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INTERNAL WAVE WAKES -OF A BODY MOVING IN A STRATIFIED FLUID

J.B. Keller
Courant Institu.te of Mathematical Sciences
New York University
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I. INTRODUCTION

R P,
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When a ship travels with constant velocity along the surface of
a liquid, it creates behind it a wake which is called a "ship wave"
pattern. A similar pattern is produced by a submerged object moving
parallel to the surface. The usual analyses of such patterns apply
to liquids of uniform density in which only one type of propagating
wave, called a surface wave, is possible. We shall consider ship
wave patterns in horizontally stratified liquids in which one or more ¥
- propagating internal waves exist in addition to the surface wave.
. Keller and Levy (Ref. 1) have shown that in any such liquid the snip
- ‘ wave pattern is a superposition of separate patterns, one for each
propagating internal or surface wave. They have also obtained formulas
for the wave height and particle velocity as functions of position
throughout the pattern. From these formulas one can see that for a
submerged object the patterns corresponding to some of the internal
waves can have larger amplitudes than that corresponding to the sur-
- face wave. Therefore we shall examine the internal wave patterns in
N detail for a simplified, but realistic density profile in which in-
. finitely many'propagating internal waves occur. Previously Hudimac
(Ref. 2) studied the special case of a two-layer fluid in which just
onz propagating internal wave exists.
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TI. WAKE GEOMETRY

To describe the wake of a horizontally moving object, we replace
the'object by a point which we call the source. , We introduce cartesian
coordinates in the horizontal x,z plane containing the source, with
the x-axis along the path of the source anc the origin at the position
of the source at time t = 0, If the speed of the source is -v then
the coordinates xo(t'), zo(t') of the source at time t’ are

% (£1) = ve, 2 (t') =0 (2.1)

We wish to determine the wake corresponding to waves of a partic-
ular type emitted by the source, i.e., to the surface wave or to the
n-th internal wave. We suppose that the source emits waves of this
type with all frequencies @ and that the wave has a definite propaga-
tion constant or wave number k., It is converient to express @ as a
function of k,

w = w(k) (2.2)

The functional relation (2.2) is detemmined by the density profile,
and will be considered later.

Let us consider the phase -¢(x,z,k,T) at the point X,z at time
t = 0 of the wave of wave number k emitted by the source at time -7,
t 2. 0. If the wave is emitted at phase zerc then

~p(X,;2, k,T) = kr - o7 (2.3).
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Here r is defined by

r = {[x-xo(--r)]2 + 22}% (2.4) ‘ )

O

We seek those values of k and r for which ¢ is stationary. Tris

N R L TR

-6, =T - 0T (2.52

0=-¢_=kr -w (2.6)

T

From these'equations we find that

(2.7)

n
9]
]
£

/T

i

v(x_-x)/r = ¢ = w/k. (2.8)
Here we have introduced the group velocity c¢_ and the phase velocity
¢ defined by the last equalities in (2.7) and (2.8). Eguation (2.7)
shows that the wave from the source XO(—T),O travels to x,z at the
group velocity cg. Equation (2.8) shows that the trace on the x-axis,
of the straight line perpendicular te the ray from xo(-T),o to X,2,
travels with the source velocity -v.

The two equations {2.7), (2.8) determine the values of k and T
which make ¢ stationary. When these values are used in (2.3), (2.3)
will yield the stationary value of the phase at each point x,z. These
results are just Equations (11.5) and (11.€) of Ref, 1, which we have
redi-mved in a simpler way. We now use (2.7) to write 7 = r/cg and
(2.8) to write w = kc. Then we can rewrite (2.3) as

-¢ = kr(1 - C/cg) 2.9

*Letter subscripts denote partial differentiation.
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Next (2.8) and (2.4) yield, if ¢ < v, _ .
XX = rc/v, 2z = r(l -c2/v2)% (2.10)
From (2.17 and (2.7),
g

X, = ve/e (2.10)

Let us now eliminate X from (2.10) by means of (2.11) and then
aliminate r by means of (2.9). Thus we obtain

2 - — 3
1 - (cec_/vT) : cg\jl - (¢/Vv)
« = (gv/k) ———é—_—g———], z = (¢/k) — (2.12)
g g

Thus if ¢ < v, (2.12) is the parametric equation of the wavefront ¢ =
constant, where ¢ is the stationary value of the phase and k is the
parameter.
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III. 1ONG WAVES AND THE FAR WAKE

Suppose that for k small, the function w(k) in (2.2) has the pow-
er series expansion

" 2 3
W= mlk - w2k - wsk + eee s (3.0
Then -
C =Wy - Wk o+ (3.2)
cg =w - 2w2k + oees (3.3)

Now (2.12) becomes

; I -
v {l-v (wl-w2k+. .. )(ml-2cu2k+ ves )]

X =
Kk w2k + 2m3k2 -

2 2
W 3w_w 2w 205w
(¢V/k2w2) [(l - —%)+(———1§?- - a——zl + —-Q—l-é)k + ] (3.4)
v

i

v 2 viw,
2.2 -2 \
(wl-2w2k+...)(l-\ wl+2v m1w2k+...,
z = (¢v/k) %
w2k + 2u)3k - eee

2
w 2w w @ 2w
= (uy o 1 - 3y (52 - F v gl | GO
ve 1 ve-w) 2

It is clear from (3.4) -and (3.5) that for long waves, for which k is
small, both x and z are large.

e A e B S i




To eliminate k we solve (3.4) for k and substitute into (3.5),
obtaining

wlx 2(@3«.\2\/‘7’x)l5
,'z.=(22§~2 5 + o (3.6)
v —wl) AR

If w(k) is not analytic around k = 0, (3.1) is not valid and
therefore (3.6) does not apply. This is the case for ordinary surface
waves in wager of constant density and infinite depth, sinze for them
w(k) = (gk)*. Then (2.12) becomes

)

_ 20 _ 8 2
x = ",é(l- g ) z-—E(l--—g-) (3.7

(gk) vk oK

From (3.7) we see that k must be restricted to the range k > g/v2 in
onder that z be real, so a small-k expansion is not applicable in this
case.
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IV. SHORT WAVES AND THE NEAR WAKE

For short wavas or large k, we assume that w(k) has the asympto-
tic expansion

wk) =N - Nk 2 - nkd ..., (4.1)
2 4
Then " c=NkY . Nzk“s - N4k‘5 + onn (4.2)
c = 2Nk 2 4 an x5 4+ (4.3)
. ) . cer .

Upon using (4.2) and (4.3) in (2.12) and (2.13) we obtain

[1-v“2(Nk‘l-N2k‘3 - ...)<2N2k‘3 + ...{]

x = (¢v/k) =5 -3
NKTT - 3NKTT - L.
3Ny, o
= (ev/M1+ F k2 . (4.4)
(2N2k‘3+4n4k'5 +..2) (L-vo 22 '2+2v‘2NN2k‘4 + . 0E
z = (¢/k) T 3 ——
Nk~ « 3N k™7 - ... )
2
. 2N 2 3N,
_ 3 4 N 2} . -2
= (2¢N2/Nk )[l + (N; - —2:2 + T) k + ..-] (4.5)

Solving (4.4) for k and substituting the result into (4.5) yields

2
= 2N oV 3/2 -
z-——T—?(x-r) 4 .o (4.6)
(27v N2¢)
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From (4.6) we see that each wavefront g = constant has a cusp at x =
¢v/N on the path z = 0.

In the case of ordinary surface waves ip water of constant density

PR pnoX

and finite or infinite depth, (4.1) does not hold so neither does (4.6).
For infinite depth (3.7) yields for k large,

s = gx2/4bz¢ +oeee (4.7)
Then all wavefronts enter the origin x = 0 on the path z = G. The

result (4.7) slso holds for the finite depth case when the density is -
constant. ’ : '

10 I




V. EXAMPLE

A. THE DISPERSION EQUATION

_ Let v(y) be the y dependent factor of the vertical component of
fluid velocity in a time harmonic wave of angular frequency ® and
wavenunber k in a fluid of density po(y) and depth h. Then v(y)
satisfies the equations

- 2 -
Vg - 9 1N2vy + k2w 2N% - 1)v=0,02y2-h (5.1)
v,(0) = 2w~ 2gv(0) (5.2)
v(-n) = 0. (5.3)

" "moan
(Ref. 1, Egqs. 5.14 - 5.18). Here N2(x) is the Vaisala frequency de-
fined by

W = (-9)(p,),/P, RCRD

This problem has nontrivial solutions only if k2 is an eigenvalue.

We shall take for pn(y) the followihg function

i

OO(Y) 0, » 0zyz= yl

Py exp[(N2/9>(yl-y)] s Y1 2 Y =Yg {5.5)

]

b, = py expl(N%/9)(yy-y,)) 5 ¥, 2 ¥ = -h

e rs 0t @ fom g Pz T IR ST ST AT




The layer between Y1 and y% is the thermocline, within which N2 is
constant, and outside it N¢ = 0, Now the coefficients in (5.1) are
piece-wise constant so (S.1) can be solved explicitly. If we ignore

the temm g‘lN2vy in (5.1), the solution is simply

v(y) = sinh (ky + a) 0=yzy (5.6)
vly) = C cos kvy + D sin kvy  y) 2 Y ¥ ¥y (5.7)
v(y) = B sinh k(y + h) y, % y = -h (5.8)

Here v is defined by
W= (8e?) -1 (5.9)
Condition (5.3) is satisfied by (5.8), while (5.2) yields
tanh ¢ = w2/kg (5.10)

At vy
vields the four conditions

and Yo both v and vy must be continuous. This requirement

C cos kvy, + D sin kvy, = sinh (ky, + a) (5.11)
C cos kvy, + D sin kvy, = B sinh k(y2 + h) (5.12)
-v C sin kvy, + VD cos kvyl = cosh (ky; + o) (5.13)
-v C sin kvy, + vD cos kvy, = B cosh k(y, + h) (5.14)

We now combine (5.11) and (5.13) to obtain
{C cos kvy,+D sin kvyl]cosh(kyl+a)
+v[C sin kvy,-D cos kvyl]sinh(kyl+a) = 0. (5.15)

Similarly we get from (5.12) and (5.14)

12
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® 3 + 4
r {C cos kvy,+D sin kvy,Jlcosh K{y,+h) v

: +v[C sin kvy,-D cos kvy,]sirh k(yy+h) = 0 (5.16)

In order for (5.15) and (5.16) to have nontrivial solutions for C and

. D, the determinant of the coefficient matrix must vanish. This yields
. the dispersion equation
- tan vy -y, {1evPuanh (kypea) tarh k(y +h)]

(5.17)

= v{tanh (kyl+a)utanh k(y2+h)]

B. FAR WRKE

Let us examine (5.17) for k small, tentatively assuming that

" w ~ ke(0) as k tends to zero. Then {(5.9) yields v ~ N/ke(0), (5.10)
- yields o ~ ke2/g end (5.17) becomes at k = 0
- n 0
' o Ne™*{y,-y,-h+(c/g)]
- tan [(V/e)(yy-y)) = 2 2 (5.18)

1+ N2c'2[yl+(c2/g)](y2+h)

This 1s an equation for c(0) which has infinitely many solutions which

i we shall call cn(O), n=0,1,2,... . To describe them we write

- ' c () =25 __, _F<a <mn/2 (5.19)
n nn o+ 3, 2 n

-~' Here we have introduced the thermocline thickness s defined by

) s= Yy - Y (5.29)

Then (5.18) becomes the following transcendental equation for a,:

. st
sl(s-h)(nma ) + ETEF:3;7]
n 52+[yl(nn+an)2+N252/9](y2+h)

tan a y = m/2 <a < /2 (5.21) .

13



For n large (5.21) yields

s(h-s)
a e (5-22)
n nnylZE+y25 -+
u
If h >> s and h >> |y2|, (5.22) becomes -
s JR—
a, ~ - ATy, , n> 1 A (5.23) .
¢
For n = 0, (5.21) becomss 2 2
N's «
s[(s-h)ao + 5. ] j
tan a_ = 55 - (5.28)
s* + (ylag + 2 z Yyyth) -
If lyz\ << h and N2s/g << 1, we can replace tan &, by &, in (5.24). -
The resulting biquadratic equation has zs its two positive sclutions -
- Ne ) ) -
a_ - {5.25) -
° " (gn)*
K T
at ~ (S (5.76) -
o] =

4

5

Let us now use the results (5.23), (5.25), and £5.26) in {5.19)
and introduce the effective gravity g’ defined by

Hred

’ 2 Fo _ Py

g’ = N°s = g (5.27) ,
Py ]
Then (5.19) yields I
e (o) ~ (gh)*® (5.28) I
cr(o) ~ (g’}| I)’i (5.29) ‘
o a’lyy . I
. 14




%
¢ (0) ~ L850 ( ﬂi——) , n >0 (5.30)
n“r{y, |

Jince w ~ ke, it follews that cg(O) = ¢{0) for each mode.

(@

MEAK WRKE

Now we srall examine (5.17) for k large, assuming that w ~ N as

& tends to infinity. Then (5.17) Lecomes

tan kvs ~ -2v (5.31)
Since v is small, the solutiohs of (5.31) are
kvg ~ nr - 2V (5.32)

By using the definition (5.8) ¢f v we obtain from (5.32)

]

w=N[L+ (ks+;) ]'12 ~ N[ - g(g__%) }~N-N k -2 .. (5.33)

Here N2 = (nn/s)zN. Therefore from (5.33) we obtain
_w _N N nrt \2
CTFRKTK T % (E"_z) (5.34)
o =30 Ns () (5.3%5)
g~ dk ’

 (ks+2)
These results hold only for n # 0 as we see from (5.32).

D. SURFACE WAVES

1f w tends to infinity as k does, we must proceed differently.
“Then v2 ~ -1 and (5.317) becomes '

tanh ks [1l-tanh(ky, +a)tanh k(y2+h)] ~ tanh(ky;; +)-tanh k(y, +h) (5.36)

15
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Thus
1 - tanh (kyl+a) ~ tanh (ky1+a) -1 (5.37)
It follows that « must tend to += as k does. Then (5.10) yields
t %
w ~ (kg)* (5.38)
This is the result for the surface wave.

E. DEEP OCEMNS

In the oceans the depth is so large that kh >> 1 even for the
smallest practical value of k. In this case it is possible to simplify
some of the preceding results. For example, in (5.17), we can set
tanh k(y2+h) =1+ ... . Then the solution of (5.17) for small k can

be carried beyond the leading term given in (5.29) and (5.30) with the

result
7 yl‘
w= (g |yl')%k[l - 13_1 K+ ...}, n=20 (5.39)
w-il’f‘fk[l WS K+ ...1, n>1 (5.40)
- - s 0. s .
nm n“n

In writing these results we have assumed that‘wi/glyll << 1, since in
the oceans this number is typically of the order 10-3.
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VI. WAVE HEIGHT DUE TO A MOVING SOURCE OR DIPOLE

The wave height nsource(x z,t) has been determined for a unit
point source of fluid moving with the constant velocity -v at the
depth Yo- The: asymptotic form of nsourcn far from the source is

T (x+vt,z) ~ }T'E: B cos (kr-wrt+m/4) (6.1)

2
source 2 G2 c?)Ey

(Ref. 1,‘Eq. 71.14). The sum in (1) is over the modes of wave propaga-
tion, and for each mode over the roots k and 7 of (2.7) and (2.8). The
functions w(k) and c(k) = w/k are determined for each mode as in Sec-
tion 5 and B is given by Ref, 1, (10.9).

