier decomposj tier. of 
- - T p 0 h

1
(p), h1(~), we then have 

Since the surface 
metric optics, we 
staionary phase. 

h (p) is one which satisfies ~h~ criteria of geo­
o can.eval~ate the integral over p by the method of 

This means that the only important contributions 

come from those points p where 

or 

Therefore we have 

ey_ h (p) = (2k+~)/2ksin6. 
p 0 

~.!.<-kR" ) ~ k2~~Rl.)/ d;· h- <') rr2<~k+t ) ..., uy ..... 1 .... 2ksin8 ,. 

The virtue of tlris expression is that the arg~~ents of T no longer 
depend on the specific ~urface, so that the averaging process is 

simplified • 
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To compute the backscattered power \lie need (I 's + M 12), where 
0 

v~ is the backscattered field from the surface h0 , and the average is 
over the various possible forms of the sea surface. Since different 

Fourier coe=ficients of the sea surface are statistically independent, 

and since 6V depends on h1 while t~ does no~, the cress terms of the 

form v~ov* vanish _upon taking the average. Therefore, the average 
backscattered p0111er is the sum of two tenr.s, (\vs\

2
) and <lov\ 2

), 0 

'::hich we shall compute separately. 

It is convenient to define a scattering ct•oss-section in order 
to eliminate the distance of the obset•vation point from the ~ea surface. 

The energy density at any point is just \il 2
• If a finite patch of 

II 

sea surface, of area A, is illwninated and we obser•te at x = k 'R, R 
II 

very large, then all the energy at xis flowing in the direction k'. 
If the antenna subtends a solid angle ~. the total received power is 

then 1*1 2R2 ~and the received power per unit illuw~nated area is 
lti 2R2 ~/A. We shall define the quantity a= lvi 2~~/A, so that an-

tenna. power is cr A f.{}. 

Let us first compute _cr
1 

= (I o+ 12 )R2 /A. If we make the staudo.rd 
assumptions about the Gaussian natu~ of the sea surface, and make the 

definitions 

<h <x)h <o)> = c <x) 
0 0 0 

we find that 

cr (k2(r.-l)/4n) 2f d~ p
1 

(1) T
4

( 
2

1<+:(, ) x 1 -· "' 2ksin9 
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where we should now remember that when we write k we mean k = (kx,ky) : 
(kcos6,0). The largest contribution to the integral over r comes in 

the neighborhood of r=o, where we write 

so that 

exp[i(2k+i)·r-(2ksin~) 2 (c (0)-C (r))] ~ 
0 0 

n [ - T 2 2] __ .,;,.:,____,
2 

cxp -(2k+.,) /4a.(2khsine) = 
(2khsine) 

We note that in the limit a - 0, f(2k+i) ... (2n)
2 

6 (2k-1-t). In fact 

a is rather small: 

rel 

= (C/2) ~ dk/k
2 = 

K 
c 

TTC log (k /k1 ) e c 

where ~ . d is the wavelength of those ocean waves whose velocity 
~rn.n 

equals 'l:he wind velocity. For a 10 m/s wind and a 10 em radar wave-
length, we have h2 = 0.9xlo- 2 • This means that in terms of the dimen­

sionless variable I2K+ZI I 2ksin9 the width off is about 0.2 in a 
typical situation. This width decreases slowly with wind velocity. 

If we ignore the width cf f, replacing it with a delta function, 

we have the simple formula 
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If we include the effect of the wind broadening of f W<~ see that o1 
. i 4- J' f 1s proport anal to the ave~age value ofT p1 (~) over a circle o radius 
""'0.4ksin9 in .C.-space, centered about t = -21< = (-2kcos6,0). In the 
undistrubed ocean we know that p1 (~) = 2xlo- 3.c.- 4;r. and therefore could 
actually perform the average, if necessary. If we evaluate the zero­
width approximation to o

1 
in the lim4t n~ (appropriate for the sea 

surface since n = 80), we get 

for the backscattering cross-section from the undisturbed sea. 

We now mus1. ccmput~ o
0 

= <1+
0

12> R2/A. Since ~0 is the field 
generated by that part of the sea surface for which the approximations 

of geometrical optics are correct we can adopt the classical results 

fer scattering light from a Gaussianly rou;rh surface: 

for backscattering. We note that o
0 

falls off exponentially as 8 

decreases from n/2. In fact we can easily see that fol~ e c:; 80°' 01 

dominates oo' while for e ;;;, 8o0 the reverse is true. 

