The Honorable William M. "Mac" Thornberry
Chairman
Committee on Armed Services
United States House of Representatives
Washington, DC 20515-6035

Dear Mr. Chairman:

(U) I have enclosed at TAB A my report on the operational testing of the Mobile Landing Platform with Core Capability Set (MLP (CCS)) ship class as required by Sections 2399 and 2366, Title 10, United States Code. TAB B provides my classified live-fire and survivability evaluations.

(U) MLP (CCS) is a heavy-lift ship based primarily on the British Petroleum Alaskan Class crude oil tanker design. The CCS includes a raised vehicle deck (RVD), vehicle transfer ramp (VTR), and three Landing Craft Air Cushion (LCAC) vehicle lanes. MLP (CCS) is designed to moor skin-to-skin, at sea, with Large Medium-Speed Roll-on/Roll-off (LMSR) ships for transfer of Marine Corps or Army rolling stock, including equipment ranging from tanks to jeeps. Employment of MLP assumes the Navy has achieved sea superiority, and that the MLP can operate in protected waters, since MLP has no air defense, no subsurface defense, and little surface defense other than the minimal force protection provided by security team-manned, 0.50 caliber machine guns.

(U) The MLP (CCS) is operationally effective provided that operations are conducted in a safe, well-guarded area and within relatively calm sea state conditions. When the MLP was positioned 25 nautical miles from the LCAC shore landing site, it met its timed transfer requirement, enabling Marine Corps equipment for a Reinforced Rifle Company (RRC) to be moved to shore in less than 12 hours. For operational scenarios that include Amphibious Assault Vehicles (AAVs) independently moving to shore, the MLP (CCS) demonstrated it can launch AAVs from within 5 nautical miles of the shore; launching AAVs that close to the shore is unlikely to be feasible in major combat. However, in that particular case, DOT&E estimates the transfer of a full RRC’s equipment set would span 52 hours and 49 minutes, owing to the time needed to move MLP (CCS) from 25 nautical miles to within 5 nautical miles from shore.

(U) MLP (CCS) was shown to be effective through the required mid-Sea State 3 conditions. MLP (CCS) is likely to encounter problems operating in higher sea states, as the VTR twist motion in higher seas will exceed the ramp’s structural integrity. Vehicle transfer operations between LMSRs and MLP (CCS) were demonstrated through the required conditions; however, mild side to side rolling of the ships while moored skin-to-skin caused twisting of the VTR that must be monitored. Devices for monitoring the VTR twist were temporarily installed for testing; the sensitivity of the VTR to twisting warrants use of a permanent monitoring system.
(U) The MLP (CCS) is currently unable to operate with the Joint High Speed Vessel (JHSV); the JHSV ramp failed during the operational test due to the motion of the ships. Equipment transfers between these two ships are likely to fail even in calm seas.

(U) Testing uncovered two cybersecurity deficiencies that are described in the classified annex, TAB B. Nonetheless, the overall cybersecurity posture of the ship is good.

(U) Section 2399 provides that the Secretary of Defense may submit separate comments on my report, if he so desires. I have sent copies to him; the Under Secretary of Defense for Acquisition, Technology and Logistics; the Vice Chairman of the Joint Chiefs of Staff; the Secretary of the Navy; and the Chairmen and Ranking Members of the Congressional defense committees.

J. Michael Gilmore
Director

Enclosures:
As stated

cc:
The Honorable Adam Smith
Ranking Member
The Honorable Rodney P. Frelinghuysen
Chairman, Subcommittee on Defense
Committee on Appropriations
United States House of Representatives
Washington, DC 20515-6015

Dear Mr. Chairman:

(U) I have enclosed at TAB A my report on the operational testing of the Mobile Landing Platform with Core Capability Set (MLP (CCS)) ship class as required by Sections 2399 and 2366, Title 10, United States Code. TAB B provides my classified live-fire and survivability evaluations.

(U) MLP (CCS) is a heavy-lift ship based primarily on the British Petroleum Alaskan Class crude oil tanker design. The CCS includes a raised vehicle deck (RVD), vehicle transfer ramp (VTR), and three Landing Craft Air Cushion (LCAC) vehicle lanes. MLP (CCS) is designed to moor skin-to-skin, at sea, with Large Medium-Speed Roll-on/Roll-off (LMSR) ships for transfer of Marine Corps or Army rolling stock, including equipment ranging from tanks to jeeps. Employment of MLP assumes the Navy has achieved sea superiority, and that the MLP can operate in protected waters, since MLP has no air defense, no subsurface defense, and little surface defense other than the minimal force protection provided by security team-manned, 0.50 caliber machine guns.