) Lo N2(0)Ju(y,)
B = - |2t 2 0o (6.2)

[0*-N2(0)1w (0) -gwy, (0]

Here w(y) = p (y) v(y) where v(y) is a nontrivial solution of (5.1)
and (5.3).

If the source is a dipole of unit strength oriented along its
direction of motion, the wave height ndlpole can be obtained by dlffer-
entiating. (6.1) with respect to -X. Only the phase -¢ of the cosine
need be differentiated and in view of (2.5) its derivative is -er +
wr . Alternatively we can obtain -0, from (2.12). In either way we

obtain

k(c-cg) B

~ sin (kr-w1+%) (6.3)

V(l-ccgv'z)(v?.cz)5

ndipole(x+Vt’Z) ~o- E:'

17
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With the help of (2.3), (2.10) and (2.133, the 2quations (6.1)
and (6.3) can be written in the shorter forms:

z. B

nsource’ = :5; cos (g-1/4) €4
. _ Bopr . X

Naipole = &xgv Sin (6-7/4) (6.5)

In the example of Sec. V, we have N(0) = O, Vg =Y cosh (ky+a), and
vky = cosh (ky+a) + ky sinh (ky+a). Then (6.2) becomes

" o X pglyglviyg)

.~ g cosh « lnl?um po(0) (6.8)

18
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- VII. ILLUSTRATION

A, NORMALIZATION

Figures (1) and (2) are drawn for a density distribution consist-
- ing of a "thermocline" of thickness s = y;-¥, within which N2 is con-
stant, and outside which N2 0 (i.e., the case treated in Section V).

We collect the dimensioniess formulae used in the construction. All

distances are normalized with respect to the thermociine thickness s:

X =x/s, Y=y/s, 2= 2/s; X=ks £7.1)
1 1t 1

" and all frequencies to the Vaisala frequency N, so that -

Q

n

w/N, C=Q/K=c/(Ns), V= v/(Ns) (7.2)

F = v/c = VK/Q is a "Froude Number,” measuring source velocity rela-
tive to the speed of internal waves. We consider only F > 1.

. _ The dimensionless amplitude along any line of constant phase
¢ =0, 2m, ... is given by

Nsource - 2"¥ B

4

s N2 %y 647
N ;s -% -k
) _dipole _ _ 272 Be(1-F %) (6.5")
=TT X7 *
where ) Ne
B = (_23)’5 N { p0CypIV{ygy (6.6")
n g cosh o KDO 1 ( )

19




YRy ST

i

PRI AT Gy

The expression po(yo)v(yo)/po(O) in (6.6!') depends on the depth of the
source, y = sYo, in accordance with (5.5) - (5.8). The simplest case
is that of the source above the thermocline, Yb 2 Yl in which case we
find

o (y vy ) : N2s a2
0’0o 9 = &4 ¥ = ___S_ Q
——Toy— © s_nh(xYo+a), tanh o T X (7.3)

e}

B. NEAR WAKE

Equation (4.6) with N2 determined by (5.33) can be written in the
dimensionless form

3
o9 2(X-pV) (2
Z~== [..W—-l (7.4)
Here ¢ = 2m, 4mW,..., and nn = 1,2 ... designate successive crests for

various modes. The cases ¢ = 0 and n = C are beyond the scope of the
present approximation. The wave crest can now be constructed for any
specified n and ¢.

For given n, ¢, X, and Z, the amplitudes can be obtained as follows.,
First we eliminate N, between (4.3) and (4.5) to obtain z = ¢ @¢/N + ... ,
with g determined by (5.35). This leads to the dimensionless formula

2 ~ o(nm? (K+2)° : (7.5)

from which X can be czlculated. Furthermore from (5.%3) and from the
definition of F we have

2
Q~1- g(‘%}ﬁ) (7.6)

F = VK/Q (7.7)

20
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By differentiating (7.6) we find

Koy ~ 3(nm)~ % (k+2)° (7.8)

C. FAR WAKE

Equation (3.6) can now be written

pJ
Z= (Fg - 1)"5[x-2x0¥x5 + 0.0 (7.9)
where I-‘o and Xo are given by
Y ‘ .
F = 5y (7.10)
3
ow,v
— 2
X, = —5—5—5T (7.11)
wls(v -wl)

The mode n = 0 corresponds essentially to 2 thermocline displacement,
and the modes n = 1,2,... to themocline distortions. We need to treat
these cases separately.

From (32.1), (5.39) and (5.40) we find

€
n

» l Fé
1 (g'ly )% w,=(g lyll)%lyl|/2 for n= 0 (7.12)

w (g's)gs(nﬂ)'s for n >> 1 ° (7.13)

1

it
I

%
(g's)*/nm, w,
By using (7.12) and (7.13) in (7.10) we obtain

.
Fo= v, % for n=0; F_ =nuV forn>>1 (7.14)

We now define 5{n) by

6(n) = 2 forn=0; &(n) =1 forn > 1 (7.15)
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Then from (7.11) - (7.15) we obtain

e

2
oV FO

X T e — (7.16)
1 ©  8(n)(F,-1)

o —i

We now use (7.12) and (7.13) in (315) to gef

2_1\k
6¢P0(Fo—l)

G nan a

L~y ‘ (7.17)
V7K . .

g From (7.17) Qe_can find K in terms of Z and ¢. Then fron (5.39) and -
: (5.40) we find
3 3.2 .
: Q= (WEIK - 67HV/E)KE + ... (7.18) )
3 .
E

Differentiation of (7.18) yields

Ko ~ 26731 - 26" (v/E )30 (7.19)

D. RESULTS

We have computed wakes for the following cases:

- Source depth yg = 30 m .
4 Thermocline depth ¥y = 50 m
3 Thermocline thickness s =10m I
LLASE LI -2 -1
Vaisala frequency N = 10" sec

Figurs (1) and (2) portray the near wake for the cases V = +I0 and 10,
corresponding to source velocities v = VNs = 0,316 m/s and 1 m/s,
respectively., The X-axis extends from X = 0 to 200, corresponding to
2 km full scale; the horizontal Z-axis is drawn to the same scaie.

‘With increasing v, the wake field is rapidly concentrated along the -
. source axis, particularly for large n and ¢. We have (improperly)
used the n >> . approximation for the cases n = 1, 2. The case n =0 .-

is bevond the scope of the present treatment for the near wake, and

2 I




b

the far wake is off-scale in the example shown. The computed source
functions diminish rapidly with distance from the source axis. Unlike
the case of a surface (Kelvin) wake, internal sources moving at quite
moderate velocities through typically stratified fluids produce in-
ternal wakes that are sharply concentrated alcng the source axis.
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FIGURE Y. The near field for a source velocity V =3.16. The
dashed curves marked ®= O correspond to the far field solution
ond are sketched for orientation only.
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ABSTRACT

The internal waves produced by either a moving body or the
collapsing wake behind a moving body in a stratified fluid are calcu~-
lated asymptoticslly {(at large distances behind the source) on the
hypotheses of small disturbances, the'Boussinesq approximation, and
the slender-body aporoximation {the transverse dimensions of the body

and wake are small compared with the wavelengths of the significant
internal waves).

Explicit results are given for two, complementary models: (a)-

‘a constant-N model, in which the density gradient is constant and (b)

a thin thermocline model, in which the density gradient pesks sharply
in a thin liayer and is elsewhere negligible. The internal-wave spec-
trum is continuous in (a) and discrete in (b); however, only the domi-
nant mode is included in the explicit results given for (b).

A WKB solution also is given for a thermocline model, This
approximation does not give an adequate representation of the dominant
mode but does provide estimates of the contributions of the higher
modes that are neglected in the thin-themmocline model. These contri-
butions of the higher modes that are neglected in the thin~thermocline
model. These contributions are typically negligible relative to that
of the dominant mode in the neighbourhood of the maximum, free-surface
disturbance.
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I. INTRODUCTION

We consider the disturbance generated by a horizontally moving
source in an incompressible, inviscid, vertically stratified fluid.
This disturbance comprises the near field, which dies out more or less
rapidly with distance from the source, and the radiated field which
consists of internal gravity waves. We focus primarily on the radiated
field, but emphasize that there may be situations of interest in which
the amplitude of the near field is not small companed with that of the
radiated field. In particular, the radiated field in a steady flow
(uniform translation of the source) appears only in the lee of the
source, so that the near field must be taken into account in calcu-
lating the disturbance forward of, or directly over, the source.

The appropriate similarity parameter for the generation of inter-
nal waves by a moving source is the reduced frequency (or inverse

Froude number)

’ 0= NL/U : (1.1)
1!,‘ % n
where N is a characteristic value of the intrinsic (or Vaisala) fre-
quency of internal waves {see Eq. 2.9 below), {4 is a characteristic
length of the source, and U is its speed. The frequency spectrum of

the internal waves is (0, Nmax)‘ The intensity is typically a rapidly

increasing function of 0 (and, therefore, a decreasing function cf U)
for 2 < Qc, say, where Qc is a characteristic value of (1, of ordex
unity, at which nonlinear phenomena intervene. Internal-wave genera-
tion is weak for 1 >> Qc’ agd as 00 ~o (U = Q) the flow tends to a .
plug type, in which a horizontal column of fluid is pushed in front .
of the body. L,
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We develop the equations of motion in Sec. IT on the hypotheses

f; ,{ of small Jisturbances and the Boussinesq approximation (in which only
! : the buoyancy effects of density stratification are included, the iner-
T tial effects being neglected). We obtain formmal solutions of these
3 ' equations in Sec, III with the aid of integral transforms and special-
'g ? ize these to a moving dipole (by which a body may be approximated if

+

0 =< 1) in Sec. IV and to a slender. ¢ollapsing wake (a region of
stirred fluid) aft of a moving body in Sec. V. We give explicit cal-
b cuwlations of the internal-wave field for a constant-N model irn Sec.
VI and for a thermocline model, in which N peaks sharply in a region
of lamited vertical extent, in Sec. VIT and Sec. VIII.

k]

CWITFPT

The constant-N model is characterized by a continuous spectrum
(since we assume the fluid to be either infinite or semiinfinite) and
may be representative for laboratory configurations, although finite-
depth effects could be important in such configurations. The thermo-
cline model is characterized by & discrete spectrum and affords a more
realistic model for the ocean; we give explicit vresults only for the

e

-l

Batan mrecily

v dominant mode on the hypothesis that the thickness of the thermocline
- is small compared with both its depth and the wavelength. We give a
WKB solution for the thermocline model in Sec, IX. This solution does
‘i N not given an adequate description of the domina—t mode for a thin

) thermocline, but it does provide adequate estimites for the higher
4 . modes.

The disturbance produced by a moving body has been calculated
s previously by Hudimac (Ref. 1) for a two-layer model of the ocean and
3 . by XKeller and Levy (Ref., 2), Lighthill (unpublished papers), and Mei
' ’. (Ref. 6) for various models. There is a close analogy between two-
: dimensional, time-dependent disturbances and three-dimensional dis-
. turbances produced by a unifermly translating source. Xeller has
' -. obtained results similar to (but more general and less explicit than)
. L o those reported here. HMany reports from Hydronautics, Inc. also deal
. with the problem, both experimentallyvand theoretically., Nevertheless,
it appears that some of the results given here are new., Perhaps the
most interesting are the asymptotic approximations to the respective,
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lateral strains preduced at the free surface by the displacement
(dipole) and wake (quadrupcle) effects of a submarine that is small

L N

compared with the length of the internal waves, i.e., @ << 1, Thus T
we have 4
% N '9\' -

Iyl ~ 0.42%4b% (e Ja-h|) ‘(Nh/u%x ¥y {1.2) .

S ll .

. -%,
In, ! ~ 0.82%b *(h+lo- h\) (Nd/Nh) (J/Nh)fx (1.3)

where a, 4, & and U are the radius, length, depth and speed of the
submarine. p and h are the thickness and depth of the thermocline,
N and Nh are the intrinsic frequencies at depths d and h, and X4
and - are the respcctive distances behind the submarine and the plane

in which its wake begins to collapse.




II. EQUATIGNS OF MOTION

We consider small disturbances in an inviscid, incompressible,
Boussinesq fluid in which the (hydrostatic) equilibrium distributions
of density and pressure are po(z) and po(z) and z is measured positive
upwards. Invoking the requirement that particle density Le conserved
and linearizing the equations of motion, we obtain

p = p (2z-¥) % p (2)-p (2)¥ (2.1)
v = m, (2.2)

and
Po¥e == % - g{o, 0, o}, (2.:3)

where p denotes the density, ¥ the‘vertical displacement of a particle,
v the velocity, m the source strength per unit volume, and p the pres-
sure, each as a function of the Cartesian coordinates (x,y,2z) and the
time t; letter subscripte denote partial differentiation, and the
triplet {.., -, -} denotes the Cartesian components of a vector. We
seek a solution of (2.1)-(2.3) for a prescribed source density that is
introcuced at t = 0, an initial displacement #o(x,y,z), and an initial
velocity go(x,y,z).

Let ¢ be a potential such that

P =D, - PPy (2.4a)

and

L=y + {0, ops ¥l (2.4b)
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Substituting (2.4%) into (2.2) and invoking the continuity equaticn for 'r

Xo? )

T

vy, =0, (2.5) J

we obtain -

8 + ¥, = m, (2.6) .

: where A= 22 4+ 32 | (2.7) -
. X y

is the two-dimensional Laplacian, and the operators 3x and ay imply
partial differentiation with respect to x and y. We have assumed that
m=0at t=0; if m = m,at t = 0, we need only replace the right-
hand side of (2.5) by m and m by m-m_  in (2.6). Substituting (2.4a,b)
inte (2.1) and the z-component of (2.3) [the x- and y-comporents of
(2.3) are satisfied identically by (2.4a,b)],.eliminating ¢ through
(2.6), and invoking the Boussinesq approximation (thereby neglecting

pé except where it is multipled by g), we obtain

o

, .32 Ry o
Yozrt T ¢ + NO)AY = m (2.8)

zt?

. where

Ne = N2(z) = -gpé(z)/pc(z) e (2.9)

" " ot
is the square of the intrinsic (Vaisala) frequency.

We seex the solution of (2.8) for the initial conditions (which
follow from our definitions)

1=4g 8= =m=0 . (2.10)

and the boundary conditions
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lel, vl <= Cx|s |yl =~ =) (2.11a)

and

| y=0 (z=0, -D), (2.11b)

corresponding to a free surface at 2z = 0 (which acts approximately as
‘ a rigid boundary for internal waves) and a rigid bottom at z - -D.

A convenient measure of the disturbance at the free surface is
the lateral strain,
Y ' t
- U =_/°: 8y (%5¥50,7)d7, : (2.12)

§ : which plays a significant role in calculating the interaction between
the internal waves and prz-existing surface waves. '




IIXI. FORMAL SOLUTION
We define the transforms

¢ = L33, M=SEEm, ¥, = I (2.1a,b,c)

y
where
@ jo
s = [ e, ) = e %€ as e > 0),

0 -ie (3.2a,b)

@

. -1 -
3,0 =f eTT( ax, B, () + (2n>‘1f e ®( )da, (3.3a,b)

- P - |

and similarly for &, with x and o replaced by y and B, respectively.
Transforming (2.8) and invoking (2.10) and (2.11a), we place the result
in the fom

2 2y ,. -1, \ _ -1 2 3.2 ’
(3, = Ay = 7Tp) = 0T, KTITRTY (3.4)
where
A= &/l+(N/o)i (’x > 0) (3.5)
K = Jo+e (k 2 0), ' (3.6)

and Bz implies partial differentiation with respect to z. The boundary
conditions for ¥ are given by (2.11b).