At this point we may reasonably summarize our resul~s: We have 

found two basic regimes in radar backscattering; one occurs when the 
a11gle of elevation is large, nearly 90°, the other occurs fer moder-
ate elevation angles. In the first case, the backscattering cross­
section is a function of ah2 , while in the other it is determined by 
p

1
, the ocean wave power spectrum, at some appropriate wave number. 

The quantity ah2 , is just the mean square slope of the ocean waves, 

which in turn is an integral over the complete wave power spectrum. 
Therefore, the difference between the two regimes is that in one case 
we measure p

1
, at a point in wave n~~ber space while in the other we 

measure what amounts to an average of p1 over all wave number space. 
This distinction will turn out co be most important in the application5. 
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Finally, we would like to point out that the scattering vf polar­

ized radiation from the sea surface may ba calculated by much the same 
methods, although the fo~~ulas are much more complicated. We shall 

refrain from writing them down here since nothing essentially new in 

the physics of radar backscattering is introduced. 
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III. THE; EFFECT OF HITERNA.L WAVES ON RADAR BACKSCA.TTERING 

As far as the applications considered in this report are con­

cerned, we need to know the effect of an internal wave, over and above 

the random background, on the radar return from the sea surface. The 

ocean wave heights are in general describP.d by the power spectrum 

F(1() where 

(h(x)h(O)) = f'k. F(l<.) 
ik·x e 

2 10-~-4 with F(l() = x n for the standard wind-generated sea. Hartle 

and Zachariasen have shown that if an internal wave of phase velocity 
C, wave length L, and maximum surface water velocity V0 is present, 

then the power spectrum is changed by 

sin(2n TL- 1(c9cos~-C) 
2n TL-1cc cos¢-C) 

g 

where ¢ is the angle between K. and the direction of vropagatj.,.>n of the 

internal wave, c
9 

= ~ ls the g~up velocity of the ~u7face waves 
with wave number 1<., and T : · the time dut'ing which these same surface 
waves have been acted on by the internal wave. It is convenient to 
introduce :J = TCfi,, which is just T measured in internal wave periods, 

and e = V /C so that 
0 

In practical cases, e turns out to be- very small. W~ note that for 
small :J, 6F/F is uniformly distributed over k-space, while for :J >> 1, 
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oF/F is very sharply concentrated around the curve Cgcos¢ = C. This 
turns out to have a profound effect on the size of the radar return 

for different values of ~. 

We recall that if the angle of elev.ation, e, of the radar beam 

from the horizontal is not too large, the backscattered power is pro­
portional to the average of F(K) over a circle in 1<-~pace centered at 

1<
0 

= C-2kradcose,o) and with radius akradar' where a depends on wind 
velocity but might typically be 0.1. Let us suppose that we have 
cleverly chosen k d and 9 so that k lies on the curve C case = C. ra ar o g 
We now want to compute the ratio 6P/P where P is the radar return from 
the undisturbed ocean and P+oP is the radar return from the ocean in 

the presence an internal wave. J..et n ( 11<-1<
0 
I ) be 1 for \1<-1<0 I < 

ak d and zero otherwise. Then ra ar 

There are two interesting regimes in which we want to calculate 

this ratio. First of all, if 2n~(C cos¢/C-1) is small through the 
g 2 

region where n is non-zero, we have oF = -e 2n~cos ¢F and 

On the other hand, if a- is very large, 6F/F - -encos
2
¢o(C cos¢/C-1). g 

With our assumption that 1< is centered on the curve C cos¢ = C, we 
0 g 

have 

6P _ ~cos2¢ 
r = a 

Because a is small, this ratio can easily be as much as 10&. 
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IV. STATISTICAL CONSIDERATIONS 

Thus far, we have shown how to calculate the backscattered power 

averaged over a statistical ensemble of ocean surfaces. The question 

of just what "averaged over an ensemble'' means in terms of physical 

measurements remains. This will be our next topic. 