(U) The MLP (CCS) is operationally effective provided that operations are conducted in a safe, well-guarded area and within relatively calm sea state conditions. When the MLP was positioned 25 nautical miles from the LCAC shore landing site, it met its timed transfer requirement, enabling Marine Corps equipment for a Reinforced Rifle Company (RRC) to be moved to shore in less than 12 hours. For operational scenarios that include Amphibious Assault Vehicles (AAVs) independently moving to shore, the MLP (CCS) demonstrated it can launch AAVs from within 5 nautical miles of the shore; launching AAVs that close to the shore is unlikely to be feasible in major combat. However, in that particular case, DOT&E estimates the transfer of a full RRC’s equipment set would span 52 hours and 49 minutes, owing to the time needed to move MLP (CCS) from 25 nautical miles to within 5 nautical miles from shore.

(U) MLP (CCS) was shown to be effective through the required mid-Sea State 3 conditions. MLP (CCS) is likely to encounter problems operating in higher sea states, as the VTR twist motion in higher seas will exceed the ramp’s structural integrity. Vehicle transfer operations between LMSRs and MLP (CCS) were demonstrated through the required conditions; however, mild side to side rolling of the ships while moored skin-to-skin caused twisting of the VTR that must be monitored. Devices for monitoring the VTR twist were temporarily installed for testing; the sensitivity of the VTR to twisting warrants use of a permanent monitoring system.
(U) The MLP (CCS) is currently unable to operate with the Joint High Speed Vessel (JHSV); the JHSV ramp failed during the operational test due to the motion of the ships. Equipment transfers between these two ships are likely to fail even in calm seas.

(U) Testing uncovered two cybersecurity deficiencies that are described in the classified annex, TAB B. Nonetheless, the overall cybersecurity posture of the ship is good.

(U) Section 2399 provides that the Secretary of Defense may submit separate comments on my report, if he so desires. I have sent copies to him; the Under Secretary of Defense for Acquisition, Technology and Logistics; the Vice Chairman of the Joint Chiefs of Staff; the Secretary of the Navy; and the Chairmen and Ranking Members of the Congressional defense committees.

J. Michael Gilmore
Director

Enclosures:
As stated

cc:
The Honorable Peter J. Visclosky
Ranking Member
The Honorable John McCain
Chairman
Committee on Armed Services
United States Senate
Washington, DC 20510-6050

Dear Mr. Chairman:

(U) I have enclosed at TAB A my report on the operational testing of the Mobile Landing Platform with Core Capability Set (MLP (CCS)) ship class as required by Sections 2399 and 2366, Title 10, United States Code. TAB B provides my classified live-fire and survivability evaluations.

(U) MLP (CCS) is a heavy-lift ship based primarily on the British Petroleum Alaskan Class crude oil tanker design. The CCS includes a raised vehicle deck (RVD), vehicle transfer ramp (VTR), and three Landing Craft Air Cushion (LCAC) vehicle lanes. MLP (CCS) is designed to moor skin-to-skin, at sea, with Large Medium-Speed Roll-on/Roll-off (LMSR) ships for transfer of Marine Corps or Army rolling stock, including equipment ranging from tanks to jeeps. Employment of MLP assumes the Navy has achieved sea superiority, and that the MLP can operate in protected waters, since MLP has no air defense, no subsurface defense, and little surface defense other than the minimal force protection provided by security team-manned, 0.50 caliber machine guns.

(U) The MLP (CCS) is operationally effective provided that operations are conducted in a safe, well-guarded area and within relatively calm sea state conditions. When the MLP was positioned 25 nautical miles from the LCAC shore landing site, it met its timed transfer requirement, enabling Marine Corps equipment for a Reinforced Rifle Company (RRC) to be moved to shore in less than 12 hours. For operational scenarios that include Amphibious Assault Vehicles (AAVs) independently moving to shore, the MLP (CCS) demonstrated it can launch AAVs from within 5 nautical miles of the shore; launching AAVs that close to the shore is unlikely to be feasible in major combat. However, in that particular case, DOT&E estimates the transfer of a full RRC’s equipment set would span 52 hours and 49 minutes, owing to the time needed to move MLP (CCS) from 25 nautical miles to within 5 nautical miles from shore.