The Green’s fuanction for {(3.4) and (Z.11b) is detemmined by
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(Bi - 2%)6(2,0) = 6(2-0) (3.7)

and

G(O’C) G(-D,) =0 (3.8)

and yields the formsl solution (After integrating the term in M by
parts):

¥(2)-0"te(2) = -o'%g(z,c)n(odc + K2 3az, MOV, () (3.9)
We have suppressed the explicit dependence of the transforms on a, 8

and o; the integrals ~re over the domains of M and #0, which we assume
to be of finite extent, and & is Diracts delta function.

Transforming (2.6), we obtain
= k-2 |
§(z) = K"4(o¥ =¥y, - M), (3.10)

which completes the reduction of the formal solution to the determina-
tion of the Greents function and the evaluation of inverse transforms.
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IvV. MOVING DIPOLE

We now consider the disturbance progduced by the dipcle

m = UD3_6(x+Ut)s(y)s(z+d) (t > 0), - (4.1)

" v . . S— - - "

which is introduced at x = y =t =0and z = -d and moves along the
negative-x axis with the uniform speed U. The parameter D is the

P SR

dipole moment and has the dimensions of volume (see below). Trans-

forming (4.1) in acccrdance with (3.1b), we obtain

M = UDia(o-iol) L8(z+d) (4.2)

g Ay

Substituting (4.2) into (3.9) and assuming the fluid to be initially
undisturberd (¢0 = 0), we obtain

3

= -Ubiac™ (o-1al) ™16, (2,0)| . - g4 (4.3)

TR

The asymptotic limit of ¢ as t — = is determined by the pole of
//_i;; Laplace transform at o = iol (corresponding to 3, ~ U2 in the
equations of motion), which yields

£ ~ D6 (2™ (£ - =), (4.4)
where

Gy(z) = ‘Gg(z’c) ¢ = -d, o =igll (4.5)
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We determine the behaviour of %, qua Iunction of @, in (4.5) from the
antecedent requiremeunt that RA > 0 as © approaches the imaginary axis
from the right:

A = Al o g = WG/ (le] > (4.6a)
= ika 3 2-o? (lal <1, (4.6Db)
where k=

k(z) = N(z)/U (4.7)

(¥ also has an essential singularity at ¢ = 0, which makes no contri-
bution to the wave field, and branch points assuciated with the branch
points of A, gqua function of o, which contribute transients that die
out at least as rapidly as 1/t.) Taking the inverse Fourier transform
of (4.4), we obtain

§ ~ DE_ I

Ut y Gl(z) = wd(x+Ut,y,z), (4.8)

where the subscript d implies dipole.

Substituting (4.2) and (4.3) into (3.10) and nroceeding as above,
we obtain the corresponding result

® ~ WD 1y 3t (10/KG, ,(2)-5(z+)])
= g q(x+lt,y,2) ‘ (4.9)

Substituting (4.9) into (2.12), we obtain

| -1
1~ -DE ue®y /0%, H g = TOxUe,y) (4.10)

We apply these results to: (i) small bodies of characteristic

length a and arbitrary shape and (ii) slender bodies of characteristic
transverse and axial lengths a and %, where, by hypothesis,
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ka

]

N(-d)a/U << 1 (4.11)

and

djt << 1 . (4.12)

(1]
i)

We add that a slender body for which k¢ << 1 is also small.

The solution to the problem of a small body moving with uniform
speed U follows from the fact that the flow in the neighbourhood of
the body is locally potential (ka << 1 implies that the effects of
stratification are negligible over a region of scale a). Invoking the
well-known result that the potential flow past & body is equivalent
to that induced by a dipole at distances R that are large compared
with a, we may match the potential-flow soiution to the solution
(4.8) in an intemmediate region a << R << 1/k and then use (4,8) and
(4.9) to determine the far field (Rayleigh-scattering approximation).
The dipole moment is given by Lamb (Sec. 12l1a, Ref. 5).

D= WV, (ka <<1), (4.13)

where V is the volume of the body and pOV* its virtual mass with re-
spect to axial translation in a homogeneous fluid of density po(-d).

The solution to the slender-body problem follows by anaiogy with

the corresponding problem in aerodynamics, cf. Ward (Ref. 7). Omitting
the details, we obtain

${X,y,a,t) ~:/5(§>[vd(X+Ut-§,y,2)/D]d§

(ka << 1, a << 4) (4.14)

and an analogous result for ¢, where S(x) is the cross-sectional area
of the body, and the integral extends over the body., We remark that
(4,14) reduces to *d if k4 << 1, corresponding to the fact that V, <<
V for a slender body.




L ]

V. COLLAPSE OF MIXING REGION

. We consider next the collapse of a small {in the sense of (4,11)]
, [ mass of fluid that has been stirred--for example, by turbulence--in
such a way as to conserve its mass but alter its potential energy with
; respect to a horizontal plane through its original center of gravity,
4 - say z = -d. Our definition of d then implies

ff (z+d)po(z)dV = 0, (5.1)

conservation of mass implies

fff{‘.’o(z’;o)"’o(z)]dv ¥ ff patadv = 0, (5.2)

and the potential energy is given by

. Eo = 9fff<?-+d)po(2-$o)dv * -gfff(z+d)pé(z)¢odv (5.3a)

= Qp_(-dIN°(~d), .(5.3b)

-~ where Q is the quadrupole moment of the region.

Considering now the second integral in (3.2), we expand G(z,¢)
about { = -d to obtain

Jotz, om0, 0)dc = 6z, -a) fRF(€r9, (0

. | : 2
+ 6. (2, -d)f(gm)ﬂ (O, (£)de (5.4)




and reduce (3.1c) to

AGRY J EXCRRILLY (5.5)

by virtue of our assumption that the dimensions of the mass are small.
Substituting (5.5) into (5.4), we find that the first 1ntegral on the
right-hand side vanishes while the second reduces to ON (-d) by virtue
of (5.2), (5.3), and the Boussinesq approximation. Substituting the
resulting approximation into (3.9), we obtain

‘I/.cr"]‘IVO = QNZ(-d)K20°3G§(z, -d) (5.6)

We apply this last result To a collapsing wake in the lee of a
small moving obstacle on the hypothesis that the fluid in the wake is
mixed, and perhaps also augmented by turbulent entrainment, over a dis-
tance x behind the obstacle, at which point the turbulent wake begins
to collapse and releases the potential energy UE (x ) per widt time.
The resulting, asymptotlc (as t — «) disturbance then is given by

" - dr -1 e e
- -Q’ (x )N (- d{/r t 13K+LT « dy {k2g™ Gg(x,-d)} (t ) (5 7)

Carrying out the integration with respect to 7 and invoking the fact
that (as in Sec. IV above) the inverse- -Laplace transform of the result
is dominated by the pole at ¢ = ioll, we obtain

3-1{ (k27106 )}

§-vg ~ K2 (X0 <%

s vq(x+Ut-xo, Vi2)s (5.8)

where: k is given by (4. 7), G, is given by (4.5); Q’ (x ) is the cross-
sectional guadrupole moment of the wake, is defined as 1n (5.3b), and
has the dimensions of (length) ; -the subscript g implies gquadrupole.
Similarly,
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! = d»q(X+Ut—x0, ys2) (5.9)
r and .
) - ~1ii(p?/a’ - (5.10)
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VI, CONSTANI-N MODEL

We ncw consider the specific model of a fluid in which N (and,
hence, also k) is constant. This is a realistic model for thosz lab-
oratory configurations in which the effects of lateral boundaries may
be neglected. It is not a realistic model for typical oceanic config-
urations, but it does provide an extreme complement To the thermocline
model of the following sections. We give special ¢ nsideration to the
limiting case D = =, which is appropriate for oceanic applications.

The solution of (3.7) and (3.8) is given by

G(z,C) = sinh(%:%;%??%g(g+n)] (z > Q) (6.1)

wherein z and { must be interchanged if z < {. Ve observe that G is
a meromorphic function of kz, and therefore of each of «, B and o,

for finite D, and has the Fourier-series representation

6(z,L) = ’2I’§i sin(nng/D)sin(gﬂg/D) (6.2)
n=1 D) + (nm)

We consider first the limiting case D - =, for which (6.1) re-
duces to

G(z,¢) = l’lexcsinhxz (z >¢C, D ==), (6.3)

which has the branch points of 1, qua function of each of a; 8 and o.
Substituting (6.3), together with the complementary result for z < ¢,
into (4.5), we place the result in the fomm

-xl[z+dl Al(z-d)

Gl(z) = ke sgn(z+d) - ke , (6.4)
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where xl is given by (4.6). We may interpret (5.4) in terms of a
source at z = -d and an image at z = d.¥ We carry out a detailed anal-
ysis only for the first term and move the origin to z = -d with tre
implicit understanding that z must be replaced by z+d and the image
solution incorporated in the final results. In brief, we consider a

(dipole or quadrupole) source at the origin of an unbounded fluid in
which N is constant, '

6zy0) =~ teMzCl (6.5)

and

-Aq12
G (2) = ke ! lsgnz (6.6)

Substituting (6.6) into (4.9) and invoking (4.6b), we obtain

i}

9,(x,y,2) = -(DU/8n )J/;f'( o2+82) 522y B X @8 008,  (6.7)

N d

where

X = ax + By + ixl\z] (6.8a)

= ax + By + a'l(k2-02)%(02+82)%|z! » (6.8b)

Similar results may be obtained for vd’ ¢ and #q by substituting (6.6)
into (4.8), (5.9) and (5.8), respectlvely We recall that x now is
measured in a reference frame moving with the sourceé (x replaces X +
Ut in the development of Secs. II-IV above) and that ¢d is an asympto-
tic solution that is strictly valid only for kx — = (although experi-
ence suggests that the asymptotic approximation is likely to be quali-
tatiyely valid for only moderately large values of kx, say kx > 1)}.

We obtain stationary-phase approximations to &, \FE aq and ¥
in the appendix to this analysis. Introducing the spherical polar
coordinates R, & and ¢ according to
SSRESY

isgn(z-d).

"The image term in (6.4) also may be expressed as +kxe
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1
Rcos8, r = (y2+z2)5 = Rsin@, y = rcose,

bas
il

rsing (0 <6 <m, 0 <¢ < 27) (6.9)

3]
i

and letting kR — = with 8 and ¢ fixed, we find that x(a,B) has two (no)
points of stationary phase if 8 < (>) %m, reflecting the fact that
internal gravity waves (for which the group velocity exceeds tnhe phase
velocity) appear only downstream of their source in a steady flow.
Substituting the resulting approximations into (2.4b), we obtain the
velocity fields

Y
vy ~ -(k?DU/2rR) BeotBsiiy . cos prsinOsin’e) sin(kRsine)
(kR ==, 0<8 <km,  (6.10)
3

and xq ~ (k3Q’u/2nR) §95c38(c052¢+sin29sin2¢)7cos(kRsin¢)

(kR = ®, 0 <& < n), (6.11)

where

8 = {-sin8, cosfcose, cosPsine} (6.12)

is the unit vector in the direction of incressing €; both yjy and g
are asymptotically transverse to a spherical surface with center at

R = 0 (a well known property of internal gravity waves).

The maximum velocities given by the approximations (6.10) and
(6.12) are achieved in the neighbourhood of 6 = 0; howevep,.the approx-
imations are not uniformly valid as § — 0, partially in consequence of
the restriction kr >> 1 (implicit in the staionary-phase approximation)
and partially in consequence of the slender-body approximation, which
"does not give ar adequate description of the interference among the
shorier waves (which are especially important in the neighbourhood of
8§ = 0) that originate at various points of a source of finite cross
section. Assuming r << x in (6.10) and (6.11), but imposing the re-
striction kr >> 1 (so that 1/kR << 8 << 1), we obtain »
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Vg ~ -(RQDU/2n)|y}zr'4E sin(kxz/r) (kx >> kr >> 1), (6.13)
and

Yq ~ (sz'U/2n)x2}y\3r'7E cos(kxz/r) (kx >> kr >> 1), (€.14)

where
r= {0, v, 2}. (6.15)

The corresponding approximations to the lateral strains, as de-
fined by (4.10) and (5.10), are (we omit the details but emnhasize
that the results calculated from ¢4 and ¢ have been doubled to incor-

porate the effects of the respective 1nage solucions at the free sur-
face)

n, ~ (kde/ﬂ)xlyl3r“651n(kxd/r) (kx >> kr >> 1) (6.16)

o.

and

“q ~ -(k Q WAL )xsly\ 9cos(kxd/r) (kx >> kr >> 1), (6.17)

wherein r = (y2 + dz)%. The maxima of ﬂd and ﬂq with respect to ‘yl
are given by

Ty (kD/87d%) (kx)sin(kx/42) at y = d << x (6.18)

and

m

o -0.045(Q" /nd¥) (kx)3cos(2kx/3) at y = k/8d < x. (6.19)

The loci of constant phase for nd and ﬁq are hyperbolae, corresponding
to the intersections of the conical, stationary-phase surfaces,

kRsinp = x(a., o), with the free surface; the loci corresponding to
rhe approximations of (6.16) and (6,17) are

(kx/x)2 - (y/3)? = 1. (5.20)
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It does not appear possible to obtain a simple, asymptotic approx-
imation (for kx >> 1) to (6.7) that is uniformly valid with respect to
kr; however, we can obtain an approximation that is valid at y = 0
(although still suffering from the aforementioned deficiency of the
slender-body approximation) by first evaluating the Fourier integral
over 8 [Erdelyi et al, Ref. 8, Sec 1.5(27)], whence

-, : 1
9, = -(DU/4ﬂ2)J[ %y [ {aP(y%2?) - 1221 E10P 0" e, (6.20)

where the real pari of the radical is non-negative, and KO is a modi-

fied Bessel function of the second kind. Differentiating (6.21) twice
with respect to y, integrating with respect te X, setting y = 0 and

z = d (in the reference frame with origin at the source), and doubling
the result to incorporate the effect of the image solution, we obtain

y(x,0) = (D/2ﬁ2d)f i 1alx1{d(a2_k2)%}ei°“da. (6.22)

The dominant contribution to the integral in (6.22) comes from the
neighbourhood of @ = k, which yields

1.
n, ~ _(D/a%)(2x/mx) Esin(kx-km) (kx >> 1, y = 0). (6.23)
Similarly, we obtain

Ny ~ (6Q'/a%) (2kx/ > Esintkx-km  (kx >> 1, y = 0). (6.24)
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VII. THERMOCLINE MODEL

We consider now the discrecte spectrum of internal waves associ-
ated with a thermocline model, for which (by definition)

6 s Nz) s N2(-h) = N (7.1)
and
0
fN2(z)dz = Nﬁb + 5—23 =g, - (7.2
D

where -h is the vertical coordinate of the themmocline, that is the

‘plane in which N(z) achieves its maximum value, Nb; ap is the total

increase in density across the thermocline (Ap << p by hypothesis);
and g’ is a reduced gravitational acceleration. Setting

o= iwm (7.3

in (3.5) and (3.7), we obtain

(22 & (x/w)(z) - ¥2}6(2,0) = 8(z-0) (7.4)

Invoking the assumptions, (7.1) and (7.2) above, that N2(z) >0
and that the integral of N2(z) is bounded ‘(a nontrivial restriction if
D = =), we infer from Sturm—LioEville theory that there exists a dis-
crete set of eigenvalues, say K;, and eigenfunctions, say fn(z), that
satisfy