One way 0f pe~forming an average is to look repeated~y at dif­

ferent pieces of the ocean surface which are far enough apart to be 
statistically independent. The minimum distance between two such 
pieces is detennined, of course, by the correlation length of those 

I?roperties of the ocean surface surface which are important in the 
scattering process. Since the specular part of the scattering cross­
section depends only on the mean square slope, the correlation length 

relevant for ~pecular reflections is clearly that for slopes, which 
turns out to be some tens of centimeters. For Bragg scattering (scat­

tering from waves of a definite wavelength, the dominant process in 

backscattering at moderate elevation angles) the high-frequency part, 

h
1

, of the elevation determines the scattering. To find the correla­

tion J.ength relevant for Bragg scattering we must, therefore, study 

the correlation function 

3 k2 ·r: (- -) = 2x;o- .r dl<. k-4eJ.~· x-y 

kc 

Because it contains a factor k-4 , the integral on the right is rapidly 

convergent and receives most of its contribution from the region 

kc s ks 2kc. When l<x-y)j is small compared to ~c = 2nk;
1

, the ex­
ponential is essentially constant over this region and p(x-y) is of 

-1. -2 order 2xl0 Kc • 
ponential factor 

Howe~er, if lx-y\ is large compared to Ac' the ex­
oscillates rapidly and the intP.gT';;~} is very small. 
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Thus, we may take 

something like Xc 
wavelengths. 

the correlation length for Bragg scattering to be 
which, as pointed out above, will be a few radar 

Actually, the above correlation lengths are so small that they 
are of little interest except in very special cases. To see this ~·e 

have to understand what happens when a radar looks at the ocean surface. 

Suppose a radar illuminates an area A of the ocean surface. Re­
ferring to the above numbers, we see ~hat in general A will be very 
large compared to the relevant coherence length squared. Imagine now, 
dividing A into patches w11ose linear dimension is of tP2 order of a 
coherence length. We can write the backscattered wave as Et1 where 
*l is that part of the backscattered wave which comes from the i-th 
patch. Tnen setting t. =a. e1~i, we have 

~ J. 

p = :E 
i,j 

i(¢.-<P.) a.a. e J. J 
). J 

for the returned power. If we now average P over an ensemble of 

statisically independent areas A, the averaged power is 

wtdch follows from the fact that the phases e1¢i are random. 

There are now two questions: (i) What do we mean by independent 
areas? and (ii) How many areas are needed to determine (P) to a given 
accuracy? The answer to the first question is almos~ trivial. ·In 
order that the phasee e1<Pi be uncorrelated, the two areas must be non­
overlapping. We are assuming that the time differP.nce between mea­
surements is less than the decorrelation time of the phases. To 
anser the second question, w~ ne~d the variance of P. Here we appeal 
to the well-known fact that for a S'.lll\ of terms W"J.th random phases, 
such as in the last equation, the variance is always of the same o~•dei• 

as the square of the avei'age, i.e., 
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This means, of course, that to measurP. (P) to, say, one part in ten, 

we need one hundred separ~ite are<~s . ... 
Notice that the above conclusio~s are independent of the size of 

the area illuminated by the radar (so long as its linear dimensions 
are large compared to the correlation length). Thus,·contrary to one's 

fil•st impt•e::;sion, the accura~.:y of a mea:;urement of P does not improve 
as the size of.A increases. Also, it is clear that the magnitude of 

the small (;:orrelat:ion lengths does not enter in 2 critical \<.'.'Y. 

~his perhaps surprising situation arises because a radar is a 
coherent source of radiation. Suppose, on the contrary, that the source 
of radiation were :i.ncoherent. If this were the case, the equation 

given on the previous page for the backscattered powe~ should be re-

?laced by· 

p = L: 
i ,j 

where 0i is ths phase of the incident radiation, assumed to vary rap­
idly with time and index i (this is to incorporate th~ assumption that 
the incident radi::!t:.ion is incoherent). Averaging over a time long 

corr.iJared t:o the cohe~-~nce time of the (6~ gives 

I ' ,p)time 
Q.Verage 

The point is new, tha~ the average of ~ ai over an ensemble of areas 
A :~ive:s (P) as before, but the var:i. nd in ~ a~ is not of order (P) 

but rather of oroer (P)(L2/A)-~, wh~re L is1 the larger of the coher­
ence length of the radiation and thl?. relevant :::oherence length of the 
ocean. 'rhus, for an incoherent source the accura~y of a measurement 

does increaso \-r.i.th A. 