(U) MLP (CCS) was shown to be effective through the required mid-Sea State 3 conditions. MLP (CCS) is likely to encounter problems operating in higher sea states, as the VTR twist motion in higher seas will exceed the ramp’s structural integrity. Vehicle transfer operations between LMSRs and MLP (CCS) were demonstrated through the required conditions; however, mild side to side rolling of the ships while moored skin-to-skin caused twisting of the VTR that must be monitored. Devices for monitoring the VTR twist were temporarily installed for testing; the sensitivity of the VTR to twisting warrants use of a permanent monitoring system.
(U) The MLP (CCS) is currently unable to operate with the Joint High Speed Vessel (JHSV); the JHSV ramp failed during the operational test due to the motion of the ships. Equipment transfers between these two ships are likely to fail even in calm seas.

(U) Testing uncovered two cybersecurity deficiencies that are described in the classified annex, TAB B. Nonetheless, the overall cybersecurity posture of the ship is good.

(U) Section 2399 provides that the Secretary of Defense may submit separate comments on my report, if he so desires. I have sent copies to him; the Under Secretary of Defense for Acquisition, Technology and Logistics; the Vice Chairman of the Joint Chiefs of Staff; the Secretary of the Navy; and the Chairmen and Ranking Members of the Congressional defense committees.

J. Michael Gilmore
Director

Enclosures:
As stated

cc:
The Honorable Jack Reed
Ranking Member
The Honorable Thad Cochran
Chairman, Subcommittee on Defense
Committee on Appropriations
United States Senate
Washington, DC 20510-6025

Dear Mr. Chairman:

(U) I have enclosed at TAB A my report on the operational testing of the Mobile Landing Platform with Core Capability Set (MLP (CCS)) ship class as required by Sections 2399 and 2366, Title 10, United States Code. TAB B provides my classified live-fire and survivability evaluations.

(U) MLP (CCS) is a heavy-lift ship based primarily on the British Petroleum Alaskan Class crude oil tanker design. The CCS includes a raised vehicle deck (RVD), vehicle transfer ramp (VTR), and three Landing Craft Air Cushion (LCAC) vehicle lanes. MLP (CCS) is designed to moor skin-to-skin at sea, with Large Medium-Speed Roll-on/Roll-off (LMSR) ships for transfer of Marine Corps or Army rolling stock, including equipment ranging from tanks to jeeps. Employment of MLP assumes the Navy has achieved sea superiority, and that the MLP can operate in protected waters, since MLP has no air defense, no subsurface defense, and little surface defense other than the minimal force protection provided by security team-manned, 0.50 caliber machine guns.

(U) The MLP (CCS) is operationally effective provided that operations are conducted in a safe, well-guarded area and within relatively calm sea state conditions. When the MLP was positioned 25 nautical miles from the LCAC shore landing site, it met its timed transfer requirement, enabling Marine Corps equipment for a Reinforced Rifle Company (RRC) to be moved to shore in less than 12 hours. For operational scenarios that include Amphibious Assault Vehicles (AAVs) independently moving to shore, the MLP (CCS) demonstrated it can launch AAVs from within 5 nautical miles of the shore; launching AAVs that close to the shore is unlikely to be feasible in major combat. However, in that particular case, DOT&E estimates the transfer of a full RRC's equipment set would span 52 hours and 49 minutes, owing to the time needed to move MLP (CCS) from 25 nautical miles to within 5 nautical miles from shore.

(U) MLP (CCS) was shown to be effective through the required mid-Sea State 3 conditions. MLP (CCS) is likely to encounter problems operating in higher seas as the VTR twist motion in higher seas will exceed the ramp's structural integrity. Vehicle transfer operations between LMSRs and MLP (CCS) were demonstrated through the required conditions; however, mild side to side rolling of the ships while moored skin-to-skin caused twisting of the VTR that must be monitored. Devices for monitoring the VTR twist were temporarily installed for testing; the sensitivity of the VTR to twisting warrants use of a permanent monitoring system.
(U) The MLP (CCS) is currently unable to operate with the Joint High Speed Vessel (JHSV); the JHSV ramp failed during the operational test due to the motion of the ships. Equipment transfers between these two ships are likely to fail even in calm seas.

(U) Testing uncovered two cybersecurity deficiencies that are described in the classified annex, TAB B. Nonetheless, the overall cybersecurity posture of the ship is good.

(U) Section 2399 provides that the Secretary of Defense may submit separate comments on my report, if he so desires. I have sent copies to him; the Under Secretary of Defense for Acquisition, Technology and Logistics; the Vice Chairman of the Joint Chiefs of Staff; the Secretary of the Navy; and the Chairmen and Ranking Members of the Congressional defense committees.

J. Michael Gilmore
Director

Enclosures:
As stated

cc: The Honorable Richard J. Durbin
Vice Chairman