Tt would be more conventional to regard the wave speed, c = w/¥ ,
as tlhe eigenvalue for the Sturm-Liouville problem, but we find
it more convenient for the subsequent development to introduce K
as the eigenvalue and to regard both w and K as prescribed.
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{az + (KnN/w)2 - xz}fn(z) = 0, (7.9

£,(0) = £ (-D) = 0, (7.6)
and 0

-/1N/w)2fmfndz =8 (7.7)

-D,

where mn is the Kronecker delta. Expanding G in the fn in the usual
way, we obtain '

6(z,¢) = T (x2ax BT (2)F(0) (7.8)
n
Substituting (7.8) into (4.5), we obtain

G, (2) = —Z:(Kz-Kﬁ)"lfé(—d)fn(z) (@=Ua), (7.9

where f£'(-d) = (df/dC)g=-d'

Referring to Secs. IV and V above, we seek the far field (kx >> 1)
of a moving source. Substituting (7.9) into (4.8)-(4.10) and (5.8)-
. (5.10), invoking the Fourier integral

3;1(32 + 321 = pa7tem2lYl (eaz0), (7.10)

and setting o = Uy. we obtain
. .
{¢d’¢d} = '(D/4f’)2f 'Yn *Cldx Ynlylfr:(_d)
n ==

{aa/ede! (220 [o] e Vel WlY]y, g 2rlea

(7.11)
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1
® 2 -1 diax-Y |vles
l {qu’wq] = {kz(—d)Q’(xo)/4n]Zf CR') et n‘ ‘fn(-d)
n @
l “{-uf (2], (ixﬁ/a)fn(z)}da (lyl > 0), (7.12)
T 2, trayeio® ey oYY 1ote 1)y dq,
[ n, = -(n/4“))r;:£ k25! (-d)E,(0)e (v n lele |
T (7.13)
- 3. e (oo dex-Y_ |yl
[ and Tq = 000 (/4 E [ GredEi e (0)e ™ n Ve,
e - (7.14)
i where v, = (a2 _ Krzl)’ﬁ @y, = 0), (7.15)
- | and fé(O) = dfn/dz at z = 0.
¢
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VIII. THIN THCRMOCLINE APPROXIMATION

Lumey

We carry the development of the preceding section further for &
thin themocline, for which N2(z) differs significantly from zero only -
in a small neighbourticod of 2 = -h, where it exhibits a single, sharp
peak. We also neglect bottom effects by setting D = . This model is
perhaps more realistic than, but in any event complements, that of Sec.’
VI.

The dispersion relation for the dominant mode of a thin thermo-
cline may be expressed in terms of the thermocline parameters Nh and
b, as defined by {7.1) and (7.2), and the depth of the thermocline on
the basis of the assumptions

N b/U = g b << 1 and b/h << 1. .(8.la,b)

Setting N° = 0 for jz+h| >> b and invoking the boundary conditions (7.6)
and the requirement that f(2) be continuous across z = -h as b - 0, we
choose the solutions above and below the theimocline in the form

- ¢~cschkh sinhKz > .
£(z) = fi1 K (z+h) ] (z _-h), ~ (8.2)
where fh = f(-h). Integrating (7.5) across the thermocline and remark-
ing that both f”-Kzf and N2 vanish except in the immediate neighbour-
hood of z = -h, where f* is discontinuous, f = fh’ and the integral of
N is given by (7.2), we obtain

0 ~hte
‘:' 0 =f {f"-K2f+(KlN/w)2f}dz = ii_,'gi_ ig’ N
T ~{l-€
-h+e
v (kf0)3, ) . N2z = -K(cothkh + 1)f, + g’ (¥ /0)2E, .

(8.3)
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Solving (8.3) for wz,
(5.3.7)7*

Similarly

e |

and

gl ~

we obtain the dispersion relation [Ref.

Kh

wy = Lg'k(l-e" 2

)

g'hk2(1-Kh + ...) (Kh = 0)

?

%Q'K (kh - =),

= lo]/u = kh{gxb(l-e‘%h)}lﬁ

- kh(bh)%K(l - kKh 4+ ...) (Xh =0)

?

kh(’ﬁbx)35 (Kh - @)

dlw

9,

Kh

ak - axk

(1-

(g'h)%(l - R4 ..l)

1

(Kh = 0)

~¥(g'/26)% (Kh - ®).

KhS e 2
= l' =u dlall = (%é)k{l-(l—cxh;e
o-2fNy%

(8.4a)

(8.4b)

(8.4c)

(8.5a)

(8.5b)

(8.5¢)

}

(8.6a)
(8.6b)

(8.6c)

We note that (8.6b) and (8.6¢) intersect at ¥h = % and serve as rough

approximations (with maximum errors of 20 percent)

*The preceding derivation is an abbreviated fo
by Lighthill, (Ref. 10) and Drazin & Howard,

(Ref. 11).

for ¥h < % and

rm of a technique used
This tech-

nique alsc may be applied to the higher modes, but the results are

rather unwieldy.

to the free-surface disturbance wi
the higher modes if (8.1a) is satisfie

S3

Moreover, the contribution of the dominant mode
11 dominate the contributi-ons of
d (see end of Sec. IX below).




Kk > %, respectively, in the subsequent, stationary-phase approkima-
tions. Substituting (8.2) into (7.7), we obtain .

£2 = e (1-e” 2Ny, (8.7)

We emphasize that (8.4)-(8.7) hold only for the dominant mode®* (n = 1).

¢ We use the approximations of (8.2) and (8.5) to obtain asymptotic
approximations to the lateral, free-surface strains, ﬂd and ﬂq, on the
basis of these hypotheses: (a) the contributions of .the higher modes
(n 2 2) are negligible compared with that of the dominant mode (we
omit the subscript 1 with this understanding) and (b) ‘al << K, for

)
which a sufiicient condition 1s U >> (g'h)ﬁ. The latter hypothesis -
pemits the approximation -
vy ik (0 £ o << K) (8.8) J

in place of (7.15) and the negléct of |a!e“lay‘ compared with Ye’Yly‘

in (7.13). Invoking these approximations, substituting (8.2) and

(8.7) into (7.13), setting z = 0, and choosing K, rather than «, as 1
the variable of integration (thereby regarding a as the eigenvalue -
for prescribed K in the Sturm-Liouville problem), we obtain -
P
' n, ~ -(D/zn)gjfiKQ(da/dx)n(x)e“‘“+i(“x‘K]Y!’dx, (8.9) .
0 -
where - A ..

(l-e‘QKh)’l(l+e°2Kd) S
D(K) = (d <h) (8.10)
-1
and H=h+ |d-n|. (8.11) .

“*The oscillations of fn(z) across the thermocline do not permit
the approximation i(z) # f, forn >1 in the integrands of (7.7) -
and (8.3)



e

Dty oo vy

. 2
We obtain the corresponding approximation to ﬂq by replacing DK™ Dy

k4
kz(O)Q'(xo)K4/iaJ in (8.9). The discontinuity at d =h corresponds
to the discontinuity in £f'(z) at z = -h and is an intrinsic character-

istic of the thin-thermocline approximation.

Carrying out a stationary-phase approximation to (8.9), we

obtain
Ty ~ “D(Qﬁx)'%a{‘z(da/dK)|d2a/dK2I"%D(K)e-KH+i(ax_K%y‘+ 3 ™1, (8.12)
where K is detennined by

da}dx = cg/u = |yl/x (H << |y] < (gh’)’iu“lx). | (8.13)

There is no point of stationary phase, and ﬂd is O(x'l) rather than

a(x"¥) as x - =, if |y| > (gh')%x/u. A saddle-point, rather than a

stationary~phase, approximation must be used if |y|/H is not large;

K then must be determined by replacing ly! by ‘yl - iH in (8.13) and
is complex.

The maximum value of lﬂd| corresponds roughly to the maximum of
K2exp(-KH), that is KH % 2, which yields a value of ¥ that increases
from 1/h to 2/h as d increases fron 0 to h and then remains at 2/d
for d > h. We may refine these estimates, at least for d < 4h,
by utilizing the asymptotic approximation (8.5¢), the substitution of
which into (8.12) on the assumption that X is real (|y| >> H) yields

Iny| ~ Dezntx) Ecug IBF|pCx) ¢ (8.14)

We find that the maximum value of (8.14) occurs at ¥h = 1.0 for d << h,
Kh = 2.1 for d = h-, and Kh = 2.25 for d > h, so that ¥H = 2 provides
an adequate basis for an estimate, namely (we take D = 1)

Il = 0-2Dg Aux) BHE (d < 4h) (8.15)

at

lyl/x # («®¥/8u (4 < 4n). (8.16a)
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If d > 4h, we must use (8.6b) in place of (8.6c), the principal effect
of which is to replace H % by ¢"2n"¥ in (5.15) and (8.16a) by

—}

Iyl/x # (g'h)%U'l[l-(2h/d)] (d > 4h). (8.16h)

The counterparts of (8.12) and (8.14) for ﬂq are

Lnd

-t

n ~ k2(-d)Q’(xo)(2nx)’gﬁix4a'3(da/dx)[d2a/d»c2rAE

.D(K)e,KH+i(ax-KIy|+kﬁ)} (8.17) N
and {1 ~ ING-0)/%, 1% (xg) /im0 B8 /g )W e (8.18) 1

The maximwn value cf Iﬂql occurs at KH # 11/4, wnere the deviirion :

of D(K) from unity is small, so that i

17| max = l.0[§(-d)/kh]2Q'(xo)g"%U%b"lﬂ'll/4x'% (8.19) I

at lyl/x * 0.2(g’H)5/u (d < 5.5h) (8.20a) T

or fyl/x # (g'n)u"[1-2.75(h/d)] (d > S.5h). (8.20b) I

) We also note that t

Qe t - ) ' o
m u(-dy| 1% (xg)]
. lTl-g‘ = { Nh 5 J = - '(8.21) P

g 0

et

We use this last result to compare the lateral surface strains
produced by the dipole cffect of a small, prolate ellipsoid of radius
a2 and length 4 and its wake on the hypothesis that the wake is (or
has the same potential energy as a wake that is) fully mixed and of
radius a; then D # 2ﬂa24/3 and Q' = na4/4. Substituting these results
into (8.21), we obtain '




L e . T ——r————— oyt
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ST T T
. .
HEE S
PSSR LN

: M. 3 a2 [N( a2l
+ oy il —_— (8.223)
. “nﬂl 2] [ nal o
’ 2 2
L o (@ NC=d) u (8.22b)
H[ (g'H)%

190 The factors a2/b4 might lie between 10"2 and 10—l for a typical sub-

" ' marine, U/c_might iie between 10 and 102, and [N(—d)/Nh]2 is less

? . than unity and might be as small as 10”2 if the submarine is well out-
side of the thermocline. It follows that, within the limitations of
the hypotheses implicit in our model, the dipole effect is likely to
dominate the wake effect. Both effects achieve their maxima if the
submarine is in the thermocline (d * h * H) and fall off rapidly with
increasing d/h.

.
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IX. WKB APPROXIMATION

The WKB approximation to the solution of the Sturm-Liouville prob-
lem posed by (7.5) and (7.6) may be expected to yield qualitatively
accurate results for all but the dominant mode (n = 1 below), althoujh
the implicit assumption that N2(z) is a slowly varying function ren-
ders it quantitatively accurate only for those modes for which Knb
>> 1. It is generally inadequate for even a qualitative description
of the dominant mode of a thin thermocline, for which Klb << 1 and
Nz(z) varies rapidly near z = -h. It is consistent with the WKB
approximation to neglect the effects of both upper and lower bounda-
ries (the implicit restrictions are K h >> 1 and KnlD-hl >> 1, re-
spectively; the violation of the formevr restriction is likely to be
cualitatively significant only for the dominant mode, while the latter
restriction is almost always satisfied in a real ocean). Bearing
these remarks in mind, we vewrite the Sturm-Liouville problem of (7.5)-
(7.7) in the form

(a2 « Kﬁw(z)}fn(z) = 0. (9.1)
£ (£) = 0, (3.2)
and f wE £ dz = b, : (9.3)
where w(z) = w2N%(z) - 1 (9.4)

. is the weighting function, and K_ is the eigenvalue. The results

presented in (7.8) through (7.15) remain valid for tnis revised
formulation.
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We proceed on the assumptions that N2(z) satisfies (7.1) and has
only a single peak (N = Nh at z = -h) and that lwl < Nh (waves for
which lwl > Nh are not propagated); then w(z) has only two zeros, say

2, and 2 such that
- = - .5
W(zL) = w(zu) =0 (z, < h < zu) (9.5a)
and w(z) >0 (z, <z <2]). (9.5b)
3L u

We also define arg wAE = 0 for w > 0 and infer arg wAE = yn forw <0

from the requirement ¢ > 0 (or, equivalently, Jdw < 0) and the facts

that N'(z,) > 0 and N'(z,) < 0. We then may pose the WKB phase inte-

gral in the forms

P(zu) + iQu(z) (z > zu)

z

= ]
P(z) = w<dz 0 <2z < ), (9.6)
l; > (ZL 2 z,
= - iQL(z) (z < ZL)
where ‘ zy ,
QL(Z) =/ (-w)fdz (9.7a)
z
and 2 ¥
Qu(z) = (-w)*dz. ) (9.7b)
A .
u

Invoking the fact that w - -1 outside of the thermocline, we obtain
Q (2), Q,(z) ~ |z+h] (|z+n| >> b). (9.8)
The WKB solution of (9.1) and (9.2) is given by the following (we

omit the details but note that the problem is analogous to that of the

harmonic oscillator in quantum mechanics)
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()" Yevn{-k,Q (2} (2 > 2)
£ (2) = Cnlw(z)i'% 2cos{KnP(z)—%n} (zy < 2 < 2,) (9.9)

exp{-KnQ%(z)] (z < 2,)

except in the neighbourhoods of z = z, and z = 2, where Airy-integral
representations must be invoked. The corresponding approximations to
the eigenvalues are given by

zu -1

K, = (n-%)m ./. wgdz (n=121, 2, «c0) « (9.10)
z
gA

The normalization of (9.3) implies
c_= [m(zn-l)'l]"éxl‘é ) (9.11)

We calculate Kn on the basis of the parabolic approximation

N(2) # (-} (7 <z <) (9.12) -
If we assume that (8.12) is valid for all {z-h| < s and that ¥ =0 o

in |z+n| > s, (7.2) implies b = 4s/3. If we assume that N2 = Nﬁexp -
{-(z+h)2/52}, for all z and is approximated by (9.12) in z, < 2 < 2,:

(7.2) implies b = ngs.] Substituting (9.12) into (9.10); we obtain®*

=
[}

(2n-1)s'lth(N§-w2)'l ( < N) (9.13a)

(2n-1)s" e (k22?)t  (a <X (9.13b)

[}

where, here and throughout this section, k = k(-h).