102 

T . .. 
i 

J 
J 
T .. 

] 

1 



. .r 

. I 

The reader may wondf:r why, in the case of a coherent source, we 
did not average the power equation over tim& in order to obtain a 
result similar to that just described. '!'he reason is that the time 
scale i~volved is vastly different. If an incoherent source has a 
coherence length L) its coherence time is very small, being on the 
orde~ of L/6, wher~ c is the velocity of light. With a coher~nt source 
the corresponding time is the coherence time of the ocean su::-face. 
This :i.s on the order of L 'fv, whora L' is a coherence length for the 

ocean and v is a typical wave velocity. It is the large ratio c/v ~ 
109 that makes coherent and incoherent: sources so different. 

finally, it should be pointed out that measurement of Bragg scat­
tering has some statistical properties which are different from those 
of specular reflections. Suppose, for exw.,ple, that we make many 
measurements of specular reflection from a single patch of ocean sur­
face using various wavelengths of incident radiation and angles of 
incidence, but completing all the measurements v.'ithin one coherence 
time. The statistics of the measurement ha·Je not: been improved in 
tltis case. No matter what angle or wavelength we use to measure 

specular reflection we are always measuring the same quantity, nameJ.y 
the mean square slope. Thus we might as well have carried out all the 
measurements at the sam-3 wavelength and angle, gaining no in:prcvement 
in statistics. Bragg scattering is different:, howe•Jer. By ca1.•rying 
out the measurement at different angles and wavelengths we are measur­
inG different Fourier coefficients of the correlation function p1 • 
Since these Fourier components are statisticakly independent each 
m£asurem~nt gives new information and the statistics can be L~proved. 
As an example, suppose we wish to measure p1 (0) which is the Fourier 
ccmponent integrated over ~-space. According to our formulas in Sec­
tion III, scattering at moderate elevation angles samples the Fourier 

components of p~ over an area of order kraoar2 m
2 

in ~-space, whe~ m
2 

is the mean-squar~ slope·of the ocean surface. Since there are m­
such areas available, we can make m- 2 independent measurements whose 
sum (which gives p1 (0)) ~~11 have e variance of m2 times the variance 

'of a single measurement. SiP.ce mz is of order 10- 2 this is a non­

trivial inct-ea;,e in statistical accuracy. 
103 



z 

n{x) = 1 

- ~-'~ 4flll~~z=h(x,y) 
. ~ n{ .. )=n 

• X 

FIGURE l. Scattering Configuration 

~ -n1 =(n-l) 

~~- n1 =-(n-1) 

OTHERWISE "1 = 0 

~----------------------------------------~" , ....... , 
FIGURE 2. Partitioning of Scattering Configuration 
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To detect ripple~ on the surface of the sea by passive electro­

magnetic 1neans several different wavelengths may be employed. The 

question naturally arises as to which wavelength range is most suit­

able. The ans\'ler depends not only on the physics of the interaction 

of electromagnetic waves with the surface of the ocean but also on 

the technology of detectors. In this section a comparison of the 

infrared and centimeter wavelength ranges will be made. 

Several physical eff~cts contribute to the detection of surface 

ripples by electromagnetic wavE~S. Only one of these will be considered 

here. A detector. pointed at the sea surface receives reflected radi­

ation from different portions of the sky due to the presence of the 

ripple. Since the radiance of the sky varies "'itr elevation, the 
presence of the ripples will lt~ad to an average variation in the re­

ceived radiance and the detect:Lon of the ripples. 

Quantitatively, the spf~ctral radiance (power per unit area per 

unit solid angle per unit "'ave.length) Wdet 0., .!:!cJ> recei•1ed from a 
direction given by a unit vector .!:!cJ at wavelength ~ consists of two 
parts: 1.1) the reflected radiance of the sky at a direction N re--s 
lated to !'icJ by the law of reflection and (2) the emitted radiance of 

the sea itself. In terms of the spectral radiance of the sea Wsea' 
that of the sky W k , the reflectivity p of sea water, the zenith di-

s y 
rection ~· and the normal to the sea surface ~ we write 

Wdet(X,~d) = p(X,z·N)W k (A,z·N ) + [1-p(X,z•N)]W (X) (1) ~ ~ ~ s y ~ ~s ~ ~ sea 

The angle of incidence is related to the angle of reflection by 

(2) 
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where ~is the unit dyadic. For small sea slopes, ~may be written 

as ~ + £_, Eq. (1) expanded in powers of !.. a::td averaged over the d:i.s­

tribution cf sea slopes. The averages of£ and~£ may be ~xpressed 

in terms of the r.m.s. sea slope, m, by 

2 
(e) = - m z 
~ ~ 

(3) 

Expressed in terms of the zenith angle e we then have (see Appendix) 

for the average variation in received radiance 

(4) 

The sky radiance contrast arises ;rom two sources--absorption and 

elastic scattering. Elastic scattering is important only for wave­
lengths s2~ because of the wavelength dependence of the elastic cross 

section and the size distribution of the scattering partic.les. In that 

region, the sky contrast arises because or. the average the reflected 

radiation originates one mean free path length uway and there are more 

scatterers at low elevations near the horizon than at high elevations 
near the zenith. This effect can lead to strong radiance contrasts at 

low elevation angles (see Fig. 1) of the order 

(
scale height: )/ 

(elevation a::tgle) ~ for ~catterer (mean free path) 
dens~ty 

~ 1 krn/10 km 

Observations at such small' angles from airplanes are different because 

at typical airplane heights the obs~rvation distance is compJrable 
with the mean free path. We ~rill not consider the sky constant from 

elastic scattering further. 
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The important factor contributing to the sky radiance contrast 

is absorption. On the average the reflecteq radiance originates one 

attenuation distance L(A) away at a height L(A) sin (elevation ~ngle). 
Since the temperature of the atmosphere and hence the radiance varies 

vdth height tlus will lead to a greater radiance at the horizon t~~ at 
zenith. The resulting contrast will be small for those wavelengths 

where the absorption is large and large when ·~he absorption is small. 

Figure 2 shows the expet~mental sky radiance for various angles 

in the infrared range. No contrast is observed in regions of strong 

absorption (e.g. • S~ and 151£) while the maximum contrast :is obtained 
in the region about 10~. In figure 3 the sky radiance (and its equiv­
alen~ temperature) from this data at 10~ is plotted as a function of 
angle. Also plotted on the same graph is the spectral radiance for 
l.S4 em normalized to the same height at e : 90°. Several features are 

clear. Because atmospheric absorption is stronger at 10~ than 1.5 em 

the tempe~ature contrast i$ smaller in the infrared region than in the 

microwave. However, because the dependence of radiance on temperature 

in the infrared is exponential (hc/AkT - 5) while in the microwave it 

is linear (hc/A.kT -- 1/50), there is not a great difference in t'le ra­
diance constrasts. 

Th2se curves are the first elements which enter into a calcula­

tion of 6Wdet/Wdet• The second element is t:he reflectivity. This is 
estimated from the standard Fresnel formulae. For the A= 1.5 em the 

curves of these quantities are already in hand. in Fig. 4 

The largest value of «Wdet is obtained at high angles. At a 

typical large angle of a = 75° we find by crudely estimating the de­

rivatives of these curves 

swdet 2 
~ ~ 0.6 m , min radians, A= 1.5 em. 

det 

Taking a temperature resolution of 0.2°K we have approximately for 

A = 1.54 em. 
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oWdet 2 
~ ~ 100 m , m in radians 

inst 

where 6W. t is the instrumental radiance resolution. 
1ns. 

For the 10~ wavelength the index of refraction was computed and 

plotted in Fig. 4 using an index of refraction of 1.3. The curves of 

Wdet for horizontal and vertical polarizations are given in Fig. 5. 

Crudely estimating Eq. (4) for e = 75° one finds 

oWdet · 2 
~~ 0.6 m, min radians, A= 10~ 

det 

The similarity of this number with that obtained for A = 1.54 em re­
flects the similarity of the sky c0ntrasts at the two wavelengths. 