FTris vesult is exact if N(z) is described exactly by (9.12),
for which (9.1) is Hermite's equation, and the f_(z) are
Hermite functions. n -
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We proceed on the hypothesis that i

la] << ‘Kn‘ , (3.14)
by virtue of which we may approximate (7.15) by
Y. % ik (9.15)

where argy, ig determined by the requirements Ryn =z 0 and Jda < 0, and
neglect the term in exp(-lay}) in (7.11) and (7.13). We also use the
approximations of (9.8) outside of the thermocline. Invoking these
approximations, substituting (3.9) into (7.13), and restricting the
range of integration to that of the propagated waves (|u‘ < k ; waves
for which |a| > k are not propagated and are negligible for kx >> 1)

° " ) , .
2 iax-(2n-1)ik. (|y|-iH) '
M, ~-(D/2m)Y A & ik, “e 1 de
a :";’1 n fo 1
(h, ld-n| >>s) , . (9.16)
where A, = (2n-1)[m+(2n-1)"21" U sgn(h-) 1" , (9.17)

K1 is given by (5.13b), and H is given by (8.11). Introducing the
change of variable

a = k sinC (9.18)

and the parameter

B = (2n-1)(kxs) " T(]y|-iH) (-4n < argu < 0)., (3.19)

we rewrite (9.16) in the form

< o 2 3 ikxsing (1-w.sec2C) (9.20)
Ty ~ - (kD/2ms2) ZAnaf isinZcsec (et SINe Aty ag” .
n=1l
0
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The integrand of ($.20) has a saddle point ut the point deter-
mired parametrically by

s - - 2.2 2,-1

sin{ = a/k = Vo B (1-vn) (1+un) , . (9.21a,b)
where “n is a complex number. The contribution of this point dominates

< the asymptotic approximation (as kx = ) to the integral (after an
appropriate deformation of the path of integration) if |un( < 1 and
_Il-un] is not small. Carrying out the saddle-point approximation, we
obtain '

Ny ~ (kD/32)2;£Adn(kx, bo) s
n=

3 3
Ay = B(moo 8 R (V2 (1) 2y i) Bt K370y (9.22a,0)
where X = Zkxvi(uv3)h . ' (9.23)

Similarly, starting from (7.14), we obtain

~ [N( d)/Nh] [Q (XO)/E ]ZA (kX) ‘-" ) ’

= g(nkx)"fczn-l)z’nng{v§<1-\,r2‘) 123 el (3 4))

u (9.24a,b)

The largest terms in the modal summations of (5.22) and (9.24)
are those, if any, for which |un| is small and, from (9.21b),

=1 - (lsxn)lﬁ + O(iunl) . (9.25)

Substituting (8.25) into (9.23) and retaining only the dominant terms
in each of the real and imaginary parts, we obtain '

X #kx - i(2n- 150090 B (22 B | 18 = kx - X, (9.26)
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Substituting (9.25) into (9.21) and (9.13b), we obtain

PRSP PP LI SN T

. lass | = (2n-1) ks 2e 1%, (9.27)

so that the approximation (9.25) is consistent with the restriction
(9.14).

We use the approximations (2.25) and (9.26) to obtain the esti-
mates
9

2 Fe K e (2n-1)" 11 2n-10 ¥ oo FsF (p %) e Fni (9.28)

m

lAdn|

5 57 7

17
2 F M (one1) 11 o) k) et (y 22y BeX

4k

) e "ni .
(9.29)

- and IAqn

. Assyming |y| >> H, we find that !Adnl has its maximum at

lyl/H = (2/9)(2n-1)(H/s)kx >> 1 €9.30)

3 .

and|similarly for IA nl’ with 2/9 replaced by 2/49. These maxima are
fairly sharp (in |v|/H) and therefore can be achieved by only a single
S mode at any given point. The corresponding maxima in lﬂd\ and |ﬂq|,
neglecting all modes except that for which (9.30) and its counterpart
for lAdq‘ are satisfied, are

1 3
gl = 0.025(2n-1)" 5D/ 5 5H2) (k)% (9.31)
. % ‘ ’ N
1 - 2 -
| and |7l a0y = 0-15(20-1) 5NC-d)/N, ) [Q/(x)/sB2100)7F (9.32)
3 ) Comparing these maxima with those of (8.15) and (8.19) for b = 4s/3

and n = 2 (typically the most important of the higher modes), we

[$)}
n
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conclude that the contributions of the higher modes, relative to those
of the dominant mode, to |M,] and |1 | are not likely to exceed
0.05(1-!/5)3/2 and 0.12(5/H)3 4, respectively. The former ratio could
be larger tharn unity, but only for H/s such that all contributions to
|nd| would be very small; the latter ratio is certairly small--typi-
cally between 1071 ang 107%.

64

~e

-a

-




o e e
%
b
i
N ’[
i ’
r i
] :
APPENDIX TO ANALYSIS B
. STATIONARY-PHASE APPROXIMATIONS
. We require stationary-phase approximations to integrals of the
form|

w o !
t 1= n 2 [ £a,0)e8)a0s (A1) !‘
3 - e o )
| . - )} ) '

§ wher# X =ax + 8y + G l(kz-az)f{az+82)ﬁ2 s (R2)

z >0, and R = (x2 + y2 + 22)5 - o,

Considering first the 8-integration, we find that X kas a point

3 = of stationary phase at
é . B=28,(a)= -c:.lc:.|y(ln<2;:2-m2r2)"ﬁ s (A3)
| at which point
} % N X(a,ss(a)) = ax + (k222~a2r2)gsgna s (A4)
and 3
XBB = (az)'2(k2-a2)'l(kzzg—azrziisgna (AS)

Carpying out the stationdry-phase approximation to the f-integral,
we pbtain

~

3 ® . .
~ (2m) sz (fX;§)8=es(a)exp{iX(a,Bs(a)) + Yinsgnalda . (B6)
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The integral in (A6) hos two points of stationary phase at

/e
fl
Q
il

v s = £ kxz/TR = & kcosdsing (K7)
Pt

and B = Bs

L}
1]

-usyx/r2 ¥ kcoszecscesinwcos¢ ’ (n8)

if x > 0 and no points of stationary phase if x < 0; R, 8 and ¢ are
polar coordinates, defined by (6.9) above. We also obtain

X(a;B,) = + kzR/r = + kRsing (r9) -
X__ =T R /krz (A10)
(¢4 ’
- 1 -
and Xgg = (r R/kx?z) (y?R%+22r%)" % (A11)
where the upper and lower signs correspond to ag Zo. Assuming that -
f(-&., ) is the complex conjugate of f(a, B), we find that the con- -

tributions of the two points to the stationary-phase approximation to
I are ccmplex conjugates, with the end result

I~ (kxz/ﬂrSR?)(y2R2+22r2}¥B{f(us, Bs)eikZR/r] (x >0} (A12a) B

= (k/nR)cotesin¢(cos2¢+sin28sin2¢)¥R{f(as, Bs)elkRSInwl (x > 0).
‘ ‘ (R12b)

Comparing (6.7) and the corresponding representations of Vgo ¢q,
and Vq to (Al), we obtain

£(64044) = 30(-u%82) 500D , sgnz) (A13)
i ' and ’
ot} = wika afunes )2 2-a2)¥ , -2+8%)sgnz}. (A1) .
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Substituting (Al3) and (Al4) into (Al2b), we obtain
{6.,v,} ~ (kD/2aR){-U,cotOsing) 2 n2p 2 2k
a* Vg R} -U,cotlsing{(cos“y + sin“Gsin“y)

‘cos(kRsingp) (kR ~ =, 0 <6 < km) (ALS)

and {¢q’vq] ~ (k2Q1/2nR){-chc¢, cote}secacsc26
3
2 2, . 2 .2, . 1
*(cos i 5in“Bsin“p)“sin(kRsingp) (kR ~ =, 0 < § < %n)
(R16)
Substituting (Al5) and (Al6) into (2.4b), we obtain (6.10) and (6.117.
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We wish to stucy the effects, on rather small surface waves, and
specifically on their height and slope, of the existence of internal

b—s

waves in the region of ocean through which the surface waves are mov-
3 ]- ‘ ing. Surface waves damp exponentially in depth in a distance compara-

g ble to their wavelength, so for smail surface waves, we can asswne that
the dimensions of the internal wave are very larye compared to those
of the surface waves, ané therefore the internal wave can be well rep-
f . resented by & horizontal depth independent current. We describe this

with a velocity field U(x,y,t), which is a function orly of time, of

the horizontal coordinates %, y, and with no vertical component. Fur- ;
thermore, we may expect the times and horizontal distances over which
U varies to be much greater than those over which the surface waves of

1§ oo

s

- interest vary.

. We shall ignore viscous and other dissipative effects for the sur-
. face waves; that is, we shall assume that damping is unimportant over
. horizontal distances comparable to the region occupied by the internal
. wave. Typically, we shall be interested in dimensions of surface waves
which dissipate in distances considerably longer than that. On the
other hand, .since the size of the effects we are interested in will be
characterized by the parameter U/cg, where cg is the group velocity of
the surface wave, we are also most interested in slow (i.e., short
wavelength) gravity waves. Yet these are also the waves that dissipate
most quickly. We must therefore strike a balancé between the two re-
quirements.

Finally., we shall assume incompressible irrotaticnal flow in the

region of ocean occupied by the surface waves. Irrotational flow is
describad by a velocity potential ¢ which satisfies

Ve = O 1

ey A v
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There are three boundary conditions on the solution to the equation:
(1) Bt the surface, the vertical velocity of the fluid ?¢/3z is the .
same as the time derivative of the height of the surface h(x,y,;t), so ..

™

that
4 ! . -
J %—: - %l'[: + (Vo - 9)h = %g— (2) R

AR

and.Bernoulli's equation relates h to the derivatives of ¢:

Z 3
3% +% (9)2 = -gh . &)
4
; (2) The second boundary condition is the assumption that at large depths
g u approaches the imposed velocity Y )
3
; 1(X, Y58 L) et Wx,y,t)
3} A . -]
% or if % is the valocity potential for U so that
B(X3Y32st) mmmm——— 8(x,Y,t) .
5 Z - -5
. (3) The final boundary zondition is the initial condition that for
g times far in the past the imposed flow vanishes and the wave approaches
§ a freely propagating wave ¢,
:
§ B(X,¥,52,T) = a)o(x,y,z,t)
5 t = ~»
k< . ' ' 4)
4 Q(XzYst)-—-—————' o . R
n t = .

i

3 The effect of the imposed flow on the propagation of surface waves
3 is expected to be small since the velocity of the surface currernt is,

: in general, much smaller than that of the surface wave in open sea ..
conditions. The hydrodynamic equations adunbrated above may therefore

72 .
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be expanded in powers of U and only the linear term retained. We

<p Son vt

begin by writing

L E—

~ f
¢ =2+ ¢0 + ¢l (5 R
R where % is the velocity potential the initial wave would have had in
- the absence of the surface current and 9, is the correction due to its
- presence. !
- The equations governing ¢, are obtained by substituting Eq. (5)
- in Egs. (1) thiough (4) and retaining only terms linear in ¢, and 3.
. Noting that & and ¢, separately satisfy Eqs. (1) through (4), we have
R 2
= 6
vie, =0 (6)
T with the boundary conditions
Led
- ¢l(x,y,z,t)-—-——-—-" 0 (7)
[} t — -
*.
-
- 91 (X552, ) e 0 (8)
Zz - -
+ and
! 2 -
- 3%, ¥y 3 2
-—3-;2 + g Sz + 2 e [(V@ + V¢l) . J¢o] + % (v¢l + V%) . V(V¢o)

o

+ Y, v[wo . (V8 + V¢l)] =0 .

- As a consequence of the small amplitude assumption, terms which are
- quadratic in ¢, are negligible in comparison with those linear in Pqe
- Further, since ¢§ is a small correction to ¢o, terms like ¢,¢, may be
neglected in comparison with I

- The bowndary condition at the surface then becomes

r
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2‘ *1 2 <2 (vt - 1=-2 3 [y . vp ] (9) H
_..a_?.g.g_a?,.— 5 V¢o_—-— 5T ol \ .
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The problem is now to solve Eq. (6) with the boundary conditions (7)
to (9). The general solution of Laplace's equation (Eq. (6)) which

satisfies the boundary condition (8) may be written -
' . : , ¢ (x,2,t) = d2k dw i(!&,‘% - wt) ekz a' (k w) )
- 14%22> = "'(‘;1‘1—)'3 e 1'% .

- Since ¢0, the-unperturbed flow, also satisfies Eqs. (6) and (8), it
3 has a similar Fourier decomposition with Fourier transform ao(k,w).
3  Here and in the following, x will mean a two-dimensional vector in

E the xy plane. Equation (9) then becomes
: 2iw

' ay (k,0) = —220p F(k,w)
é 1 gk - w2

where F(k,®) is the Frurier transform of (U- V¢o)z=0 given in terms
of Y and the Fourier transform of U by

2
Fk,w) = i./fgzs—gg U(k~g, w-v)* g a_(g,v) . (10)
2m)

T

Thi.s solves the problem of determining the perturbation ¢, to a
small amplitude surface wave %5 caused by an arbitrary surface cur-
rent U. The quantity of chief interest, however, is not the velocity
potential ¢ but rather the height h. If we write &h for the change
in height caused by the surface current, then we have from Eq. (3)

op
_ 1% .
sh = - —g- [_-EE + U V¢o] .

Here we have retained only terms linear in U, have neglscted terms in
¢§, 659> and have used the fact that there is no vertical displace-
ment from the velccity potential # in accordance with assumptions (1)
through (4). For 3¢,/3t we have ”

Bt v i S

oy
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v fg; =fd2k w 2u” i(key - t)
- t (2m° | gk - w

I 2 i )
=fd kow | _p, 28k | pge0) A% - wt)
T (2m) gk - w :
—o2y- e+ 2/d2k du gk E(k,8) JAex - wt) :
(2m) gk - w :

- - .
-3 —_

Thus for &h we have

4

SRR 2 o
sh(x,t) = 0 +/d kw2 g GAlex - e
g (2m)” ® - gk

y¥—i e |

or in terms of the Fourier transforms of ¢o and U (cf. Eq. (10))

- . Vg 2 2

. ey = B0 s fSh gy B [Sa%pucg o) - g

M 8 (2m)° w® - gk (2m)

- aglg - » etz CED

In general, the nonlinear effects on the unperturbed wave will
be of the order of magnitude

h
9)%/58 ~ 7o

typically a number like 1/50. These effects are therefore large com-
pared with the effect of the surface current which might optimisti-
cally be of the order of several percent, For a calculation of the
total wave, these nonlinear effects cannot be neglected. If, however,
one is, as here, mainly interested in the change in the wave structure
due to the surface current as calculated from Eq. (11); then the change
arising from the linear part of the wave will be larger by the factor

. 75




(hmax/zm‘) than that coming from the nonlinear correction. To calcu-

late sh from Eq. (11), we can therefore replace a, with the value ..
appropriate for a plane wave with wave vector }50, frequency w_ = (g ko)k,
and amplitude A:

TIPS T

™

Lols AR ot e ey

. _ 3 (2) _
a, k,w) = (2m)” R & (}5-}50) S(w-wo) . .
- One finds, then, that ‘ -
i E “e V¢ . )
: Gh(;(’,t) - ] + if d2k d(g ?2KA g(&-}so, w-.wo) . kwelb'z—mt
(2n)” w” - gk
« (12) :
Writing o
4 += .
1 - 1
Uk, -9 =f H 90 e, €y ae’ -
-0 -
the w integration can be performed by evaluating -
+®
—iw(t-t') o
&t = I(t-t) . (13) -
w® - gk

In order that ¢l vanish for large negative times the poles in

the denominator of the integrand in Eq. (13) must be displaced slightly .-
* into the lower-half-complex-w-plane. One then has -
1 0 s ' t < t’
I(e-t') = _ 1 ( -ikg (t-t7) kg (t-t )y .
2./kg t>t'

Making these substitutions in Eq. (12) and displacing the k integra-
tion by an amount }5,0, one has

t
k s U(x,t) ‘ ik _ex-w t
i= +%f J(xt,t’) dt’l Ke ©° 7 °

-0

éh(%:t) =
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crmw T

-
" :
- where ﬁ
- 2 ; . ’ : :i
- 335t ) =f Ok Joligne | €290 ko - ude et 3
(2m) d
-y '}
!
-1 - ¥ 3 - 4 (2
R [e i: |k+ko| (e-t *) el\}glk+ko| (t-t )] . i
- : ’ 3
i . Now, the wavelength of the internal wave is much longer than that of :
- the surface wave and U(k,t) will be sharply peaked about k=0. We may

therefore expand \]gll_gr}go‘ about k=0.