If we take 6T = O.Ol°K for the temperature resolution in the 

infrared we find 

= (tkT ) ~ . ~ 2xl0-
4 

det ·det 

Thus for A = lOJJ. 

oWdet 2 
~ 3000 m , m in radians. 

oWj,nst 

'The conclusion is then that the infrared is favored over micro­

wave radiometer by roughly a factor of 30. The basic reason for this 
is that the window at 10~ is sufficiently transparent that the sky 
radiance contrasts are almost the same at the two wavelengths, while 
the resolution of the infrared is better by roughly a factor of 30. 
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Jl.PPENDIX 

DERIVATION OF EQUATION (4) 

·Let n -· normal to sea surface 

!:lo = direction to observer 

n· = direction seen on sky 
"'5 

Snell's law is expressed by 

n x n = - n x n 
~ -o ,..., -s 

Forming the vector product of both sides with Q, 

n x (n x n ) = - n x (n x n ) - - -o - - ~s 

whence 

Since 

we have 

• n 
~s 

~ = - n + 2n(n • n ) = (- I + 2nn) • n . -~ """() - - -<> ,.., _,_ "-'0 

The detected radiance is equal to tf>e incident radiance 

wdet = wsky <~ • ns) 

where ~ :is the zenith vector 

Now for small sea slopes £ = ~ + ~ 

~ = (sin9 cosq>, sin9 sincp, cose-1) 
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or 

Therefore, accurate to second order in 8, we have 

w det = w sky [,t. [-!. + 2~ + 2c~ + ..§V + 2,s~J n ] 
"""() 

= w [! !'-o + 2![ <~ + ..s~> + u.J . ~] sky 

= w <.t. • no> + w ~k~,[ 2! • (~ + ~) no + 2z . (~) • n ] 
sky ;..;.a 

+ 2 W" k [z . (~ + ~) • n ]2 + ... s y ~ ""() 

The following aveL'ages will be needed: 

(£) = - :\.2 (92) ! 

<..u.> = ai + b ~ 

a= ~ (62) 

a+ b = 0 b = - ~ (92) 

\!v = ~ (A,2) [!,- w 
Using these results, the first bracket in the expansion of Wdet becomes 
on averaging -2 <e 2) (z • n ). The second bracket is equivalent to 

0 

2[~_(I + z~i • n ] 2 = 2n • (I + z~) • ee • (I + ~) • n 
·- .:::.N' "'<) "-'\) ~ ~ .......... ~ "'() 

n • 
""() 

Q; - ~~) • no 

2 2 
(n

0 
• z) ] = (e ) 
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where e is the angle of observation measured from the vertical. Thus, 
0 

Now 

Thus, 

W' dW l = d9 sinG W" = + si~9 ~ (: s~~aJ 

= 
1 o2W cos9 dW 

sine d92 - sin3e ern-

This computation was lilade leavj.ng out the reflectivity. 

Expanding the reflectivity in the same manner as before, 

= p(z • no)+ p'(€ • n ) + ~ p"(€ • n )2 + 0 0 

Including the extra tenhS in th~ expression for Wde-t 

wdet = [p + p' (£. no)+ (~) p"(£ • no> 2
Jl wsky 

llS 

Actually, 

. ·~ 
·, 



c.w k l 
cote TJ 

+ 2p'((& · n) [z · (B~ + &~) . n J) w' ~ -o ~ ~~ ~ -o sky 

+ p'((e • n ))W k + (!.:)p"((~-. D .. J 2
) W · - --o s 'Y " ~ -v sky 

The first average i$ equivalent to 

(!_- ~)(I + y_) • n 
""() 

The second average is simply ((9 2)/2) cos e
0

• The third average is 

Assembling these results and noti.ng that (&
2

) is equivalent: to the 
') 

mean-square slope m~ within the 

2 [o2wsky 

approximations used here, we obtain , 
aw I 

~1det = wsky + m 2 + ce cotG ~J 

2 m +-,.;-
sin's 

(
ow k ~ 
~) 

1 c p cose op 
[ 

2 ] 
sin2e o8 2 - sin2e ~ 
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The net result: is that the variation in radiance is given by 

flvJdet ~
,.. 

o'w 
P 

sky 
" + aa~ 

aw ~ 
cote ~J 

(ow k ) (a ) ·[32 3 J 
+ . or * + (\)Wsl<.y oe~ + cote *J 

This -.xpression accounts for the contribution to the variation in 

recej ved radiance due to the first term in Eq. (l). The contribution 

of the second term can be obtained by inspection of the above expres-

sion (replacing W k by W and noting that W is independent of 9). s y sea sea 
Thus, the contribution of the second term is 

= -(m /4) W ---... + cota "<;'1; 
2 [a2p op~ 

Sea oSL 00 

Co.nbining these results yields Eq. (4) of the test. 