Kok |
. ' \'glgﬂ%l =\]g kK, 1+ %igik-g+ D T
o

1 .
- Writing &g = L E’o (g/ko)é for the group velocity of the surface wave; ’
. we have
- J(x,t,t’) + 9-21‘——- [w + ¢ k] k u(k,t’)

[A*E) g b AN 3
e (211)2 o ~g ~0

" ik o [x - g (e-t"] 2iw (e-t7) Ik - [x + g (t-t1)]
[e g - ° e 7 ~g .

Since the surface current varies slowly in time as well as space
[assumption (4)), the second term will be small compared to the first.

Therefore
. 2 ik - [x - g (-t )]
g(x,t,t')::[w -1igc -V]‘/-.--—-—idk . Uk,t’) e v e

. ot ;
['.wo-lg,g-V]}so‘g(;_(,-gg(t-c),t).

If we denote the height of the unperturbed wave by ho(;s,,t), sc that
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iAw . ik, - X - 9 ©)

ho(x,t) = 4 3 ,

then we may write
A _ t
sh Ko+ L.t)

- - ! - 1 W - A . . - ( -t/ ! .
-0

The height of a wave can change at a given point and at a given time
not only because the amplitude of the wave changes, hut also because
the phase changes. Since it is the change in amplitude which is of
chief interest as far as the identification of the current is con-
cerned, it is important to separate these two effects.

The general wave can be written
h(x,t) = Alx,t) eX®)

where A and X are real. For small &R, 6X perturbations away from un-
perturbed values Ao and Xo, we have

éﬁ = %A +4i 8X
[o] (o]
Thus
K. . uGt) €
8 5h o‘gx’t A A
—:Re —) D . * -~ -I ! !
Bore =Bl vk v Ko Hhgglee, e
t
and 6X = Im (BR) = - k_ f Wg-cg(t-t), €7) at’
-0

The first term in the amplitude enhancement is an instantaneous effect
and very small. The second term is a time integrated cffect and de-
' pends on the gradient of the flow.
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In addition to the change in amplitude, the change in wavelength, !
T E
’ frequency, and mean square slope are also of interest. The change in ;
the wave number &k and the change in the frequency éw may be obtained )
- 3
: from the change in phase 6X through the relations ;
Lo 6k = V(8X) , bw = - 3(6X)/3t .
[ :
|- The mean square slope in m? is given by the time average of (Vh)z. §
S The time sverage is taken over a period of the surface wave, a time !
} - which is short compared with the characteristic variation time of the
l \ surface current. In this case the time average may be expressed in
( terms of the complex waves by
I3 e
T 2 _, :
' m° =% Vh + Vh¥
¥ e
. In terms of the charge in amplitude and phase, one can then easily
- find for the change in mean square slcpe
e . . v
. 6m2 =26A + E‘O -fi " (18
- -7 X —Z i
m o k
. o] e}
- or, since
-
} . kot VoX =k, + sk=k, ok,
i %
} - this can be written as
| -k
i 2
- sm” _ , &8(kR)
- 2 x5 -
. m o o
- o
- Inserting expressions for 8X and 6A/A into Eq. (14), one has, finally,
A t
-> 2 k. - Ux,t)
&n° _ S0 ~TA v . ‘ ’ ’
. - = —3 ~ 3 (K, )fg[f,-,gg(t-t),'t]dt .
m, g p™S
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In order to investigate the magnitude of possible enhancements
of amplitude and slcpe, let us assume that the surface flow U has the
form of a wave propagating with a phase velocity C in a direction
specified by a unit vector n:

o2 2 M

TERASTTY

T TR

In this case we have

sy iArady

- U(x,t) €

- % (}Eo . V)f at’ };(o. :‘:‘,[ﬂ . ’\z}_Eg t)+(,13. . E,g"c)t']

:1

s

and a similar expression for the mean square slope change. Suppose
now we follow a crest in the internal wave which for simplicity we
assume to occur when the phase of U vanishes. Then x is related to

t by i
x=Ctn
i and we have .
k- WO ¢
; BB v Bfh e g D
3 g il

where U’ denotes the derivative of U with respect to its argument.

Surface waves which have these components of the group velocity
in the direction of propagation of the internal wave equal to the
internal waves's phase velocity may experience a large enhancement
from the second term. For these waves

A
¢c -n=2C
'\g ~

and the enhancements in slope and amplitude are
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A
2 k . U(0)
&m e ) ~ 2 A .
Moo= T Ttk B (K - WD T,
m g
and
Fo- uco)
A _ o . . A Ao
T.-__._.ﬁ__a.;__-zh(ﬁo.n)(ko u(oy)) T

where T is the time that the surface and internal waves have been in-
teracting. If T is long enough this time-integrated effect will be
appreciable and will dominate the instantaneous first term.

As a particular example, let us take for U a sine wave with wave
number K, frequency 1, and the surface current in the direction of
propagation.

u=Ru sin(x-x-0°t).

. . A
If we denote by 8 the angle between g and ko’ then 8A/A and 5m2/m2
may be written

6m2 U, cos 9 sin T K(cg cos 6 -~ C)
;?‘ = cg -3 (TKUO) cos™® —T’K(cg cos 8 - C) .
and - (15)
5 Uo cos 6 \ 2 sin T K(c_ cos & - C)
%3 °q - % (TKU,) cos™® |— K(cg cos § - C)

The most favorable case is for waves traveling in the same direction
as the internal waves with cg = C. For these waves, the dominant
effect is

83 _ |y Txu om’ _ _ 3 ok
i 0 ;?— - - o *
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For waves which travel at an angle with respect to the internal wave
but have their component of cg in the internal wave 11rect10ﬂ equal
to C, there is the samz enhancement decreased by a factor cos 9

Waves whose velocity component in the direction of internal wave
propagation is greater or less than C will eventually pull ahead or
lag behind the internal wave. This is indicated mathematically by the
decrease of the bracketed factor in Eq. (13) for large T if cg + cos 8

# C.

There will thus be a strong time-integrated amplitude and slope
enhancement for the special class of waves which ride along with the
internal wave. This effect is proportional to the gradient of the
surface current and to the time of interaction. This time, in turn,
will at best be the minimum of the characteristic times of decrease
of the internal wave and the surface wave due to dissipative effects.
If +he lesser of these times is long enough, there may be an appreci-
able enhancement.
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I. INTRODUCTION

We shall be concerned with the scattering of electromagnetic
radiation from the ocean surface, with emphasis on frequencies in the.
microwave region. In order to simplify our calculations we have cho-~
sen to study & model in which the electromagnetic wave is taken to be
a scalar field. We believe that such a model brings out all the
essential physical phenomena involved in the scattering process, eX-
cept possibly in scattering from the sea at low angles of elevation.
When the scattering occurs near Brewster's angle, the scattering of
vertically polarized waves should be strongly suppressed, a phenomenon
which our scalar model cannot reproduce. In any case our approxima-
tion scheme for studying scalar waves breaks down at small angles be-
cause of the phenomena of shadowing and multiple reflection.

The actual extension of the‘theory presented here to the full
problem of vactor electromagnetic waves is perfectly straightforward.
The resulting formulas for polarization, etc. will be given in a fu-
ture, more detailed report. In the following discussion we also
ignore Doppler effects arising from the fact that the ocean surface
is constantly in motion. These effects, which are not believed to be
imbortant in the present context, will also be treated in the later
report.
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II, SCATTERING FROM THE OCEAN SURFACE

At any instant the air-water interface ic given by the surface
z = h(x,¥), the origin being so chosen that if we average over many
instants, ¢(h(x,y)} = 0. We assume that the illuminating radar pulse
is of such a short duration that during the time it is actually inei-
dent on the sea surface, h{x,y) changes Ly & neglicible amount. Since
radar puises are, typically, microseconds long, this approximation
should be excellent. Our problem, then, divides into two parts: (a)
given a plane electromagnetic wave, of wave vector k, incident on a
fixed sea surface z = h(x,y), find the wave scattered in any direction
and (b) find the average power scattered in any direction where the
average is taken over many values of h(x,y) corresponding either to
many different times or many illuminated patches on the sea surface.
Since we are neglecting instantaneous motions of the sea surface, we
can say nothing about possible doppler shifting of the frequency of
the scattered wave.

For frequencies in the microwave region, the index of refraction
of sea water is well represented by

n=n, 1+ ic/wno eo)
where R = 80, o = Smhos/meter, and E is the dielectric constant of
vacuum, The quantity c/mn € =210 /v describes the relative impor-
tance of conduction and dxsplacement currents in the equation of mo-
tion. At microwave frequencies, v = 10 cps, and the imaginary part
of the index of refraction is totally negligible. Therzfore we may ‘
safely think of our problem as that of computing the scattering of

electromagnetic waves from the interface between two purely dielectric e
media with indices of refraction 1 and 80 respectively. .
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VBoundary value problems of this kind can, unfortun~tely, be
solved exactly only if the houndary surface is quite simple: plane,
elliptinz, etc. Therefore we are forced to resort to approximate
methods. In general, there ars two sorts of boundary which admit
simple approximate solutions., In the first case, suppose that the
radius of curvature of the boundary surface is everywhere large zom-
pared to the wavelength of the incident radiation. We can then apply
geometrical optics to compute the intensity of scattered radiation.
In the second case, suppose tThat the deviation,'a, of the surface
from one .which has a known solution is everywhere small compared to
the radar wave length z.' Then, by & simple form of perturbation the-
ory, the scattering can be computed correct to order A2 (we will
shortly show how this is done). Therefore if the sea surface h(x,y)
can be written as h = h + hl’ where hl is everywhere small compared
to %, a~d the radius of curvature of h is everywhere large compared
to A, we can combine the above two approx.mation methods to get a
decent solution. Whether or not this can be done ¢learly depends on
the detailed nature of the sea surface.

At any irstant the sea surface, h(x), can be written as a Fourier

- integral h(X) ~/‘dk a (k) elk x’ We can cbviously make the decompo-

sition h = ho + h, where

1
h, =f dR a(k) etKX
Kk

hy =f dk a(k) ik X
k>kc

and k is for the moment arbitrary. We can then show that if k is
properly chosen the surface h has a mean radius of curvature whlch

is large compared with the radar wavelength, while the mean magnitude
of hl is everywhere small compared to the radar wavelength, Since the
sea surface is a random process we can really talk only about the
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- mean valuec of the coefficients a(K). A1l such information is con-

tained in the correlation function .
p(x) = (h(x)h(O) .-
=fd1'< ) fFF % .

which has been determined experimentally to have the fomm

k, )
¢ f ok L &R
k k

1

: . ' p(X)

L}

B

i
c=2x107 |
|

The cutoff kl corresponds to the gravity waves moving with the wind

ey

velocity and the cutoff k2 corresponds to very short (say, imm) cagp-

; il}ary waves. The corresponding functions for the surfaces ho and hl T
5 are then ol
: k
% % " © 1 iR T
t po(x) = (ho(x)ho(o)) = C./rdR =z e -
: .k
E ~
Ko -
= =) _ikx

. P (x) = (h) (3)h,(0)) = C J dk =g e -
: k
Ke -
% The mean sqgafe height H2 of the surfiace hl is then -

-2
2

C an

b 12 = p,(0) = 211Cf ak/k> = n¢ (k;2-k ) = 2xlo'3k;2 .
k

4
.

and the mean square radius of curvature, R?, of the surface ho is

TR

given by
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_ 2.2, _ -3 2
TC(k-K2) = 2x10 A2

T ' Vle should like to satisfy simultaneously the conditions H/A << 1 and
S B - A/R << 1, where X is the radar wavelength. BAccording to the above

" equations H/\A = 0.007lc/k, and A/R = 0.29 k/kc, so that if we choose

I ‘ Xc = 6h, we have H/) = 2/R = 0,05, With such small values for the

expansion parametars, we feel safe in computing the scattering from
.L the surface h, by geometrical optics and in computing the extra effect
of the surface hl by perturbation theory. We emphasize that our
ability to make both expansion parameters small simultaneously is a
stroke of good luck depending on the detailed statistical structure

of ocean waves. It probably is not possible for other sorts of ran-
dom surfacs.

—

We now have to show how this approximate calculation is carried
out in detail. In order to demonstrate the ideas involved we study
. the scattering of a plane scalar wave from a surface h(x,y) which can
be decomposed into two surfaces ho and hl in the manner just described.
Once we have solved this problem it is not hard to fold in the com-
plications due to the vector nature of the electromagnetic field.

e

— b

In a medium of varying dielectric constant n(X), we assume the
wave function y to satisfy
T (92 + k2 n(%)] ¥(X) = 0, k = w/ec.
-
- This means that if n(X) has a discontinuity on a surface, then ¥ and
1 its nomal derivative must be continuous across that surface. In the
t -,
% . 89
"
E
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case at hand, n(X) takes on either of two constant values l, or n,
the dielectric constant of seawater, jumping from one value to the
other at the surface z = h(x,y). We then want to find the solution
to this equation when a unit amplitude plane wave, Yin = elE'x, '

k = k(cos®, 0, -sinB) is incident on the sea surface from above. (See
Fig. 1).

Ccrresponding to tie division of the surface 2 = h(x,y) intec a
part; h (x,y), with small curvature, and a part with small amplitude,
h (x,y), we can write n(x) = n, (x) + n (x) ng {x) takes on the values

‘ﬂ and 1 and describes the alr-sea txre“Foce z = h (x,¥). n, (x) takes
on the values 0, *(n-1) and is nonzero only in a smull region around
the surface z = ho(x,y) as is described in Fig- 2.

Let us suppose that the solution to the scattering problem for
the surface z = h (x,y) is known and let it be called ¥ . Let us also
define &% by % = # *6# where ¢ is the desired solution for the surface ’
= (ho + hl) (x,y) We can combine the two equatlonsl

(7% + x2 (no(i)+nl(i))] (3, ro¥) =
to give
(o2 + k2 n (01 8¢ = Ky GO

This equation, in turn, can be put into integral form if we introduce
the Green's function, Go(i,i'), which is a solution of

(V§ + K2 noci)) Go(i,i Y = §(x-x") .

This allows us to write

8Y(X)= -szdx’ Go(i,i') ny (x ) P(x .

(V]
(]
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- Since n,y is nonzerc only in a volume which goes to zero as hl goes to

zero, &¢ is of order h,. To this order, therefore, we can replace ¥,

‘ within the integral, by vG:

s1(0) = 2 f &R’ G (KR myRIW(RD -

- To the same order, we can actually replace the volume integral

-~ by a surface integral over the surface z = ho(x,y). The equations

- of motion satisfied by ¢0 and GO imply that at this boundary surface,

' both these functions and their normal derivatives are continuous.
Therefore the effect on the integral of their variation over the small
volume in ¥hich n, is nonzero is nigher than first order in hl‘ We

can therefore write

- 8100 = x2(n-1) [ 8 6 (%% (8B (x'(8)) ¥ (RSN
- where the surface integral is taken over z = ho(x,y), x'(8) is *the
- ' three-dimensicnal position vector of the element of surface, and ﬁl

is the normal distance between the surface z = ho and 2z = ho+hl

(taken positive or negative according as z = ho+hl lies above or be-
low z = ho). Finally, it is convenient to convert this into an inte-
gral over the plane surface z = 0, taking p = (x,yJ to be the position

vector in that surface
V) = k33 f 98 1y (F) G (HRE ¥ (XD

. where x(p) = (p, ho(ﬁ)) and h, is exactly the quantity earlier called
hl’ the vertical distance between the two surfaces z = ho and z =
ho+hl. The geometry of the transformation is best explained by Fig.
3. Therefore, if we know ?o and Go on the surface z = ho, we can

1 calgulate ¥, correct to ordey hl'

According to our assumption, the radius of curvature of ho is
everywhere large compared to the wavelength of the illuminating radi-
ation, so that scattering can safely be computed via geometrical optics.

E . a1

-




In particular, we need to know *o on the surface z = ho' Geometrical
optics means that, if we neglect multiple scattering and shadowing,
the field at a point on the surface can be computed by replacing the
curved surface by its local tangent plane and imagining the given
incident wave to be scattering from it. It is easy to show that if
the incident wave is elﬁ X, the total field at a plane boundary be-
tween regions with dielectric constants n and 1 is

2cosa iRox

[
i =
cosd + Jh-51n§a

A
where cosX = ﬁvﬁ, n being the unit normal to the boundary.

We also need to know G (i,i’) with X’ on the surface. From the

equation satisfied by G s 1t is clear that C (x %x') represents the
total field generated at X’ by placlng a unzt source at x, given the
boundary specified hy no(g). If %' is near the surface, and if we ne-
glect multiple scattering and shadowing, the geometrical optics apprex-
imation to Go is gotten by replacing the curved surface by its local
tangent plane. The solution for G in the presence of a plane boundary
is well known. If we set X ﬁ R, take X on the boundary, and let

R+, it becomes

s 4 =
~1k£ X 2cosa’
4nR , - 7
coser” + - sin"o

A
a’ being the angle between k' and the local surf ‘e normal.

A
G (k'Ryx) = - £

We now van write down our expression for the field &¥(X) when X
is far away from the surface:

Roy (R R) — - K {n-1) f dp hy (B)T(@(3))T(a’(5))e ik(k-k") %)

where

T(a) = 2cost/(cosx + .A-sinZa) .
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We are particularly interested in the field scatterod back along the

direction of the incident beam, in which case k = -k, and

v 2 TS
1 Ro (-KR) = E‘%lr}lf & 1, T HHEFE

Tt turns out to be convenient, for purposes of computing the
average backscattered power, toO recast the expression for &y in a
slightly differenc form. EFipst of all, we note that the reflection
coefficient is a functlon of cosa = —ﬁ-ﬁ where 3 is the local surface
- normal. In turn, fis a simple function of Q—h (p), so that we can
write T = T(V—ho(p)). Tf we introduce the Fourler decompositicn of
hlfs), Kl<z), we then have

2 A . -
sy (AR = K ﬁn-l)fdz R, (D) 4012 (75 ho(a)el[2k+-{:)-p-2ks:.n6 n,(»]

Since the surface h (3) is one which satisfies the criteria of geo-
metric optlcs, we can evaluate the integral over p by the method of
staionary phase. This means that the only important contributions
F come from those points p where

65 ((2k4+2)-p -2ksind ho(B)) =

& +

or
55 ho(ﬁ) = (2k+1)/2ksin6.

ey

Therefore we have

by (-kR) = X (“‘”f & B (D) TG

Sl

sin

f dp expli((2k+1) -‘p-:zksineho)] .

P .

The virtue of this expression is that the arguments of T mo lcnger
I . depend on the specific surface, so that the averaging process is
simplified. '
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To compute the backscattered power we need (lvg + 6?[2), where
vz is the backscattered field from the surface ho, and the average is
over the various possible forms of the sea surface. Since different
Fourier coeZficients of the sea surface are statistically independent,
and since &Y depends on h while *s does not, the cress terms of the
form V¢ 6#* vanish upon taklnq the average. Therefore, the average
backscattered pover is the sum of two terms, (lv l2> and (Iavl Y, ‘
which we shall compute separately. , y
: |

It is convenient to define a scattering cross-section in order

to eliminate the distance cf the observation point from the sea surface.
The energy density at any point is just |#‘2. If a finite patch of .
sea surface, of area A, is illuminated and we observe at X = ﬁ R, R -
very large, then all the energy at % is flowing in the direction k . ..
If the antenna subtends a solid angle AQ, the total received power is
then I¢I2R? A0 and the received power per unit ;llum;na*ed area is

|v12R2 XY/A. We shall define the quantity ¢ = ‘vl /P, so that an-

tenna power is ¢ R Al

Let us first compute o, (|6¢|2)R JA. If we make the standard
assumptions about the Gau551an nature of the sea surface, and make the

definitions
' (h, (OM(0)) = € (%) .
<Ry BREA)) = 51(7» 6 (L-L")

we find that ‘ ..

= (kz(r.—l)/4n)2f at g, D) T“(%) X

f dr expti(21'<+z)-f-<2xsine)2(c°(0);co(r))]
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g where we should now remember that when we write k we mean k= (kx,ky) =
(kcosd,0). The largest contribution to the integral over T comes in

| the neighborhcod of =0, where we write

I

e (r) = n2(1-ars ...)

so that
U/;E exp[i(2i+1).5-(2ksine)2(co(o)-co(r))] =

-/f ar expti(2i+$)-§-(2ksine)2a r?] =

m

— cxp[~(2E+l)2/4a(2khsine)2] = £(2k+1)
(2khsing)

We note that in the limit a — 2, £(2k+1) - (2n)2 5 (2k+1). In fact

@ is rather small:

h2u

[
1
-(1/2)v2p°(0) = (C/2)./r ak/x2 = neC log (k. /k,)
K

3

i

2x1077 log_ (

xwind/sxradar)

where A ;4 is .the wavelength of those ocean waves whose velocity
equals the wind velocity. For a 10 m/s wind and a 10 om radar wave-
length, we have h2 = 0.9x10'2. This means that in terms of the dimen-
sionless variable |2K+I| / 2ksin® the width of f is about 0.2 in a
typical situation. This width decreases slowly with wind velocity.

If we ignore the width cf f, replacing it with a delta function,
we have the simple formula

4 2
- _k (n-1) 4 ~
0, = ——g—— T (O)pl(-2ﬁ).
- | 95
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If we include the effect of the wind broadening of f we see that % .
is proportional to the average value of T43i(l) cver a circle of radius ]
>~ 0.4ksin@ in {-space, centered about ¥ = -2k = (-2kcos6,0). In the
undistrubaed ocean we know that ;1(1) = 2x10'3L'4/n and therefore could
actually perform the average, if necessary. If we evaluate the zero-
width approximation to ¢, in the limit n—= (appropriate for the sea

1
surface since n = 80), we get

oy = (10‘3/2ﬁ) tan48

for the backscattering cross-section from the undisturbed sea. ]

We now must compute o = (|¢°|2) RZ/A. Since ¥, is the field -
generated by that part of the sea surface for which the approximations -
of geometrical optics are correct we can adopt the classical results
for scattering light from a Gaussianly roujh surface:

o, = (% (25in9)4)'lexp(-cot28/ah2)

for backscattering. We note that %y falls off exponentially as 8

decreases from w/2. In fact we can easily see that for 8 € 80°, 9, :
dominates o, while for § » 80° the reverse is true. -
At this point we may reasonably summarize our results: We have -

found two basic regimes in radar backscattering; one occurs when the

angle of elevation is large, nearly 80°, the other occurs for moder- .
ate elevation angles. In the first case, the backscattering cross-
section is =z function of ahz, while in the other it is determined by
Fi, the ocean wave power spectrum, at some appropriate wave number.
The quantity uhz, is just the mean square slope of the ocean waves,
which in turn is an integral over the complete wave power spectrum.
Therefore, the difference between the two regimes is that in one case

we measure Fi, at a point in wave number space while in the other we -
_ measure what amounts to an average of Sl over all wave number space. . -
: This distinction will turn out To be most important in the applications. -
:ﬁ
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Finally, we would like to point out that the scattering c¢f polar-
jzed radiation from the sea surface may be calculated by much the same
methods, although the fomrmulas are much more complicated. We shall
refrain from writing ‘chém down nere since nothing essentially new in
the physics of radar backscattering is introduced.
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III. THE EFFECT OF INTERNAL WAVES ON RADAR BACKSCATTERING

As far as the applications considered in this report are con-
cerned, we need to know the effect of an internal wave, OVEr and above
the random background, on the radar return from tne sea surface. The
ocean wave heights are in general described by the power spectrum
F(k) where

<h(7-()h(0)> =ﬁk F(R) ei]_(';(

-3 -4
with F(E) = Eil%_ﬁi__

and Zachariasen have shown that if an internal wave of phase velocity

for the standard wind-generated sea. Hartle

C, wave length L, and maximum surface water velocity Vo is present,
then the power spectrum is changed by

2 . =1 )
SE(R) . _ T 2n V_ cos%¢ sin(2n TL (Cgcosw c)

F(K) L on TL'l(Cgcos¢-C)

where ¢ is the angle between K and the direction of propagation of the
internal wave, C_ = %/g/K is the group velocity of the surface waves
with wave number k, and T : * the time during which these same surface
waves have been acted on by the internal wave. It is convenient to

introduce § = TC/L, which is just T measured in internal wave periods,

and € = VO/C so that

sin(2n3(C_cosp/C-1))
- e2ndcos®g ZI(CC0s8/C-1)

In practical cases, € turns out to be very small. We note that for
small ¥, 6F/F is uniformly distributed over k-space, while for & >> 1,
98
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8F/F is very sharply concentrated around the curve Cgcosw = ¢, This
turns out tc have a profound effect on the size of the radar return

for different values of J.

We recall that if the angle of elevation, €, of the radar beam
from the horizontal is not too large, the backscattered power is pro-
portional to the average of F(k) over a circle in k-cpace centered at
Ro = (-Zkpay radar
velocity but might typically be 0.1. Let us suppose that we have
cleverly chosen kradar and 8 so that Ro 1ies on the curve C _cos6 = C.
We now want to compute the ratio &P/P where P is the radar return from
.- the undisturbed ocean and P+6P is the radar return from the ocean in
. the presence an internal wave. Let @ (|k-K_|) be 1 for |k-K | <
r - 3K adar

e

cosB,0) and with radius ak , where a depends on wind

and zero otherwise. Then

6P _ fdlz § F(K) @ ({k-k )
P fer r a (IR-R,D

There are two interesting regimes in which we want to calculate
this ratio. First of all, if 2n3(Cgcos¢/C-l) is small through the
region where Q is non-zero, we have 6F = -cv2n3cos2¢F and

gg = _e2md cosz¢ .

On the other hand, if ¥ is very large, SF/F - -enc052¢6(Cgcos¢/C—l).
3 : With our assumption that Eo is centered on the curve Cgcos¢ = C, we
. have ’

- &P - gg_cosz¢
F - a

Because a is small, this ratio can easily be as much as 10e¢.
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IV, STATISTICAL CONSIDERATIONS

Thus far, we have shown how to calculate the backscattered power
averaged over a statistical ensemble of ocean surfaces. The question
of just what "averaged over an ensemble" means in temms of physical
measurements remains. This will be our next topic.

One way of performing an average is to look repeatedly at dif-
ferent pieces of the ocean surface which are far enough apart to be
statistically independeht. The minimum distance between two such
pieces is determined, of course, by the correlation length of those
properties of the ocean surface surface which are important in the
scattering process. Since the specular part of the scattering cross-
section depends only on the mean square slope, the correlation length
relevant for specular reflections is clearly thet for slopes, which
turns out to be some tens of centimetersl For Bragg scattering (scat-
tering from waves of a definite wavelength, the dominant process in
backscattering at moderate elevation angles) the high-frequency part,
hl’ of the elevation detemmines the scattering. To find the correla-
tion length relevant for Bragg scattering we must, therefore, study

.

the correlation function

k

-3 2 4 ik (%7

p1(%-9) = (h Oy (7)) = 2%9__[ ok ket (x-¥)
c

Because it contains a factor k"4, the integral on the right is rapidly
convergent and receives most of its contribution from the region

k. s ks 2k,. When | (%-¥)] is small compared to A. = 2nk;1, the ex-
ponential is essentially constant over this region and p(x~-y) is of
order 2x10'3k;2. However, if |X-y| is large compared to X ,, the ex-
ponential factor oscillates rapidly and the integral is very smail,
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Thus, we may take the correlation length for Bragg scattering to be
something like X which, as pointed out above, will be a few radar
wavelengths.

Actually, the above correlation lengths are so small that they
are of little interest except in very special cases. To see this we
have to understand what happens when a radar looks at the ocean surface.

Suppqse a radar illuminates an area R of the ocean surface. Re-
ferring to the above numbers, we see that in general A will be very
large compared to the relevant coherence length squared. Imagine now,
dividing A into patches whose linear dimension is of the order of a
coherence length. We can write the backscattered wave as E#i where
wl is that part of the backscattered wave which comes from the i-th
patch. Then setting *i = a; ei¢i, we have

P = z a;a; eimi'qu)

for the returned power. If we now average P over an ensemble of
statisically independent areas A, the averaged power is

@ =T (aga; *0i%50 =y D)
i,3 . 1

which follows from the fact that the phases ¢*%i are random.

There are now two questions: (i) What do we mean by independent
areas? and (ii) How many areas are needed to determine (P) to a given
accuracy? The answer to the first question is almost trivial. 'In
order that the phasec ei¢i be uncorrelated, the two areas must be non-
overlapping. We are assuming that the time difference between mea-
surements is less than the decorrelation time of the phases. To
anser the second question, we need the variance of P. Here we appeal
to the well-known fact that for a sum of térﬁs with random phases,
such as in the last equation, the variance is always of the same ovder
as the square of the average, l.e.,
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HK(p-(p))2y = (@) . .

This means, of course, that co measure (P} to, say, one part in ten,

we need one ﬁyndred separate areas.

Notice that the above conclusions are independent of the size of T
the area illuminated by the radar (so long as its linear dimensions b
are large compared to the correlation length). Thus, contrary to one's T
first impfession, the accuracy of & measurement of P does not improve “

as the size of A increasez. Also, it is clear that the magnitude of

the small correlat on lengths does not enter in & critical w-y.

" This perhaps surprising situation arises because a radar is a .
coherent source of radiation. Suppose, on the contrary, that the source ]
of radiation were incoherent. If this were the case, the equaticn

[ ——3

given on the previcus page for the backscattered power should be re-
piaced by

}

P = z: ay a el[(¢ 2 )~ (¢ +¢ 1
i,j

42y

where @ is the phase of the incident radiation, assumed to vary rap-
idly w1th time and index i (this is to incorporate the assumption that
the incident radiation is incoherent). Averaging over a time long
compared to the coherence time of the ¢{ gives

(D — 2 .-
Pl time ) _Zl: a; -

averags -
The point is now, thau the average of T ag over an ensemble of areas
L gives (P) &s before, Dut the vari nc; in T af is not of order (P}
but rather of order (&) (L? 12:9) %, wnere L is>the liarger of the coher-
ence length of the radiation and the relevant coherence 1ergth of the
ocean. Thus, for an incoherent source the accuracy of a measurement . .

does increase with A. -

Ramen &
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The reader may wonder why, in the case of a coherent source, we

' did not average the power equation over time in order to obtain &

result similar to that just described. The reason is that the time
scale involved is vastly different. If an incoherent source has a
coherence length L, its coherence time is very small, being on the
order of L/c, where ¢ is the velocity of light. With a coherent source
the corresponding time is the coherence time of the ccean surface.