117 



"'j 
I 
~ 

~ 

"7 "7 
;. :;; 

"' "' I I 

5 5 
?!: ~ 
.3 ~ 

w ... 
u v z z 
< < c 0 
< < 
"" "" ... ..... 
< < 
"" "" ..... ..... 
v v ... w 
0.. 0.. 
Vl "' 

, ... ;re ..... WA'/EI.fNGTH (I') 
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Colorado, near noon in September; elevation angles 0° (top curve), 7.2° and 30 
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SUPPORTING ANALYSIS F 

DECISION THEORY APPLIED TO SENSOR EVALUATION 

S. Courtenay Wright 
Enrico Fenni Insti tate for Nuclear Studies, 

UnivP-rsity of Chicago 
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Sophisticated signal processing is claimed by some of its advc­

cates to make possible remarkable improvements in detection system:::. 

\'Jh;.le this is true in some cases, in others the claims are extl'avagant . 

Tlus note is written to provide a basic criterion for detection that 
depends only on hardware capability and by which ultimate perfcnnance 

limits can ~ set: limits th~t can be approached but not surpassed 

by astute processing and presentat-ion. The basis for "this is the work 

of Harris''' on decision theory. The derivation of one of his main re­

sults is abstracted here for complete~1ess. 

We .,.,ill look at the detection problem as a binary decision bet.,.leen 

two signal sources denoted I and II, with the signals accompaniP.d :t:y 

additive Gau$sian noise. For definiteness, take a two-dimensional data 

presentation with mean flux densities of H1 (x,y) and H11 <x,y) for the 

sources I and II. The likelihood that a set of flux readings ~' R2 
R "th d" • 2 2 ~2 f t h f A A • Ob •.. n w~ ~spers~ons cr

1
, cr

2 
... "'n or paces o area ... x..,y ~s -

served in response to source I is 

2 n 
i ... (I) = 7T 

i=l c-:2 \ 2rr cr. 
~ 

2 2] exp[-(R. - H_. t::,xt::,y) /2v. 
~ ·L~ ~ 

where ~ is the flux measu~ed at the display point (xi,yi), and Hii = 
H

1
(x. )/.). Similarly, the likelihood of the same readings in response 

~ ~· 

to source II is 

L(II) 
n 1 

;:: 1r _,­
i=l "V 2n v~ 

~ 

This fcrmulation assumPs that the increment&l area ~xay is sufficiently 

large for the observed ~eadings R. to be regarded as statistically 
l. 

independent. 
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Fe-' tht purpose of this discussion, the relative risks of error 

in deciding that sout'ce I is present when source II is really present, 

and vice versa, can be ignored. Under these conditions, the decision 

rule is to select the alternative with the larger likelihood. In terms 

of 

V = 2log[l,(I)/L(II)] 

the procedure is to decide that I is present if * > 0, and to decide 

that II is present if v < 0. Specifically, 

n . ? 2 
y = :2: (l/cr7)(-2R. (H~r· - HI.;) 6x6y + (HI.; 

i'=l ~ ~ .L .l ... ... 

Now suppose that source I is acTually present; then 

Ri = H~. 
.L~ 

~x~y + ni 

with 

(n~) = a~ = vi6x6y 
~ ~ 

Here, ni rept•esents The additive Gaussian noise, and vi is the 

noi5e variance per u1ut area. Substituting this into the expression 

for t yields 

n 
ti = L: 

i=l 

The me·an of 'I can be expressed as 

dxdy 

124 



I 
I 
I 
I 
I 
.I 

J 

J 
. ,. 
J. 

r 
I 
.~ 

• 

The integral is taken over the area of presentatiol"l (e.g., the field 

of view of display). The variance of t1 is calculated to be 

The probabili~y of correct decision (i.e., that v1 > 0) is 
Q) 

p = (1/ffn) I e-z
2

/ 2 dz (1) 