This is on.the order of L'/v, where L’ is a coherence length for the
ocean and v is a typical wave velocity. It is the large ratio ¢/v =

109 that makes coherent and incoherent sources so different.

~ finally, 4t should be pointed out that measurement of Bragg scat-
tering has some statistical properties which are different from those
of specular reflections. S8uppose, for example, that we make many
measurements of specular reflection from a single patch of ocean sur-
face using various wavelengths of incident radiation and angles of
incidence, but completing all the measurements within one coherence
time. The statistics of the measurement have not been improved in
this case. No matter what angle or wavelength we use to measure
specular reflection we are always measuring the same quantity, namely
the mean square slope. Thus we might as well have carried out all the
measurements at the same wavelength and angle, gaining no imprcvement
in statistics. Bragg scattering is different, however. By carrying
out the measurement at different angles and wavelengths we are measur-
ing different Fourier coefficients of the correlation function £y-
Since these Fourier components are statistically independent each
measurement gives new information and the statistvics can be improved.
As an exam?le, suppose we wish to measure pl(O) which is the Fourier
cemponent integrated over 4-space. According to our formulas in Sec-
tion III, scattering at moderate elevation angles samples the Fourier
components of pe Over an area of order kradarz m2 in {-space, wherg w
is the mean-square slope' of the ocean surface. Since there are m”
such areas available, we can make m"2 independent measurements whose
sum. (which gives pl(G}) will have & variance of m2 times the variance

2

of a single measurement. Since m* is of order 107° this is a non-

trivial increase in statistical accuracy.
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] To detect ripples on the surface of the sea by passive electro-
magnetic means several different wavelengths may be employed. The

- question naturally arises as to which wavelength range is most suit-

. able. The answer depends not only on the physics of the interaction

; of electromagnetic waves with the surface of the ocean but also on

the technology of detectors. In this section a comparison of the
infrared and centimeter wavelength ranges will be made.

] , Several physical effects contribute to the detection of surface
ripples by electromagnetic waves. Only one of these will be considered
here. A detector pointed at the sea surface receives reflected radi-
ation from different portions of the sky due to the presence of the
ripple. Since the radiance of the sky varies with elevation, the
presence of the ripples will le¢ad to an average variation in the re-

- ceived radiance and the detection of the ripples.

Quantitatively, the spectral radiance (power per unit area per
unit solid angle per unit wavelength) Wi . (%, Ny) received from a
direction given by a unit vector Ed at wavelength ) consists of two
parts: 1) the reflected radiance of the sky at a direction Es re-
lated to Ed by the law of refiection and (2) the emitted radiance of
the sea itseif. In terms of the spectral radiance of the sea WSea’
that of the sky wsky

rection 2z, and the normal to the sea surface N we write

, the reflectivity p of sea water, the zenith di-

W COLNG = p 0Lz Mg Quzel) + [1-p0hz N ) (D)

The angle of incidence is related to the angle of reflection by

= (<L + N N)
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where I is the unit dyadic. For small sea slopes, N may be written
as 2 + g, Eq. (1) expanded in powers of ¢ and averaged over the dis-
tribution of sea slopes. The averages of ¢ and ge may be expressed
in terms of the r.m.s. sea slope, m, by

(&) = - m? .

3]

(eg)

¥ m? (I - z2) f S

Expressed in terms of the zenith angle 8 we then have (see Appendix)
for the average variation in received radiance

P aQws .
det(k 8) = [p(——a—ejx + cot8 p

)
1 329 ap
+ ¥ By = Ysea) ('a;—z + coth 35

The sky radiance contrast arises irom two sources--absorption and
elastic scattering. Elastic scattering is important only for wave-
lengths <2u because of the wavelength dependence of the elastic cross
section and the size distribution of the scattering particles. In that
region, the sky contrast arises because on the average the reflected .
radiation originates one mean free path length away and there are more
scatterers at low elevations near the horizon than at high elevations
near the zenith. This effect can lead to strong radiance contrasts at’
low elevation angles (see Fig. 1) of the order

scale height
(elevation angle) & | for scatterer {mean free path)
density
£ 1 km/10 km (1)
Observations at such small angles from airplanes are different because

at typicsl airplane heights the observation distance is compJarable
with the mean free path. We will not consider tha sky constant from

elastic scattering further.
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The important factor contributing to the sky radiance contrast
is absorption. On the average the reflected radiance originates one
attenuation distance L{A) away at a height L(1) sin (elevation angle).

R AT Ty Ty

fomr ey o

- Since the temperature of the atmosphere and hence the radiance varies
with height this will lead to a greater radiance at the horizon than at
- zenith. The resulting contrast will be small for those wavelengths

where the absorption is large and large when the absorption is small.

. Figure 2 shows the experimental sky radiance for various angles
in the infrared range. No contrast is observed in regions of strong
absorption {e.g., Sp and 15p) while the maximum contrast is obtained
‘ in the region about 10w. In figure 3 the sky radiance (and its equiv-
o alent temperature) from this data at 10w is plotted as & function of
angie. BAlso plotted on the same graph is the spectral radiance for
1.54 cm normalized to the same height at € = 90°. Several features are
- clear. Because atmospheric absorption is stronger at 10¢ than 1.5 om
the temperature contrast is smaller in the infrared region than in the
, microwave. However, because the dependence of radiance on temperature
S in the infrared is exponential (he/AkT ~ 5) while in the microwave it
is linear (he/AKT ~ 1/50), there is not a great difference in the ra-
diance constrasts.

These curves are the first elements which enter into a calcula-
tion of 5wdetxwde*’ The second element is the reflectivity. This is
estimated Irom the standard Fresnel formulae. For the A = 1.5 om the

curves of these quantities are already in hand in Fig. 4

The largest value of~6wdet is obtained at high angles. At a
typical large angle of 6 = 75° we find by crudely estimating the de-
rivatives of these curves

3%
det ~ 0.6 mz, m in radians, A = 1.5 cm,

det

Taking @ temperature resolution of 0.2°K we have approxXimately Ior
A = 1.54 cnm. ‘
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det _ 100 m?, m in radians )
inst .
where 6W. is the instrumental radiance resolution.

inst , -
For the 10p wavelength the index of refraction was computed and .
plotted in Fig. 4 using an index of refraction of 1.3. The curves of

wdet for horizontai and vertical polarizations are given in Fig. 5.

Crudely estimating Eq. (4) for 9 = 75° one finds

6wdet

det

P O.é m2

> min radians, A = 10u .
The similarity of this number with that obtained for X = 1.54 om re-
flects the similaritv of the sky contrasts at the two wavelengths.

If we take 6T = 0.01°K for the temperature resolution in the
infrared we find

W

inst _ (hc ) §T ~ 2x10-4 *
“det :Emdet Ta .

Thus for A = 10M

6wdet 2 -
s 3000 m“, m in radians.

inst

The conclusion is then that the infrared is favored over micro-
wave radiometer by roughly a factor of 30. The basic reason for this
is that the window at 10p is sufficiently transparent that the sky
radiance contrasts are almost the same at the two wavelengths, while

. the resolution of the infrared is better by roughly a factor of 30.
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PPPENDIX

DERTVATION OF EQUATION (4)

-Let n = nomal to sea surface
n, = direction to observer
n, = direction seen on sky

Snell's law is expressed by
RXD, =-DnXng

Forming the vector product of both sides with n,

= -« n
nx (nxmn) n x (g % ng)
whence
n(n + n-n, = - B(Q - B + I
Since
n*n =n-+n

we have

‘n. = - - n = (-I+ 2nn) - N

~G D.o + 22(1\4 no) ( ~ ~~) ~Q

The detected radiance is equal to the incident radiance

wdet =

where z 3s the zenith vector

wsky (z - 55)

= Wopy (z +(-L + 20p) = ng)

Now for small sea slopes n = Z + &

€ = (sin@ cosy, sinf sing, cos6-1)




or
. 2 3
€ > (8cose, 8sin?, - 8°/2) + 0(e7)

Therefore, accurate to second order in f, we have

wdet - wsky {z « [-I + 22z + 2(ze + s2) + 2¢€] - Eo]

=Wy [2 - ng + 220(ze + s2) + 2€) - n,)

= W (E'.

4 > -
sky B, + wsky[25 - (ze + £2) - ng+ 2z - (ge) - Ny

" 2
+ 2 W sky [z . (ze + g2) - Bo] + oaee

The following averages will be needed:

(€)= - 8% 2

(¢e) = aL + b 2z
a=k (82

a+b=0 b=-% (6

=% (% (L - z2)

o
L
I

Using these results, the first bracket in the expansion cof wdet becomes
on averaging -2 <eq> (z » no). The second bracket is equivalent to

i}

Ae@+ 28 -n)=2m - T+22) - e T+22) -0

(62)50-‘(;&,2,5)-(L—,g,z,')-(1+z.£)'ﬂo

'~

2
(6°) n, » @ -322) - n,

2
%

(92} {1 - (ng - 2)2] = <e2> sin
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where 60 is the angle of observation measured from the vertical. Thus,

—_— 2 ! F/s . 2
wdet = W(coseo) + (%) [-2w cos8 | + W’ sin 90]
Now
we = W _3 whoe s L 9 fdw_2
= 36 sinb =+ 5ing d6 \d® sind
2
- 1 4é°W _ cosB gg
sind g2 sinYe ¢
Thus,
W = W) + (e ——532"" + cots of
det 0’ 0 coty g

This computation was made leaving out the veflectivity. Actually,

Wier = o0 = ny) Wy (z - ng)

Expanding the reflectivity in the same manner as before,

p(g,-go)=p(g-no+§,-§o)

fl

2
’ 1 " R
p(z.no)+p(e.no)+§p(e no)+...
Including the extra terms in the expression for wdet

= ! . 71 " . 2
Wiet o+ p' (g-n))+ (%) p"(e » n) ]i Woky

’ . .
s W, (22 - G2+ g2) - g + 22 () n,]

+2W;kytzo (,:-':5-"',‘:1.) .2012§.
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EXTRA TERMS

+20'g - n) [z - (ze+ g2 - ¥ W,

b p g - m MG+ (07 K(e - B Wy

The first average 1$ equivalent to

n, * e+ 28 ¢ mg = (892 pg - (- 2@+ 2R -

i

«e?/2)p - @L-22) -1,

«82)/2) sin’e

The second average is simply ((82)/2) cos 8. The third average is

n_ »{ee)n

N 2 .2
IR = ({(8°)/2)sin eo

[¢)

Assembling these results and noting that (92) is equivalent to the

2 -
mean-square slope m“ within the approximations used here, we obtain

2 A
3w aw_, |
- 2 sk, sk
wdet = Wsky + m —5_03—1 + coth —sﬁ—z_l

2 aw .\ >
+ E;;ﬁg (—583*9 (ae)sinze + (m2/2) cot9 (%g) wsky

+ mP/a)sin® |—2p- S5 - S5 Fh
sin“0o i
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The net result is that the variation in radiance is given by

2
2 oWy Mok
Gwdet =m P _Sg§_X + cotf —Sﬁ_x

r Moy d COW 12% cota g_g
! t*\s 5% AT M gky gg? * © 39

This -~xpression accounts for the contribution to the variation in
received radiance due to the first term in Eq. (1). The contribution
of the second term can be obtained by inspection of the above expres-
sion (replacing wsky by wsea and noting that wse
Thus, the contribution of the second term is

a is independent of 6).

5W = -(m2/4) W 329 + cotd op
det — sea 392 36

- _ Combining these results yields Eq. (4) of the test.




)

:

300

!

1000 »{\ !!
30
02

:

200

100

SPECTRAL RADIANCE (pW em 230! M

SPECTRAL RADIANCE (u'W cm 2™

§ ]
3 4 50
e WAVELENGTH (u )

FIGURE 1. Spectral radiance of a clear sky, showing the dependence of the
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Coloradn, near noon in September; elevation angles 0° (top curve), 7.2° and 30
(lowest curve). Note that the ordinate scale for the short-wavelength set of curves
is 10 times larger than the scale of the longer-wavelength curves. (From Bell et al
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measured at night in September from Elk Park Station, Colorodo, 11,000 ft above
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DECISION THEORY APPLIED TO SENSOR EVALUATION

E S. Courtenay Wright
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Sophisticated signal processing is claimed by some of its adve-
cates to make possible remarkable improvements in detection systems.
While this is true in some cases, in others the claims are extravagant.
This note is written to provide a basic criterion for detection that
depends only on hardware capability and by which ultimate perfcrmance
l1imits can be set: limits that can be approached but not surpassed
by astute processing and presentation. The basis. for this is the work
of Harris® on decision theory. The derivation of one of his main re-

sults is abstracted here for completeuess.

We will look at the detection problem as a binary decision between
two signal sources denoted I and II, with the signals accompanied Ly
additive Gaussian noise. For definiteness, take a two-dimensional data
presentation‘with mean flux densities of HI(x,y) and HII(x,y) for the
sources I and II. The likelihood that a set of flux readings Rl’ R2
...Rn with dispersions Gg’ cg N oi for patches of ares AxAy is ob-~

served in response to source I is

n

L(I) = 7r

i=1l

exp[-(Ri - Hyg AxAy)2/2G§]

v2ﬂ GZ

where Ri is the flux measured at the display point (xi,yi), and Hyy =
HI(xi,yi). Similarly, the likelihood of the same readings in response
to source II is

o 1 2 19023
L(II) = 1{? exp[—(Ri - HIIi AxAy) /20i

1=

2n 0?
i

This fermulation assumes that the incrementzl area Axay is sufficiently
large for the observed readings Ri to be regarded as statistically

independent.
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Fc > the purpose of this discussion, the relative risks of error
in deciding that source I is present when scurce II is really present,
and vice versa, can be ignored. !Under these conditions, the decision

rule is to select the alternative with the larger likelihood. In terms
of

¥ = 21loglL(I)/L(II)]

the procedure is to decide that I is present if § > O, and to decide
that IT is present if ¢ < 0. Specifically,

<
"

[*8

Mwgt

.2 2 2y - 2 2
(l/oi)[-QRi(HIIi - Hp) axgy + (Hpg - Hp3)(8x) (Ay) ]

Now suppose that source I is actually present; then

R, = HIi Ay + ng

(S

with

n
Q
!

2 2 .
(ni> . = vibxay

Here, n; represents the additive Gaussian noise, and vy is the

noise variance per unit area. Substituting this into the expression
for ¥ yields

2
& (Hpy - Hpp)taxay  ono2ng (g - Hpg)
‘rI = L ™) - E o
i=1 i i=1 i

The mean of ¥ can be expressed as

([ B Oon) - B eon?®
br ” VG Y) i
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I The integral is taken over the area of presentation {e.g., the field
l of view of display). The variance of ¥p is calculated to be

‘ 2
p = (l/«ffﬁ)/ e 2 /2 g (1)

The probability of a correct decision depends on the singie parameter

PN I 0 PR e |
w/T = (%) (S/N)“© dxdy (2)
) . )

o when N denotes the background noise per unit area.

+ Well-matched processing and data presentation can take full ad-
r vantage of the signals provided by detection equipment, but cannot

'

-5 improve the probability of a correct decision ower that implied by

. Eq. (1) and (2).
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