·~IE 

The probability of a correct decision depends on the single parameter 

"'" = <'>l l!f<sl•l· dxdy('' (2) 

when N denotes the background noise per unit area • 

Well-matched processing and data presentation can take full ad­

vantage of the signals provided by detection equipment, but cannot 
improve the probability of a correct decisjon over that implied by 

Eq. (1) and (2) • 
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(~ Thu, 5t~y deals ~,,,.1th fu."1GoM"c:m.tal.t 1.n rho ~rl01~anc~ of •irhOrne 5tmsors tor det-ecting th.e -w-•ke {to':\ 

thP. "04Saa;e or a su:rar1n.e throu:gh str&tl!i.vd wCJter. No attO~"'Pt n.u beer. P.~:4i!9 to 1nbe1 the theoret:ical result.s 
1r tV< ~per.st 1«.<\l 4•te~nq. ""-

(oJ) lnt4m4l wbW.5 4f"e. IJ'tr.er4tf:i! by fi.u,~od d1:~~;-\.tee=ont ~dt;>Ole •ourc4!) i1J"id <a•iike eollap.te (QuedrupQle sourc•) 
The ..,.,.,.~ fO\U"Ce prvd()':'linllt:cs !<l:- .:~stom tr<;r-~ $h&llOW' ....,vir.g b0d1e1\, M>- vice vet"sa. Tl'A!:! as;oei•ted surtu-e 
s~r4!.f,. lo.ad tQ a ch.tr.J(. tter!1it~c ~atte-rr. of C!'lh41'l<:~o:tt of ..llo~~tent wtr;d ..., • .,.., t .a.nd this tr. turn afte-:ts t:he r~t-
.l"'~'trH'' :o,.,p.ert-t:.J:O and scatcaru,._; cross stJctions, .u Masured ,..fth p•sstve .a.nd 'lctive dvvtcos, respect"ively 
. c t) ttt.c:ar very f.awrabie Cl.I"C'\:r."Stdnces (4 shal.lCI\.' source 1n a sl\;ar-p thetT'Iocline} the roetult'in; surf•ee 

S':r\lH, ~ ~ '1'14lY eKcee~ tl•l i cntcally ~ a l(l:J•l) tO 000'"'1) 1 .&r.l! c:Hc1nishes rapi~ly vith $Ourc::t Uept~. tn-
hoU'oCf t.i'!'t'\t <l! slo~ ts :l(c), of :scatt~r:t.nq eros& sect !on is O(lOt 1. and of r..sdia:nce O(O.lc ). C1VIIIn the nat:\Jr.al 
bad ;" .. 'J:'C tiT'.d \n;.tnr.ent noue ltev••H, t;)-.e de:e<:tiet.l of an <U'I()I'tl•l.:>u& pat't~tm covering l~ )( 100~, $.ty, r&• 
~'Ji"'-"'· ~t'rtlinS of 3(lQ•1) for 31"',..11(!' p.a;S$1Ye (IP ')Jt(! "1'lCt'OWclYe) a~ .ac:tiw (rada:-) devtets (!>ut the lim1CH1ortl 
for •• tnru "'*thC<!s differ cut lr.etly). 

'"1) "rhcre u so-u tneu:.,t1ou tt\•t: tl".e di!tecta!Jlc s~raifl ~i9ht DO t"e<!ucvd t<: 0(10""3) for an ..a:et i\1'11 devico 
<Ot ' •n 1o1r1~lot f"''$Oluttcr .u.c: treq...:er.cy {l.«~tet) Vl9"~nq the sea surface 2 rt:t:; slopes fra:. tN \.'trt1c•l· l<:ttve 
d•"'": .,, .tPP<"•r .art,<iltt J.W a!.so for tro N:aScor. :-h\lt they el1:1rQte t'M last ,s,r;ev in an tl!"et\dy !'!lOSt tnvolwd 
SGrit .. o# :- ~ .;tJ.ttd ;-ttcn..::r.-en.t: u:ta~•l :...:t.11t ger..e':'•t\01' .. surtve st:rAintnq .... dUferont 1~.1 rouqm:- !.r:; { tffccttrg 
&C4l1 tunr.1} - r~i~ ... rl.-e tetr:~per4tJN (!R). 
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